| Step | Hyp | Ref
| Expression |
| 1 | | wemaplem2.px1 |
. . . 4
⊢ (𝜑 → 𝑎 ∈ 𝐴) |
| 2 | | wemaplem2.xq1 |
. . . 4
⊢ (𝜑 → 𝑏 ∈ 𝐴) |
| 3 | 1, 2 | ifcld 4131 |
. . 3
⊢ (𝜑 → if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴) |
| 4 | | wemaplem2.px2 |
. . . . . . 7
⊢ (𝜑 → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) |
| 5 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) |
| 6 | | wemaplem2.xq3 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) |
| 7 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑎 → (𝑐𝑅𝑏 ↔ 𝑎𝑅𝑏)) |
| 8 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑎 → (𝑋‘𝑐) = (𝑋‘𝑎)) |
| 9 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑎 → (𝑄‘𝑐) = (𝑄‘𝑎)) |
| 10 | 8, 9 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑎 → ((𝑋‘𝑐) = (𝑄‘𝑐) ↔ (𝑋‘𝑎) = (𝑄‘𝑎))) |
| 11 | 7, 10 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑐 = 𝑎 → ((𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐)) ↔ (𝑎𝑅𝑏 → (𝑋‘𝑎) = (𝑄‘𝑎)))) |
| 12 | 11 | rspcva 3307 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝐴 ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → (𝑎𝑅𝑏 → (𝑋‘𝑎) = (𝑄‘𝑎))) |
| 13 | 1, 6, 12 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝑎𝑅𝑏 → (𝑋‘𝑎) = (𝑄‘𝑎))) |
| 14 | 13 | imp 445 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → (𝑋‘𝑎) = (𝑄‘𝑎)) |
| 15 | 5, 14 | breqtrd 4679 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → (𝑃‘𝑎)𝑆(𝑄‘𝑎)) |
| 16 | | iftrue 4092 |
. . . . . . . 8
⊢ (𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑎) |
| 17 | 16 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃‘𝑎)) |
| 18 | 16 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄‘𝑎)) |
| 19 | 17, 18 | breq12d 4666 |
. . . . . 6
⊢ (𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑎)𝑆(𝑄‘𝑎))) |
| 20 | 19 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑎)𝑆(𝑄‘𝑎))) |
| 21 | 15, 20 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑎𝑅𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
| 22 | | wemaplem2.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 Po 𝐵) |
| 23 | 22 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → 𝑆 Po 𝐵) |
| 24 | | wemaplem2.p |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑𝑚 𝐴)) |
| 25 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑃 ∈ (𝐵 ↑𝑚 𝐴) → 𝑃:𝐴⟶𝐵) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃:𝐴⟶𝐵) |
| 27 | 26, 2 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (𝜑 → (𝑃‘𝑏) ∈ 𝐵) |
| 28 | | wemaplem2.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 𝐴)) |
| 29 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐵 ↑𝑚 𝐴) → 𝑋:𝐴⟶𝐵) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋:𝐴⟶𝐵) |
| 31 | 30, 2 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (𝜑 → (𝑋‘𝑏) ∈ 𝐵) |
| 32 | | wemaplem2.q |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑𝑚 𝐴)) |
| 33 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑄 ∈ (𝐵 ↑𝑚 𝐴) → 𝑄:𝐴⟶𝐵) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:𝐴⟶𝐵) |
| 35 | 34, 2 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝑏) ∈ 𝐵) |
| 36 | 27, 31, 35 | 3jca 1242 |
. . . . . . 7
⊢ (𝜑 → ((𝑃‘𝑏) ∈ 𝐵 ∧ (𝑋‘𝑏) ∈ 𝐵 ∧ (𝑄‘𝑏) ∈ 𝐵)) |
| 37 | 36 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → ((𝑃‘𝑏) ∈ 𝐵 ∧ (𝑋‘𝑏) ∈ 𝐵 ∧ (𝑄‘𝑏) ∈ 𝐵)) |
| 38 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑃‘𝑎) = (𝑃‘𝑏)) |
| 39 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑋‘𝑎) = (𝑋‘𝑏)) |
| 40 | 38, 39 | breq12d 4666 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → ((𝑃‘𝑎)𝑆(𝑋‘𝑎) ↔ (𝑃‘𝑏)𝑆(𝑋‘𝑏))) |
| 41 | 4, 40 | syl5ibcom 235 |
. . . . . . 7
⊢ (𝜑 → (𝑎 = 𝑏 → (𝑃‘𝑏)𝑆(𝑋‘𝑏))) |
| 42 | 41 | imp 445 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → (𝑃‘𝑏)𝑆(𝑋‘𝑏)) |
| 43 | | wemaplem2.xq2 |
. . . . . . 7
⊢ (𝜑 → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) |
| 44 | 43 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) |
| 45 | | potr 5047 |
. . . . . . 7
⊢ ((𝑆 Po 𝐵 ∧ ((𝑃‘𝑏) ∈ 𝐵 ∧ (𝑋‘𝑏) ∈ 𝐵 ∧ (𝑄‘𝑏) ∈ 𝐵)) → (((𝑃‘𝑏)𝑆(𝑋‘𝑏) ∧ (𝑋‘𝑏)𝑆(𝑄‘𝑏)) → (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
