| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 2921 |
. . . . . . . 8
⊢ {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} |
| 2 | | vtxdun.u |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) |
| 3 | 2 | dmeqd 5326 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐼 ∪ 𝐽)) |
| 4 | | dmun 5331 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐼 ∪ 𝐽) = (dom 𝐼 ∪ dom 𝐽) |
| 5 | 3, 4 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐼 ∪ dom 𝐽)) |
| 6 | 5 | eleq2d 2687 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ 𝑥 ∈ (dom 𝐼 ∪ dom 𝐽))) |
| 7 | | elun 3753 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (dom 𝐼 ∪ dom 𝐽) ↔ (𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽)) |
| 8 | 6, 7 | syl6bb 276 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ dom (iEdg‘𝑈) ↔ (𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽))) |
| 9 | 8 | anbi1d 741 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))) |
| 10 | | andir 912 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))) |
| 11 | 9, 10 | syl6bb 276 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ↔ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))))) |
| 12 | 11 | abbidv 2741 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))}) |
| 13 | 1, 12 | syl5eq 2668 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))}) |
| 14 | | unab 3894 |
. . . . . . . . 9
⊢ ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} |
| 15 | 14 | eqcomi 2631 |
. . . . . . . 8
⊢ {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) |
| 16 | 15 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)) ∨ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))})) |
| 17 | | df-rab 2921 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} |
| 18 | 2 | fveq1d 6193 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((iEdg‘𝑈)‘𝑥) = ((𝐼 ∪ 𝐽)‘𝑥)) |
| 19 | 18 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = ((𝐼 ∪ 𝐽)‘𝑥)) |
| 20 | | vtxdun.fi |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun 𝐼) |
| 21 | | funfn 5918 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐼 ↔ 𝐼 Fn dom 𝐼) |
| 22 | 20, 21 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
| 23 | 22 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼) |
| 24 | | vtxdun.fj |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun 𝐽) |
| 25 | | funfn 5918 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐽 ↔ 𝐽 Fn dom 𝐽) |
| 26 | 24, 25 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 Fn dom 𝐽) |
| 27 | 26 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → 𝐽 Fn dom 𝐽) |
| 28 | | vtxdun.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) |
| 29 | 28 | anim1i 592 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼)) |
| 30 | | fvun1 6269 |
. . . . . . . . . . . . 13
⊢ ((𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐼)) → ((𝐼 ∪ 𝐽)‘𝑥) = (𝐼‘𝑥)) |
| 31 | 23, 27, 29, 30 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → ((𝐼 ∪ 𝐽)‘𝑥) = (𝐼‘𝑥)) |
| 32 | 19, 31 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → ((iEdg‘𝑈)‘𝑥) = (𝐼‘𝑥)) |
| 33 | 32 | eleq2d 2687 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐼‘𝑥))) |
| 34 | 33 | rabbidva 3188 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) |
| 35 | 17, 34 | syl5eqr 2670 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) |
| 36 | | df-rab 2921 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} |
| 37 | 18 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = ((𝐼 ∪ 𝐽)‘𝑥)) |
| 38 | 22 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → 𝐼 Fn dom 𝐼) |
| 39 | 26 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → 𝐽 Fn dom 𝐽) |
| 40 | 28 | anim1i 592 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽)) |
| 41 | | fvun2 6270 |
. . . . . . . . . . . . 13
⊢ ((𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ((dom 𝐼 ∩ dom 𝐽) = ∅ ∧ 𝑥 ∈ dom 𝐽)) → ((𝐼 ∪ 𝐽)‘𝑥) = (𝐽‘𝑥)) |
| 42 | 38, 39, 40, 41 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → ((𝐼 ∪ 𝐽)‘𝑥) = (𝐽‘𝑥)) |
| 43 | 37, 42 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → ((iEdg‘𝑈)‘𝑥) = (𝐽‘𝑥)) |
| 44 | 43 | eleq2d 2687 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → (𝑁 ∈ ((iEdg‘𝑈)‘𝑥) ↔ 𝑁 ∈ (𝐽‘𝑥))) |
| 45 | 44 | rabbidva 3188 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) |
| 46 | 36, 45 | syl5eqr 2670 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} = {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) |
| 47 | 35, 46 | uneq12d 3768 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥))}) = ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) |
| 48 | 13, 16, 47 | 3eqtrd 2660 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)} = ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) |
| 49 | 48 | fveq2d 6195 |
. . . . 5
⊢ (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = (#‘({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}))) |
| 50 | | vtxdun.i |
. . . . . . . . . 10
⊢ 𝐼 = (iEdg‘𝐺) |
| 51 | | fvex 6201 |
. . . . . . . . . 10
⊢
(iEdg‘𝐺)
∈ V |
| 52 | 50, 51 | eqeltri 2697 |
. . . . . . . . 9
⊢ 𝐼 ∈ V |
| 53 | 52 | dmex 7099 |
. . . . . . . 8
⊢ dom 𝐼 ∈ V |
| 54 | 53 | rabex 4813 |
. . . . . . 7
⊢ {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∈ V |
