MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemappo Structured version   Visualization version   Unicode version

Theorem wemappo 8454
Description: Construct lexicographic order on a function space based on a well-ordering of the indexes and a total ordering of the values.

Without totality on the values or least differing indexes, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.)

Hypothesis
Ref Expression
wemapso.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z ) S ( y `  z )  /\  A. w  e.  A  (
w R z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
Assertion
Ref Expression
wemappo  |-  ( ( A  e.  V  /\  R  Or  A  /\  S  Po  B )  ->  T  Po  ( B  ^m  A ) )
Distinct variable groups:    x, B    x, w, y, z, A   
w, R, x, y, z    w, S, x, y, z
Allowed substitution hints:    B( y, z, w)    T( x, y, z, w)    V( x, y, z, w)

Proof of Theorem wemappo
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 simpll3 1102 . . . . . . 7  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  a  e.  ( B  ^m  A ) )  /\  b  e.  A )  ->  S  Po  B )
3 elmapi 7879 . . . . . . . . 9  |-  ( a  e.  ( B  ^m  A )  ->  a : A --> B )
43adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  R  Or  A  /\  S  Po  B )  /\  a  e.  ( B  ^m  A ) )  ->  a : A --> B )
54ffvelrnda 6359 . . . . . . 7  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  a  e.  ( B  ^m  A ) )  /\  b  e.  A )  ->  (
a `  b )  e.  B )
6 poirr 5046 . . . . . . 7  |-  ( ( S  Po  B  /\  ( a `  b
)  e.  B )  ->  -.  ( a `  b ) S ( a `  b ) )
72, 5, 6syl2anc 693 . . . . . 6  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  a  e.  ( B  ^m  A ) )  /\  b  e.  A )  ->  -.  ( a `  b
) S ( a `
 b ) )
87intnanrd 963 . . . . 5  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  a  e.  ( B  ^m  A ) )  /\  b  e.  A )  ->  -.  ( ( a `  b ) S ( a `  b )  /\  A. c  e.  A  ( c R b  ->  ( a `  c )  =  ( a `  c ) ) ) )
98nrexdv 3001 . . . 4  |-  ( ( ( A  e.  _V  /\  R  Or  A  /\  S  Po  B )  /\  a  e.  ( B  ^m  A ) )  ->  -.  E. b  e.  A  ( (
a `  b ) S ( a `  b )  /\  A. c  e.  A  (
c R b  -> 
( a `  c
)  =  ( a `
 c ) ) ) )
10 vex 3203 . . . . 5  |-  a  e. 
_V
11 wemapso.t . . . . . 6  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z ) S ( y `  z )  /\  A. w  e.  A  (
w R z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
1211wemaplem1 8451 . . . . 5  |-  ( ( a  e.  _V  /\  a  e.  _V )  ->  ( a T a  <->  E. b  e.  A  ( ( a `  b ) S ( a `  b )  /\  A. c  e.  A  ( c R b  ->  ( a `  c )  =  ( a `  c ) ) ) ) )
1310, 10, 12mp2an 708 . . . 4  |-  ( a T a  <->  E. b  e.  A  ( (
a `  b ) S ( a `  b )  /\  A. c  e.  A  (
c R b  -> 
( a `  c
)  =  ( a `
 c ) ) ) )
149, 13sylnibr 319 . . 3  |-  ( ( ( A  e.  _V  /\  R  Or  A  /\  S  Po  B )  /\  a  e.  ( B  ^m  A ) )  ->  -.  a T
a )
15 simpll1 1100 . . . . 5  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  /\  (
a T b  /\  b T c ) )  ->  A  e.  _V )
16 simplr1 1103 . . . . 5  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  /\  (
a T b  /\  b T c ) )  ->  a  e.  ( B  ^m  A ) )
17 simplr2 1104 . . . . 5  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  /\  (
a T b  /\  b T c ) )  ->  b  e.  ( B  ^m  A ) )
18 simplr3 1105 . . . . 5  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  /\  (
a T b  /\  b T c ) )  ->  c  e.  ( B  ^m  A ) )
19 simpll2 1101 . . . . 5  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  /\  (
a T b  /\  b T c ) )  ->  R  Or  A
)
20 simpll3 1102 . . . . 5  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  /\  (
a T b  /\  b T c ) )  ->  S  Po  B
)
21 simprl 794 . . . . 5  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  /\  (
a T b  /\  b T c ) )  ->  a T b )
22 simprr 796 . . . . 5  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  /\  (
a T b  /\  b T c ) )  ->  b T c )
2311, 15, 16, 17, 18, 19, 20, 21, 22wemaplem3 8453 . . . 4  |-  ( ( ( ( A  e. 
_V  /\  R  Or  A  /\  S  Po  B
)  /\  ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  /\  (
a T b  /\  b T c ) )  ->  a T c )
2423ex 450 . . 3  |-  ( ( ( A  e.  _V  /\  R  Or  A  /\  S  Po  B )  /\  ( a  e.  ( B  ^m  A )  /\  b  e.  ( B  ^m  A )  /\  c  e.  ( B  ^m  A ) ) )  ->  (
( a T b  /\  b T c )  ->  a T
c ) )
2514, 24ispod 5043 . 2  |-  ( ( A  e.  _V  /\  R  Or  A  /\  S  Po  B )  ->  T  Po  ( B  ^m  A ) )
261, 25syl3an1 1359 1  |-  ( ( A  e.  V  /\  R  Or  A  /\  S  Po  B )  ->  T  Po  ( B  ^m  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   {copab 4712    Po wpo 5033    Or wor 5034   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  wemapsolem  8455
  Copyright terms: Public domain W3C validator