| 46 | 45 | imp 445 |
. . . . . 6
⊢ (((𝑆 Po 𝐵 ∧ ((𝑃‘𝑏) ∈ 𝐵 ∧ (𝑋‘𝑏) ∈ 𝐵 ∧ (𝑄‘𝑏) ∈ 𝐵)) ∧ ((𝑃‘𝑏)𝑆(𝑋‘𝑏) ∧ (𝑋‘𝑏)𝑆(𝑄‘𝑏))) → (𝑃‘𝑏)𝑆(𝑄‘𝑏)) |
| 47 | 23, 37, 42, 44, 46 | syl22anc 1327 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → (𝑃‘𝑏)𝑆(𝑄‘𝑏)) |
| 48 | | ifeq1 4090 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = if(𝑎𝑅𝑏, 𝑏, 𝑏)) |
| 49 | | ifid 4125 |
. . . . . . . . 9
⊢ if(𝑎𝑅𝑏, 𝑏, 𝑏) = 𝑏 |
| 50 | 48, 49 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏) |
| 51 | 50 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃‘𝑏)) |
| 52 | 50 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄‘𝑏)) |
| 53 | 51, 52 | breq12d 4666 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
| 54 | 53 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
| 55 | 47, 54 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 = 𝑏) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
| 56 | | wemaplem2.px3 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) |
| 57 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (𝑐𝑅𝑎 ↔ 𝑏𝑅𝑎)) |
| 58 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → (𝑃‘𝑐) = (𝑃‘𝑏)) |
| 59 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → (𝑋‘𝑐) = (𝑋‘𝑏)) |
| 60 | 58, 59 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → ((𝑃‘𝑐) = (𝑋‘𝑐) ↔ (𝑃‘𝑏) = (𝑋‘𝑏))) |
| 61 | 57, 60 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ↔ (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑋‘𝑏)))) |
| 62 | 61 | rspcva 3307 |
. . . . . . . 8
⊢ ((𝑏 ∈ 𝐴 ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) → (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑋‘𝑏))) |
| 63 | 2, 56, 62 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑋‘𝑏))) |
| 64 | 63 | imp 445 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → (𝑃‘𝑏) = (𝑋‘𝑏)) |
| 65 | 43 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) |
| 66 | 64, 65 | eqbrtrd 4675 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → (𝑃‘𝑏)𝑆(𝑄‘𝑏)) |
| 67 | | wemaplem2.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 Or 𝐴) |
| 68 | | sopo 5052 |
. . . . . . . . 9
⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
| 69 | 67, 68 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Po 𝐴) |
| 70 | | po2nr 5048 |
. . . . . . . 8
⊢ ((𝑅 Po 𝐴 ∧ (𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴)) → ¬ (𝑏𝑅𝑎 ∧ 𝑎𝑅𝑏)) |
| 71 | 69, 2, 1, 70 | syl12anc 1324 |
. . . . . . 7
⊢ (𝜑 → ¬ (𝑏𝑅𝑎 ∧ 𝑎𝑅𝑏)) |
| 72 | | nan 604 |
. . . . . . 7
⊢ ((𝜑 → ¬ (𝑏𝑅𝑎 ∧ 𝑎𝑅𝑏)) ↔ ((𝜑 ∧ 𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏)) |
| 73 | 71, 72 | mpbi 220 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → ¬ 𝑎𝑅𝑏) |
| 74 | | iffalse 4095 |
. . . . . . . 8
⊢ (¬
𝑎𝑅𝑏 → if(𝑎𝑅𝑏, 𝑎, 𝑏) = 𝑏) |
| 75 | 74 | fveq2d 6195 |
. . . . . . 7
⊢ (¬
𝑎𝑅𝑏 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑃‘𝑏)) |
| 76 | 74 | fveq2d 6195 |
. . . . . . 7
⊢ (¬
𝑎𝑅𝑏 → (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) = (𝑄‘𝑏)) |
| 77 | 75, 76 | breq12d 4666 |
. . . . . 6
⊢ (¬
𝑎𝑅𝑏 → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
| 78 | 73, 77 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ↔ (𝑃‘𝑏)𝑆(𝑄‘𝑏))) |
| 79 | 66, 78 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ 𝑏𝑅𝑎) → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
| 80 | | solin 5058 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) |
| 81 | 67, 1, 2, 80 | syl12anc 1324 |
. . . 4
⊢ (𝜑 → (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) |
| 82 | 21, 55, 79, 81 | mpjao3dan 1395 |
. . 3
⊢ (𝜑 → (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
| 83 | | r19.26 3064 |
. . . . 5
⊢
(∀𝑐 ∈
𝐴 ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) ↔ (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐)))) |
| 84 | 56, 6, 83 | sylanbrc 698 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐)))) |
| 85 | 67, 1, 2 | 3jca 1242 |
. . . . 5
⊢ (𝜑 → (𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) |
| 86 | | prth 595 |
. . . . . . 7
