MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdlfgrval Structured version   Visualization version   GIF version

Theorem vtxdlfgrval 26381
Description: The value of the vertex degree function for a loop-free graph 𝐺. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
vtxdlfgrval.v 𝑉 = (Vtx‘𝐺)
vtxdlfgrval.i 𝐼 = (iEdg‘𝐺)
vtxdlfgrval.a 𝐴 = dom 𝐼
vtxdlfgrval.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdlfgrval ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐼   𝑥,𝑈   𝑥,𝑉
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem vtxdlfgrval
StepHypRef Expression
1 vtxdlfgrval.d . . . 4 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6192 . . 3 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
3 vtxdlfgrval.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 vtxdlfgrval.i . . . . 5 𝐼 = (iEdg‘𝐺)
5 vtxdlfgrval.a . . . . 5 𝐴 = dom 𝐼
63, 4, 5vtxdgval 26364 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
76adantl 482 . . 3 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
82, 7syl5eq 2668 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
9 eqid 2622 . . . . . . 7 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}
104, 5, 9lfgrnloop 26020 . . . . . 6 (𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
1110adantr 481 . . . . 5 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
1211fveq2d 6195 . . . 4 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) = (#‘∅))
13 hash0 13158 . . . 4 (#‘∅) = 0
1412, 13syl6eq 2672 . . 3 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) = 0)
1514oveq2d 6666 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (#‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) = ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0))
164dmeqi 5325 . . . . . . 7 dom 𝐼 = dom (iEdg‘𝐺)
175, 16eqtri 2644 . . . . . 6 𝐴 = dom (iEdg‘𝐺)
18 fvex 6201 . . . . . . 7 (iEdg‘𝐺) ∈ V
1918dmex 7099 . . . . . 6 dom (iEdg‘𝐺) ∈ V
2017, 19eqeltri 2697 . . . . 5 𝐴 ∈ V
2120rabex 4813 . . . 4 {𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ V
22 hashxnn0 13127 . . . 4 ({𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ V → (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0*)
23 xnn0xr 11368 . . . 4 ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0* → (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ*)
2421, 22, 23mp2b 10 . . 3 (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ*
25 xaddid1 12072 . . 3 ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ* → ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0) = (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
2624, 25mp1i 13 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → ((#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0) = (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
278, 15, 263eqtrd 2660 1 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = (#‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  c0 3915  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  *cxr 10073  cle 10075  2c2 11070  0*cxnn0 11363   +𝑒 cxad 11944  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-vtxdg 26362
This theorem is referenced by:  vtxdumgrval  26382  1hevtxdg1  26402
  Copyright terms: Public domain W3C validator