![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressuss | Structured version Visualization version GIF version |
Description: Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.) |
Ref | Expression |
---|---|
ressuss | ⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2622 | . . . . 5 ⊢ (UnifSet‘𝑊) = (UnifSet‘𝑊) | |
3 | 1, 2 | ussval 22063 | . . . 4 ⊢ ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) = (UnifSt‘𝑊) |
4 | 3 | oveq1i 6660 | . . 3 ⊢ (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) |
5 | fvex 6201 | . . . . 5 ⊢ (UnifSet‘𝑊) ∈ V | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (UnifSet‘𝑊) ∈ V) |
7 | fvex 6201 | . . . . . 6 ⊢ (Base‘𝑊) ∈ V | |
8 | 7, 7 | xpex 6962 | . . . . 5 ⊢ ((Base‘𝑊) × (Base‘𝑊)) ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((Base‘𝑊) × (Base‘𝑊)) ∈ V) |
10 | sqxpexg 6963 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) | |
11 | restco 20968 | . . . 4 ⊢ (((UnifSet‘𝑊) ∈ V ∧ ((Base‘𝑊) × (Base‘𝑊)) ∈ V ∧ (𝐴 × 𝐴) ∈ V) → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) | |
12 | 6, 9, 10, 11 | syl3anc 1326 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) |
13 | 4, 12 | syl5eqr 2670 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) = ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)))) |
14 | inxp 5254 | . . . . 5 ⊢ (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) | |
15 | incom 3805 | . . . . . . 7 ⊢ (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴) | |
16 | eqid 2622 | . . . . . . . 8 ⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) | |
17 | 16, 1 | ressbas 15930 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝑊)) = (Base‘(𝑊 ↾s 𝐴))) |
18 | 15, 17 | syl5eqr 2670 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((Base‘𝑊) ∩ 𝐴) = (Base‘(𝑊 ↾s 𝐴))) |
19 | 18 | sqxpeqd 5141 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (((Base‘𝑊) ∩ 𝐴) × ((Base‘𝑊) ∩ 𝐴)) = ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) |
20 | 14, 19 | syl5eq 2668 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴)) = ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) |
21 | 20 | oveq2d 6666 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = ((UnifSet‘𝑊) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴))))) |
22 | 16, 2 | ressunif 22066 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (UnifSet‘𝑊) = (UnifSet‘(𝑊 ↾s 𝐴))) |
23 | 22 | oveq1d 6665 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴))))) |
24 | eqid 2622 | . . . . 5 ⊢ (Base‘(𝑊 ↾s 𝐴)) = (Base‘(𝑊 ↾s 𝐴)) | |
25 | eqid 2622 | . . . . 5 ⊢ (UnifSet‘(𝑊 ↾s 𝐴)) = (UnifSet‘(𝑊 ↾s 𝐴)) | |
26 | 24, 25 | ussval 22063 | . . . 4 ⊢ ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = (UnifSt‘(𝑊 ↾s 𝐴)) |
27 | 26 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘(𝑊 ↾s 𝐴)) ↾t ((Base‘(𝑊 ↾s 𝐴)) × (Base‘(𝑊 ↾s 𝐴)))) = (UnifSt‘(𝑊 ↾s 𝐴))) |
28 | 21, 23, 27 | 3eqtrd 2660 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((UnifSet‘𝑊) ↾t (((Base‘𝑊) × (Base‘𝑊)) ∩ (𝐴 × 𝐴))) = (UnifSt‘(𝑊 ↾s 𝐴))) |
29 | 13, 28 | eqtr2d 2657 | 1 ⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 × cxp 5112 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 ↾s cress 15858 UnifSetcunif 15951 ↾t crest 16081 UnifStcuss 22057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-unif 15965 df-rest 16083 df-uss 22060 |
This theorem is referenced by: ressust 22068 ressusp 22069 ucnextcn 22108 reust 23169 qqhucn 30036 |
Copyright terms: Public domain | W3C validator |