⊢ (((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → ((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → ((𝑃‘𝑐) = (𝑋‘𝑐) ∧ (𝑋‘𝑐) = (𝑄‘𝑐)))) |
| 87 | | eqtr 2641 |
. . . . . . 7
⊢ (((𝑃‘𝑐) = (𝑋‘𝑐) ∧ (𝑋‘𝑐) = (𝑄‘𝑐)) → (𝑃‘𝑐) = (𝑄‘𝑐)) |
| 88 | 86, 87 | syl6 35 |
. . . . . 6
⊢ (((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → ((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐))) |
| 89 | 88 | ralimi 2952 |
. . . . 5
⊢
(∀𝑐 ∈
𝐴 ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → ∀𝑐 ∈ 𝐴 ((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐))) |
| 90 | | simpl1 1064 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → 𝑅 Or 𝐴) |
| 91 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ 𝐴) |
| 92 | | simpl2 1065 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
| 93 | | simpl3 1066 |
. . . . . . . . 9
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → 𝑏 ∈ 𝐴) |
| 94 | | soltmin 5532 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ (𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏))) |
| 95 | 90, 91, 92, 93, 94 | syl13anc 1328 |
. . . . . . . 8
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) ↔ (𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏))) |
| 96 | 95 | biimpd 219 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏))) |
| 97 | 96 | imim1d 82 |
. . . . . 6
⊢ (((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ 𝑐 ∈ 𝐴) → (((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)) → (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
| 98 | 97 | ralimdva 2962 |
. . . . 5
⊢ ((𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) → (∀𝑐 ∈ 𝐴 ((𝑐𝑅𝑎 ∧ 𝑐𝑅𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)) → ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
| 99 | 85, 89, 98 | syl2im 40 |
. . . 4
⊢ (𝜑 → (∀𝑐 ∈ 𝐴 ((𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐)) ∧ (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) → ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
| 100 | 84, 99 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐))) |
| 101 | | fveq2 6191 |
. . . . . 6
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑑) = (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
| 102 | | fveq2 6191 |
. . . . . 6
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑄‘𝑑) = (𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
| 103 | 101, 102 | breq12d 4666 |
. . . . 5
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ↔ (𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)))) |
| 104 | | breq2 4657 |
. . . . . . 7
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑐𝑅𝑑 ↔ 𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏))) |
| 105 | 104 | imbi1d 331 |
. . . . . 6
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → ((𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐)) ↔ (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
| 106 | 105 | ralbidv 2986 |
. . . . 5
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐)) ↔ ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
| 107 | 103, 106 | anbi12d 747 |
. . . 4
⊢ (𝑑 = if(𝑎𝑅𝑏, 𝑎, 𝑏) → (((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐))) ↔ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐))))) |
| 108 | 107 | rspcev 3309 |
. . 3
⊢
((if(𝑎𝑅𝑏, 𝑎, 𝑏) ∈ 𝐴 ∧ ((𝑃‘if(𝑎𝑅𝑏, 𝑎, 𝑏))𝑆(𝑄‘if(𝑎𝑅𝑏, 𝑎, 𝑏)) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅if(𝑎𝑅𝑏, 𝑎, 𝑏) → (𝑃‘𝑐) = (𝑄‘𝑐)))) → ∃𝑑 ∈ 𝐴 ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
| 109 | 3, 82, 100, 108 | syl12anc 1324 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ 𝐴 ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐)))) |
| 110 | | wemapso.t |
. . . 4
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| 111 | 110 | wemaplem1 8451 |
. . 3
⊢ ((𝑃 ∈ (𝐵 ↑𝑚 𝐴) ∧ 𝑄 ∈ (𝐵 ↑𝑚 𝐴)) → (𝑃𝑇𝑄 ↔ ∃𝑑 ∈ 𝐴 ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐))))) |
| 112 | 24, 32, 111 | syl2anc 693 |
. 2
⊢ (𝜑 → (𝑃𝑇𝑄 ↔ ∃𝑑 ∈ 𝐴 ((𝑃‘𝑑)𝑆(𝑄‘𝑑) ∧ ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑑 → (𝑃‘𝑐) = (𝑄‘𝑐))))) |
| 113 | 109, 112 | mpbird 247 |
1
⊢ (𝜑 → 𝑃𝑇𝑄) |