| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wemaplem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for wemapso 8456. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| wemapso.t |
|
| wemaplem2.a |
|
| wemaplem2.p |
|
| wemaplem2.x |
|
| wemaplem2.q |
|
| wemaplem2.r |
|
| wemaplem2.s |
|
| wemaplem2.px1 |
|
| wemaplem2.px2 |
|
| wemaplem2.px3 |
|
| wemaplem2.xq1 |
|
| wemaplem2.xq2 |
|
| wemaplem2.xq3 |
|
| Ref | Expression |
|---|---|
| wemaplem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemaplem2.px1 |
. . . 4
| |
| 2 | wemaplem2.xq1 |
. . . 4
| |
| 3 | 1, 2 | ifcld 4131 |
. . 3
|
| 4 | wemaplem2.px2 |
. . . . . . 7
| |
| 5 | 4 | adantr 481 |
. . . . . 6
|
| 6 | wemaplem2.xq3 |
. . . . . . . 8
| |
| 7 | breq1 4656 |
. . . . . . . . . 10
| |
| 8 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 9 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 11 | 7, 10 | imbi12d 334 |
. . . . . . . . 9
|
| 12 | 11 | rspcva 3307 |
. . . . . . . 8
|
| 13 | 1, 6, 12 | syl2anc 693 |
. . . . . . 7
|
| 14 | 13 | imp 445 |
. . . . . 6
|
| 15 | 5, 14 | breqtrd 4679 |
. . . . 5
|
| 16 | iftrue 4092 |
. . . . . . . 8
| |
| 17 | 16 | fveq2d 6195 |
. . . . . . 7
|
| 18 | 16 | fveq2d 6195 |
. . . . . . 7
|
| 19 | 17, 18 | breq12d 4666 |
. . . . . 6
|
| 20 | 19 | adantl 482 |
. . . . 5
|
| 21 | 15, 20 | mpbird 247 |
. . . 4
|
| 22 | wemaplem2.s |
. . . . . . 7
| |
| 23 | 22 | adantr 481 |
. . . . . 6
|
| 24 | wemaplem2.p |
. . . . . . . . . 10
| |
| 25 | elmapi 7879 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | syl 17 |
. . . . . . . . 9
|
| 27 | 26, 2 | ffvelrnd 6360 |
. . . . . . . 8
|
| 28 | wemaplem2.x |
. . . . . . . . . 10
| |
| 29 | elmapi 7879 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | syl 17 |
. . . . . . . . 9
|
| 31 | 30, 2 | ffvelrnd 6360 |
. . . . . . . 8
|
| 32 | wemaplem2.q |
. . . . . . . . . 10
| |
| 33 | elmapi 7879 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | syl 17 |
. . . . . . . . 9
|
| 35 | 34, 2 | ffvelrnd 6360 |
. . . . . . . 8
|
| 36 | 27, 31, 35 | 3jca 1242 |
. . . . . . 7
|
| 37 | 36 | adantr 481 |
. . . . . 6
|
| 38 | fveq2 6191 |
. . . . . . . . 9
| |
| 39 | fveq2 6191 |
. . . . . . . . 9
| |
| 40 | 38, 39 | breq12d 4666 |
. . . . . . . 8
|
| 41 | 4, 40 | syl5ibcom 235 |
. . . . . . 7
|
| 42 | 41 | imp 445 |
. . . . . 6
|
| 43 | wemaplem2.xq2 |
. . . . . . 7
| |
| 44 | 43 | adantr 481 |
. . . . . 6
|
| 45 | potr 5047 |
. . . . . . 7
| |
| 46 | 45 | imp 445 |
. . . . . 6
|
| 47 | 23, 37, 42, 44, 46 | syl22anc 1327 |
. . . . 5
|
| 48 | ifeq1 4090 |
. . . . . . . . 9
| |
| 49 | ifid 4125 |
. . . . . . . . 9
| |
| 50 | 48, 49 | syl6eq 2672 |
. . . . . . . 8
|
| 51 | 50 | fveq2d 6195 |
. . . . . . 7
|
