![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdgval | Structured version Visualization version GIF version |
Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
vtxdgval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdgval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vtxdgval.a | ⊢ 𝐴 = dom 𝐼 |
Ref | Expression |
---|---|
vtxdgval | ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((#‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdgval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 1vgrex 25882 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐺 ∈ V) |
3 | vtxdgval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
4 | vtxdgval.a | . . . . 5 ⊢ 𝐴 = dom 𝐼 | |
5 | 1, 3, 4 | vtxdgfval 26363 | . . . 4 ⊢ (𝐺 ∈ V → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((#‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (VtxDeg‘𝐺) = (𝑢 ∈ 𝑉 ↦ ((#‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))) |
7 | 6 | fveq1d 6193 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((𝑢 ∈ 𝑉 ↦ ((#‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈)) |
8 | eleq1 2689 | . . . . . 6 ⊢ (𝑢 = 𝑈 → (𝑢 ∈ (𝐼‘𝑥) ↔ 𝑈 ∈ (𝐼‘𝑥))) | |
9 | 8 | rabbidv 3189 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) |
10 | 9 | fveq2d 6195 | . . . 4 ⊢ (𝑢 = 𝑈 → (#‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) = (#‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
11 | sneq 4187 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → {𝑢} = {𝑈}) | |
12 | 11 | eqeq2d 2632 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ((𝐼‘𝑥) = {𝑢} ↔ (𝐼‘𝑥) = {𝑈})) |
13 | 12 | rabbidv 3189 | . . . . 5 ⊢ (𝑢 = 𝑈 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}} = {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) |
14 | 13 | fveq2d 6195 | . . . 4 ⊢ (𝑢 = 𝑈 → (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}) = (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) |
15 | 10, 14 | oveq12d 6668 | . . 3 ⊢ (𝑢 = 𝑈 → ((#‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})) = ((#‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
16 | eqid 2622 | . . 3 ⊢ (𝑢 ∈ 𝑉 ↦ ((#‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) = (𝑢 ∈ 𝑉 ↦ ((#‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}}))) | |
17 | ovex 6678 | . . 3 ⊢ ((#‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) ∈ V | |
18 | 15, 16, 17 | fvmpt 6282 | . 2 ⊢ (𝑈 ∈ 𝑉 → ((𝑢 ∈ 𝑉 ↦ ((#‘{𝑥 ∈ 𝐴 ∣ 𝑢 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑢}})))‘𝑈) = ((#‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
19 | 7, 18 | eqtrd 2656 | 1 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((#‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 {csn 4177 ↦ cmpt 4729 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 +𝑒 cxad 11944 #chash 13117 Vtxcvtx 25874 iEdgciedg 25875 VtxDegcvtxdg 26361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-vtxdg 26362 |
This theorem is referenced by: vtxdgfival 26365 vtxdun 26377 vtxdlfgrval 26381 vtxd0nedgb 26384 vtxdushgrfvedg 26386 vtxdginducedm1 26439 |
Copyright terms: Public domain | W3C validator |