MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdushgrfvedg Structured version   Visualization version   GIF version

Theorem vtxdushgrfvedg 26386
Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdushgrfvedg ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((#‘{𝑒𝐸𝑈𝑒}) +𝑒 (#‘{𝑒𝐸𝑒 = {𝑈}})))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑈,𝑒   𝑒,𝑉
Allowed substitution hint:   𝐷(𝑒)

Proof of Theorem vtxdushgrfvedg
Dummy variables 𝑐 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6192 . . 3 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
32a1i 11 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈))
4 vtxdushgrfvedg.v . . . 4 𝑉 = (Vtx‘𝐺)
5 eqid 2622 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2622 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
74, 5, 6vtxdgval 26364 . . 3 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
87adantl 482 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
9 vtxdushgrfvedg.e . . . 4 𝐸 = (Edg‘𝐺)
104, 9vtxdushgrfvedglem 26385 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (#‘{𝑒𝐸𝑈𝑒}))
11 fvex 6201 . . . . . . 7 (iEdg‘𝐺) ∈ V
1211dmex 7099 . . . . . 6 dom (iEdg‘𝐺) ∈ V
1312rabex 4813 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V
1413a1i 11 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V)
15 eqid 2622 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}
16 eqeq1 2626 . . . . . 6 (𝑒 = 𝑐 → (𝑒 = {𝑈} ↔ 𝑐 = {𝑈}))
1716cbvrabv 3199 . . . . 5 {𝑒𝐸𝑒 = {𝑈}} = {𝑐𝐸𝑐 = {𝑈}}
18 eqid 2622 . . . . 5 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥))
199, 5, 4, 15, 17, 18ushgredgedgloop 26123 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}–1-1-onto→{𝑒𝐸𝑒 = {𝑈}})
2014, 19hasheqf1od 13144 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}) = (#‘{𝑒𝐸𝑒 = {𝑈}}))
2110, 20oveq12d 6668 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (#‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})) = ((#‘{𝑒𝐸𝑈𝑒}) +𝑒 (#‘{𝑒𝐸𝑒 = {𝑈}})))
223, 8, 213eqtrd 2660 1 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((#‘{𝑒𝐸𝑈𝑒}) +𝑒 (#‘{𝑒𝐸𝑒 = {𝑈}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  {csn 4177  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650   +𝑒 cxad 11944  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   USHGraph cushgr 25952  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-hash 13118  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-vtxdg 26362
This theorem is referenced by:  1loopgrvd2  26399
  Copyright terms: Public domain W3C validator