| 52 | 50 | fveq2d 6195 |
. . . . . . 7
|
| 53 | 51, 52 | breq12d 4666 |
. . . . . 6
|
| 54 | 53 | adantl 482 |
. . . . 5
|
| 55 | 47, 54 | mpbird 247 |
. . . 4
|
| 56 | wemaplem2.px3 |
. . . . . . . 8
| |
| 57 | breq1 4656 |
. . . . . . . . . 10
| |
| 58 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 59 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 60 | 58, 59 | eqeq12d 2637 |
. . . . . . . . . 10
|
| 61 | 57, 60 | imbi12d 334 |
. . . . . . . . 9
|
| 62 | 61 | rspcva 3307 |
. . . . . . . 8
|
| 63 | 2, 56, 62 | syl2anc 693 |
. . . . . . 7
|
| 64 | 63 | imp 445 |
. . . . . 6
|
| 65 | 43 | adantr 481 |
. . . . . 6
|
| 66 | 64, 65 | eqbrtrd 4675 |
. . . . 5
|
| 67 | wemaplem2.r |
. . . . . . . . 9
| |
| 68 | sopo 5052 |
. . . . . . . . 9
| |
| 69 | 67, 68 | syl 17 |
. . . . . . . 8
|
| 70 | po2nr 5048 |
. . . . . . . 8
| |
| 71 | 69, 2, 1, 70 | syl12anc 1324 |
. . . . . . 7
|
| 72 | nan 604 |
. . . . . . 7
| |
| 73 | 71, 72 | mpbi 220 |
. . . . . 6
|
| 74 | iffalse 4095 |
. . . . . . . 8
| |
| 75 | 74 | fveq2d 6195 |
. . . . . . 7
|
| 76 | 74 | fveq2d 6195 |
. . . . . . 7
|
| 77 | 75, 76 | breq12d 4666 |
. . . . . 6
|
| 78 | 73, 77 | syl 17 |
. . . . 5
|
| 79 | 66, 78 | mpbird 247 |
. . . 4
|
| 80 | solin 5058 |
. . . . 5
| |
| 81 | 67, 1, 2, 80 | syl12anc 1324 |
. . . 4
|
| 82 | 21, 55, 79, 81 | mpjao3dan 1395 |
. . 3
|
| 83 | r19.26 3064 |
. . . . 5
| |
| 84 | 56, 6, 83 | sylanbrc 698 |
. . . 4
|
| 85 | 67, 1, 2 | 3jca 1242 |
. . . . 5
|
| 86 | prth 595 |
. . . . . . 7
| |
| 87 | eqtr 2641 |
. . . . . . 7
| |
| 88 | 86, 87 | syl6 35 |
. . . . . 6
|
| 89 | 88 | ralimi 2952 |
. . . . 5
|
| 90 | simpl1 1064 |
. . . . . . . . 9
| |
| 91 | simpr 477 |
. . . . . . . . 9
| |
| 92 | simpl2 1065 |
. . . . . . . . 9
| |
| 93 | simpl3 1066 |
. . . . . . . . 9
| |
| 94 | soltmin 5532 |
. . . . . . . . 9
| |
| 95 | 90, 91, 92, 93, 94 | syl13anc 1328 |
. . . . . . . 8
|
| 96 | 95 | biimpd 219 |
. . . . . . 7
|
| 97 | 96 | imim1d 82 |
. . . . . 6
|
| 98 | 97 | ralimdva 2962 |
. . . . 5
|
| 99 | 85, 89, 98 | syl2im 40 |
. . . 4
|
| 100 | 84, 99 | mpd 15 |
. . 3
|
| 101 | fveq2 6191 |
. . . . . 6
| |
| 102 | fveq2 6191 |
. . . . . 6
| |
| 103 | 101, 102 | breq12d 4666 |
. . . . 5
|
| 104 | breq2 4657 |
. . . . . . 7
| |
| 105 | 104 | imbi1d 331 |
. . . . . 6
|
| 106 | 105 | ralbidv 2986 |
. . . . 5
|
| 107 | 103, 106 | anbi12d 747 |
. . . 4
|
| 108 | 107 | rspcev 3309 |
. . 3
|
| 109 | 3, 82, 100, 108 | syl12anc 1324 |
. 2
|
| 110 | wemapso.t |
. . . 4
| |
| 111 | 110 | wemaplem1 8451 |
. . 3
|
| 112 | 24, 32, 111 | syl2anc 693 |
. 2
|
| 113 | 109, 112 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: wemaplem3 8453 |
| Copyright terms: Public domain | W3C validator |