MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgval Structured version   Visualization version   Unicode version

Theorem vtxdgval 26364
Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 20-Dec-2017.) (Revised by AV, 10-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgval.v  |-  V  =  (Vtx `  G )
vtxdgval.i  |-  I  =  (iEdg `  G )
vtxdgval.a  |-  A  =  dom  I
Assertion
Ref Expression
vtxdgval  |-  ( U  e.  V  ->  (
(VtxDeg `  G ) `  U )  =  ( ( # `  {
x  e.  A  |  U  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  { U } } ) ) )
Distinct variable groups:    x, A    x, G    x, U
Allowed substitution hints:    I( x)    V( x)

Proof of Theorem vtxdgval
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 vtxdgval.v . . . . 5  |-  V  =  (Vtx `  G )
211vgrex 25882 . . . 4  |-  ( U  e.  V  ->  G  e.  _V )
3 vtxdgval.i . . . . 5  |-  I  =  (iEdg `  G )
4 vtxdgval.a . . . . 5  |-  A  =  dom  I
51, 3, 4vtxdgfval 26363 . . . 4  |-  ( G  e.  _V  ->  (VtxDeg `  G )  =  ( u  e.  V  |->  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) ) )
62, 5syl 17 . . 3  |-  ( U  e.  V  ->  (VtxDeg `  G )  =  ( u  e.  V  |->  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) ) )
76fveq1d 6193 . 2  |-  ( U  e.  V  ->  (
(VtxDeg `  G ) `  U )  =  ( ( u  e.  V  |->  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) ) `  U
) )
8 eleq1 2689 . . . . . 6  |-  ( u  =  U  ->  (
u  e.  ( I `
 x )  <->  U  e.  ( I `  x
) ) )
98rabbidv 3189 . . . . 5  |-  ( u  =  U  ->  { x  e.  A  |  u  e.  ( I `  x
) }  =  {
x  e.  A  |  U  e.  ( I `  x ) } )
109fveq2d 6195 . . . 4  |-  ( u  =  U  ->  ( # `
 { x  e.  A  |  u  e.  ( I `  x
) } )  =  ( # `  {
x  e.  A  |  U  e.  ( I `  x ) } ) )
11 sneq 4187 . . . . . . 7  |-  ( u  =  U  ->  { u }  =  { U } )
1211eqeq2d 2632 . . . . . 6  |-  ( u  =  U  ->  (
( I `  x
)  =  { u } 
<->  ( I `  x
)  =  { U } ) )
1312rabbidv 3189 . . . . 5  |-  ( u  =  U  ->  { x  e.  A  |  (
I `  x )  =  { u } }  =  { x  e.  A  |  ( I `  x )  =  { U } } )
1413fveq2d 6195 . . . 4  |-  ( u  =  U  ->  ( # `
 { x  e.  A  |  ( I `
 x )  =  { u } }
)  =  ( # `  { x  e.  A  |  ( I `  x )  =  { U } } ) )
1510, 14oveq12d 6668 . . 3  |-  ( u  =  U  ->  (
( # `  { x  e.  A  |  u  e.  ( I `  x
) } ) +e ( # `  {
x  e.  A  | 
( I `  x
)  =  { u } } ) )  =  ( ( # `  {
x  e.  A  |  U  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  { U } } ) ) )
16 eqid 2622 . . 3  |-  ( u  e.  V  |->  ( (
# `  { x  e.  A  |  u  e.  ( I `  x
) } ) +e ( # `  {
x  e.  A  | 
( I `  x
)  =  { u } } ) ) )  =  ( u  e.  V  |->  ( ( # `  { x  e.  A  |  u  e.  (
I `  x ) } ) +e
( # `  { x  e.  A  |  (
I `  x )  =  { u } }
) ) )
17 ovex 6678 . . 3  |-  ( (
# `  { x  e.  A  |  U  e.  ( I `  x
) } ) +e ( # `  {
x  e.  A  | 
( I `  x
)  =  { U } } ) )  e. 
_V
1815, 16, 17fvmpt 6282 . 2  |-  ( U  e.  V  ->  (
( u  e.  V  |->  ( ( # `  {
x  e.  A  |  u  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  {
u } } ) ) ) `  U
)  =  ( (
# `  { x  e.  A  |  U  e.  ( I `  x
) } ) +e ( # `  {
x  e.  A  | 
( I `  x
)  =  { U } } ) ) )
197, 18eqtrd 2656 1  |-  ( U  e.  V  ->  (
(VtxDeg `  G ) `  U )  =  ( ( # `  {
x  e.  A  |  U  e.  ( I `  x ) } ) +e ( # `  { x  e.  A  |  ( I `  x )  =  { U } } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   {csn 4177    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   +ecxad 11944   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-vtxdg 26362
This theorem is referenced by:  vtxdgfival  26365  vtxdun  26377  vtxdlfgrval  26381  vtxd0nedgb  26384  vtxdushgrfvedg  26386  vtxdginducedm1  26439
  Copyright terms: Public domain W3C validator