MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxael1 Structured version   Visualization version   GIF version

Theorem uvtxael1 26296
Description: A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.)
Hypotheses
Ref Expression
uvtxael.v 𝑉 = (Vtx‘𝐺)
isuvtxa.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtxael1 (𝐺𝑊 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒𝐸 {𝑘, 𝑁} ⊆ 𝑒)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺,𝑘   𝑒,𝑉,𝑘   𝑒,𝑊,𝑘   𝑒,𝑁,𝑘
Allowed substitution hint:   𝐸(𝑘)

Proof of Theorem uvtxael1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxael.v . . . 4 𝑉 = (Vtx‘𝐺)
2 isuvtxa.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2isuvtxa 26295 . . 3 (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑛𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒𝐸 {𝑘, 𝑛} ⊆ 𝑒})
43eleq2d 2687 . 2 (𝐺𝑊 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ 𝑁 ∈ {𝑛𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒𝐸 {𝑘, 𝑛} ⊆ 𝑒}))
5 sneq 4187 . . . . 5 (𝑛 = 𝑁 → {𝑛} = {𝑁})
65difeq2d 3728 . . . 4 (𝑛 = 𝑁 → (𝑉 ∖ {𝑛}) = (𝑉 ∖ {𝑁}))
7 preq2 4269 . . . . . 6 (𝑛 = 𝑁 → {𝑘, 𝑛} = {𝑘, 𝑁})
87sseq1d 3632 . . . . 5 (𝑛 = 𝑁 → ({𝑘, 𝑛} ⊆ 𝑒 ↔ {𝑘, 𝑁} ⊆ 𝑒))
98rexbidv 3052 . . . 4 (𝑛 = 𝑁 → (∃𝑒𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑘, 𝑁} ⊆ 𝑒))
106, 9raleqbidv 3152 . . 3 (𝑛 = 𝑁 → (∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒𝐸 {𝑘, 𝑛} ⊆ 𝑒 ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒𝐸 {𝑘, 𝑁} ⊆ 𝑒))
1110elrab 3363 . 2 (𝑁 ∈ {𝑛𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑛})∃𝑒𝐸 {𝑘, 𝑛} ⊆ 𝑒} ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒𝐸 {𝑘, 𝑁} ⊆ 𝑒))
124, 11syl6bb 276 1 (𝐺𝑊 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝑁𝑉 ∧ ∀𝑘 ∈ (𝑉 ∖ {𝑁})∃𝑒𝐸 {𝑘, 𝑁} ⊆ 𝑒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  cdif 3571  wss 3574  {csn 4177  {cpr 4179  cfv 5888  Vtxcvtx 25874  Edgcedg 25939  UnivVtxcuvtxa 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-nbgr 26228  df-uvtxa 26230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator