MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso Structured version   Visualization version   GIF version

Theorem wemapso 8456
Description: Construct lexicographic order on a function space based on a well-ordering of the indexes and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
wemapso ((𝐴𝑉𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵𝑚 𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemapso
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐴𝑉𝐴 ∈ V)
2 wemapso.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
3 ssid 3624 . . 3 (𝐵𝑚 𝐴) ⊆ (𝐵𝑚 𝐴)
4 simp1 1061 . . 3 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝐴 ∈ V)
5 weso 5105 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
653ad2ant2 1083 . . 3 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝑅 Or 𝐴)
7 simp3 1063 . . 3 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝑆 Or 𝐵)
8 simpl1 1064 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝐴 ∈ V)
9 difss 3737 . . . . . . 7 (𝑎𝑏) ⊆ 𝑎
10 dmss 5323 . . . . . . 7 ((𝑎𝑏) ⊆ 𝑎 → dom (𝑎𝑏) ⊆ dom 𝑎)
119, 10ax-mp 5 . . . . . 6 dom (𝑎𝑏) ⊆ dom 𝑎
12 simprll 802 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐵𝑚 𝐴))
13 elmapi 7879 . . . . . . . . 9 (𝑎 ∈ (𝐵𝑚 𝐴) → 𝑎:𝐴𝐵)
1412, 13syl 17 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑎:𝐴𝐵)
15 ffn 6045 . . . . . . . 8 (𝑎:𝐴𝐵𝑎 Fn 𝐴)
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑎 Fn 𝐴)
17 fndm 5990 . . . . . . 7 (𝑎 Fn 𝐴 → dom 𝑎 = 𝐴)
1816, 17syl 17 . . . . . 6 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → dom 𝑎 = 𝐴)
1911, 18syl5sseq 3653 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ⊆ 𝐴)
208, 19ssexd 4805 . . . 4 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ∈ V)
21 simpl2 1065 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑅 We 𝐴)
22 wefr 5104 . . . . 5 (𝑅 We 𝐴𝑅 Fr 𝐴)
2321, 22syl 17 . . . 4 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑅 Fr 𝐴)
24 simprr 796 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑎𝑏)
25 simprlr 803 . . . . . . . . 9 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐵𝑚 𝐴))
26 elmapi 7879 . . . . . . . . 9 (𝑏 ∈ (𝐵𝑚 𝐴) → 𝑏:𝐴𝐵)
2725, 26syl 17 . . . . . . . 8 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑏:𝐴𝐵)
28 ffn 6045 . . . . . . . 8 (𝑏:𝐴𝐵𝑏 Fn 𝐴)
2927, 28syl 17 . . . . . . 7 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → 𝑏 Fn 𝐴)
30 fndmdifeq0 6323 . . . . . . 7 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
3116, 29, 30syl2anc 693 . . . . . 6 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
3231necon3bid 2838 . . . . 5 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) ≠ ∅ ↔ 𝑎𝑏))
3324, 32mpbird 247 . . . 4 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ≠ ∅)
34 fri 5076 . . . 4 (((dom (𝑎𝑏) ∈ V ∧ 𝑅 Fr 𝐴) ∧ (dom (𝑎𝑏) ⊆ 𝐴 ∧ dom (𝑎𝑏) ≠ ∅)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
3520, 23, 19, 33, 34syl22anc 1327 . . 3 (((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵𝑚 𝐴) ∧ 𝑏 ∈ (𝐵𝑚 𝐴)) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
362, 3, 4, 6, 7, 35wemapsolem 8455 . 2 ((𝐴 ∈ V ∧ 𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵𝑚 𝐴))
371, 36syl3an1 1359 1 ((𝐴𝑉𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  wss 3574  c0 3915   class class class wbr 4653  {copab 4712   Or wor 5034   Fr wfr 5070   We wwe 5072  dom cdm 5114   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  opsrtoslem2  19485  wepwso  37613
  Copyright terms: Public domain W3C validator