| 55 | 54 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∈ V) |
| 56 | | vtxdun.j |
. . . . . . . . . 10
⊢ 𝐽 = (iEdg‘𝐻) |
| 57 | | fvex 6201 |
. . . . . . . . . 10
⊢
(iEdg‘𝐻)
∈ V |
| 58 | 56, 57 | eqeltri 2697 |
. . . . . . . . 9
⊢ 𝐽 ∈ V |
| 59 | 58 | dmex 7099 |
. . . . . . . 8
⊢ dom 𝐽 ∈ V |
| 60 | 59 | rabex 4813 |
. . . . . . 7
⊢ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ∈ V |
| 61 | 60 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ∈ V) |
| 62 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ⊆ dom 𝐼 |
| 63 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ⊆ dom 𝐽 |
| 64 | | ss2in 3840 |
. . . . . . . . 9
⊢ (({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽)) |
| 65 | 62, 63, 64 | mp2an 708 |
. . . . . . . 8
⊢ ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ⊆ (dom 𝐼 ∩ dom 𝐽) |
| 66 | 65, 28 | syl5sseq 3653 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ⊆ ∅) |
| 67 | | ss0 3974 |
. . . . . . 7
⊢ (({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) = ∅) |
| 68 | 66, 67 | syl 17 |
. . . . . 6
⊢ (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) = ∅) |
| 69 | | hashunx 13175 |
. . . . . 6
⊢ (({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∈ V ∧ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ∈ V ∧ ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∩ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) = ∅) → (#‘({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) = ((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}))) |
| 70 | 55, 61, 68, 69 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → (#‘({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∪ {𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) = ((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}))) |
| 71 | 49, 70 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) = ((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}))) |
| 72 | | df-rab 2921 |
. . . . . . . 8
⊢ {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} |
| 73 | 8 | anbi1d 741 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))) |
| 74 | | andir 912 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))) |
| 75 | 73, 74 | syl6bb 276 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ↔ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})))) |
| 76 | 75 | abbidv 2741 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom (iEdg‘𝑈) ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))}) |
| 77 | 72, 76 | syl5eq 2668 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))}) |
| 78 | | unab 3894 |
. . . . . . . . 9
⊢ ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} |
| 79 | 78 | eqcomi 2631 |
. . . . . . . 8
⊢ {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) |
| 80 | 79 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∣ ((𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}) ∨ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁}))} = ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})})) |
| 81 | | df-rab 2921 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} |
| 82 | 32 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐼) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐼‘𝑥) = {𝑁})) |
| 83 | 82 | rabbidva 3188 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ dom 𝐼 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) |
| 84 | 81, 83 | syl5eqr 2670 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) |
| 85 | | df-rab 2921 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} |
| 86 | 43 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐽) → (((iEdg‘𝑈)‘𝑥) = {𝑁} ↔ (𝐽‘𝑥) = {𝑁})) |
| 87 | 86 | rabbidva 3188 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∈ dom 𝐽 ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) |
| 88 | 85, 87 | syl5eqr 2670 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) |
| 89 | 84, 88 | uneq12d 3768 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∣ (𝑥 ∈ dom 𝐼 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})} ∪ {𝑥 ∣ (𝑥 ∈ dom 𝐽 ∧ ((iEdg‘𝑈)‘𝑥) = {𝑁})}) = ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})) |
| 90 | 77, 80, 89 | 3eqtrd 2660 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}} = ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})) |
| 91 | 90 | fveq2d 6195 |
. . . . 5
⊢ (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = (#‘({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
| 92 | 53 | rabex 4813 |
. . . . . . 7
⊢ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∈ V |
| 93 | 92 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∈ V) |
| 94 | 59 | rabex 4813 |
. . . . . . 7
⊢ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ∈ V |
| 95 | 94 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ∈ V) |
| 96 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ⊆ dom 𝐼 |
| 97 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ⊆ dom 𝐽 |
| 98 | | ss2in 3840 |
. . . . . . . . 9
⊢ (({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ⊆ dom 𝐼 ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ⊆ dom 𝐽) → ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽)) |
| 99 | 96, 97, 98 | mp2an 708 |
