| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wemappo | Structured version Visualization version Unicode version | ||
| Description: Construct lexicographic
order on a function space based on a
well-ordering of the indexes and a total ordering of the values.
Without totality on the values or least differing indexes, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| wemapso.t |
|
| Ref | Expression |
|---|---|
| wemappo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | simpll3 1102 |
. . . . . . 7
| |
| 3 | elmapi 7879 |
. . . . . . . . 9
| |
| 4 | 3 | adantl 482 |
. . . . . . . 8
|
| 5 | 4 | ffvelrnda 6359 |
. . . . . . 7
|
| 6 | poirr 5046 |
. . . . . . 7
| |
| 7 | 2, 5, 6 | syl2anc 693 |
. . . . . 6
|
| 8 | 7 | intnanrd 963 |
. . . . 5
|
| 9 | 8 | nrexdv 3001 |
. . . 4
|
| 10 | vex 3203 |
. . . . 5
| |
| 11 | wemapso.t |
. . . . . 6
| |
| 12 | 11 | wemaplem1 8451 |
. . . . 5
|
| 13 | 10, 10, 12 | mp2an 708 |
. . . 4
|
| 14 | 9, 13 | sylnibr 319 |
. . 3
|
| 15 | simpll1 1100 |
. . . . 5
| |
| 16 | simplr1 1103 |
. . . . 5
| |
| 17 | simplr2 1104 |
. . . . 5
| |
| 18 | simplr3 1105 |
. . . . 5
| |
| 19 | simpll2 1101 |
. . . . 5
| |
| 20 | simpll3 1102 |
. . . . 5
| |
| 21 | simprl 794 |
. . . . 5
| |
| 22 | simprr 796 |
. . . . 5
| |
| 23 | 11, 15, 16, 17, 18, 19, 20, 21, 22 | wemaplem3 8453 |
. . . 4
|
| 24 | 23 | ex 450 |
. . 3
|
| 25 | 14, 24 | ispod 5043 |
. 2
|
| 26 | 1, 25 | syl3an1 1359 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: wemapsolem 8455 |
| Copyright terms: Public domain | W3C validator |