. . . . . . . 8
⊢ ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ⊆ (dom 𝐼 ∩ dom 𝐽) |
| 100 | 99, 28 | syl5sseq 3653 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ⊆ ∅) |
| 101 | | ss0 3974 |
. . . . . . 7
⊢ (({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ⊆ ∅ → ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) = ∅) |
| 102 | 100, 101 | syl 17 |
. . . . . 6
⊢ (𝜑 → ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) = ∅) |
| 103 | | hashunx 13175 |
. . . . . 6
⊢ (({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∈ V ∧ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ∈ V ∧ ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∩ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) = ∅) → (#‘({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})) = ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
| 104 | 93, 95, 102, 103 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → (#‘({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∪ {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})) = ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
| 105 | 91, 104 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}) = ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
| 106 | 71, 105 | oveq12d 6668 |
. . 3
⊢ (𝜑 → ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) +𝑒 ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})))) |
| 107 | | hashxnn0 13127 |
. . . . 5
⊢ ({𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)} ∈ V → (#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) ∈
ℕ0*) |
| 108 | 55, 107 | syl 17 |
. . . 4
⊢ (𝜑 → (#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) ∈
ℕ0*) |
| 109 | | hashxnn0 13127 |
. . . . 5
⊢ ({𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)} ∈ V → (#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ∈
ℕ0*) |
| 110 | 61, 109 | syl 17 |
. . . 4
⊢ (𝜑 → (#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) ∈
ℕ0*) |
| 111 | | hashxnn0 13127 |
. . . . 5
⊢ ({𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}} ∈ V → (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) ∈
ℕ0*) |
| 112 | 93, 111 | syl 17 |
. . . 4
⊢ (𝜑 → (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) ∈
ℕ0*) |
| 113 | | hashxnn0 13127 |
. . . . 5
⊢ ({𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}} ∈ V → (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ∈
ℕ0*) |
| 114 | 95, 113 | syl 17 |
. . . 4
⊢ (𝜑 → (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}) ∈
ℕ0*) |
| 115 | 108, 110,
112, 114 | xnn0add4d 12134 |
. . 3
⊢ (𝜑 → (((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)})) +𝑒 ((#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) = (((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}})) +𝑒 ((#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})))) |
| 116 | 106, 115 | eqtrd 2656 |
. 2
⊢ (𝜑 → ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}})) = (((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}})) +𝑒 ((#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})))) |
| 117 | | vtxdun.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ 𝑉) |
| 118 | | vtxdun.vu |
. . . 4
⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| 119 | 117, 118 | eleqtrrd 2704 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (Vtx‘𝑈)) |
| 120 | | eqid 2622 |
. . . 4
⊢
(Vtx‘𝑈) =
(Vtx‘𝑈) |
| 121 | | eqid 2622 |
. . . 4
⊢
(iEdg‘𝑈) =
(iEdg‘𝑈) |
| 122 | | eqid 2622 |
. . . 4
⊢ dom
(iEdg‘𝑈) = dom
(iEdg‘𝑈) |
| 123 | 120, 121,
122 | vtxdgval 26364 |
. . 3
⊢ (𝑁 ∈ (Vtx‘𝑈) → ((VtxDeg‘𝑈)‘𝑁) = ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}))) |
| 124 | 119, 123 | syl 17 |
. 2
⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = ((#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ 𝑁 ∈ ((iEdg‘𝑈)‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom (iEdg‘𝑈) ∣ ((iEdg‘𝑈)‘𝑥) = {𝑁}}))) |
| 125 | | vtxdun.vg |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
| 126 | | eqid 2622 |
. . . . 5
⊢ dom 𝐼 = dom 𝐼 |
| 127 | 125, 50, 126 | vtxdgval 26364 |
. . . 4
⊢ (𝑁 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}))) |
| 128 | 117, 127 | syl 17 |
. . 3
⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}}))) |
| 129 | | vtxdun.vh |
. . . . 5
⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| 130 | 117, 129 | eleqtrrd 2704 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (Vtx‘𝐻)) |
| 131 | | eqid 2622 |
. . . . 5
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 132 | | eqid 2622 |
. . . . 5
⊢ dom 𝐽 = dom 𝐽 |
| 133 | 131, 56, 132 | vtxdgval 26364 |
. . . 4
⊢ (𝑁 ∈ (Vtx‘𝐻) → ((VtxDeg‘𝐻)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
| 134 | 130, 133 | syl 17 |
. . 3
⊢ (𝜑 → ((VtxDeg‘𝐻)‘𝑁) = ((#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}}))) |
| 135 | 128, 134 | oveq12d 6668 |
. 2
⊢ (𝜑 → (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁)) = (((#‘{𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) = {𝑁}})) +𝑒 ((#‘{𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ (𝐽‘𝑥)}) +𝑒 (#‘{𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) = {𝑁}})))) |
| 136 | 116, 124,
135 | 3eqtr4d 2666 |
1
⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |