MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso Structured version   Visualization version   Unicode version

Theorem wemapso 8456
Description: Construct lexicographic order on a function space based on a well-ordering of the indexes and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
wemapso.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z ) S ( y `  z )  /\  A. w  e.  A  (
w R z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
Assertion
Ref Expression
wemapso  |-  ( ( A  e.  V  /\  R  We  A  /\  S  Or  B )  ->  T  Or  ( B  ^m  A ) )
Distinct variable groups:    x, B    x, w, y, z, A   
w, R, x, y, z    w, S, x, y, z
Allowed substitution hints:    B( y, z, w)    T( x, y, z, w)    V( x, y, z, w)

Proof of Theorem wemapso
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 wemapso.t . . 3  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z ) S ( y `  z )  /\  A. w  e.  A  (
w R z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
3 ssid 3624 . . 3  |-  ( B  ^m  A )  C_  ( B  ^m  A )
4 simp1 1061 . . 3  |-  ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  ->  A  e.  _V )
5 weso 5105 . . . 4  |-  ( R  We  A  ->  R  Or  A )
653ad2ant2 1083 . . 3  |-  ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  ->  R  Or  A )
7 simp3 1063 . . 3  |-  ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  ->  S  Or  B )
8 simpl1 1064 . . . . 5  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  ->  A  e.  _V )
9 difss 3737 . . . . . . 7  |-  ( a 
\  b )  C_  a
10 dmss 5323 . . . . . . 7  |-  ( ( a  \  b ) 
C_  a  ->  dom  ( a  \  b
)  C_  dom  a )
119, 10ax-mp 5 . . . . . 6  |-  dom  (
a  \  b )  C_ 
dom  a
12 simprll 802 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  -> 
a  e.  ( B  ^m  A ) )
13 elmapi 7879 . . . . . . . . 9  |-  ( a  e.  ( B  ^m  A )  ->  a : A --> B )
1412, 13syl 17 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  -> 
a : A --> B )
15 ffn 6045 . . . . . . . 8  |-  ( a : A --> B  -> 
a  Fn  A )
1614, 15syl 17 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  -> 
a  Fn  A )
17 fndm 5990 . . . . . . 7  |-  ( a  Fn  A  ->  dom  a  =  A )
1816, 17syl 17 . . . . . 6  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  ->  dom  a  =  A
)
1911, 18syl5sseq 3653 . . . . 5  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  ->  dom  ( a  \  b
)  C_  A )
208, 19ssexd 4805 . . . 4  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  ->  dom  ( a  \  b
)  e.  _V )
21 simpl2 1065 . . . . 5  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  ->  R  We  A )
22 wefr 5104 . . . . 5  |-  ( R  We  A  ->  R  Fr  A )
2321, 22syl 17 . . . 4  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  ->  R  Fr  A )
24 simprr 796 . . . . 5  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  -> 
a  =/=  b )
25 simprlr 803 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  -> 
b  e.  ( B  ^m  A ) )
26 elmapi 7879 . . . . . . . . 9  |-  ( b  e.  ( B  ^m  A )  ->  b : A --> B )
2725, 26syl 17 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  -> 
b : A --> B )
28 ffn 6045 . . . . . . . 8  |-  ( b : A --> B  -> 
b  Fn  A )
2927, 28syl 17 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  -> 
b  Fn  A )
30 fndmdifeq0 6323 . . . . . . 7  |-  ( ( a  Fn  A  /\  b  Fn  A )  ->  ( dom  ( a 
\  b )  =  (/) 
<->  a  =  b ) )
3116, 29, 30syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  -> 
( dom  ( a  \  b )  =  (/) 
<->  a  =  b ) )
3231necon3bid 2838 . . . . 5  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  -> 
( dom  ( a  \  b )  =/=  (/) 
<->  a  =/=  b ) )
3324, 32mpbird 247 . . . 4  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  ->  dom  ( a  \  b
)  =/=  (/) )
34 fri 5076 . . . 4  |-  ( ( ( dom  ( a 
\  b )  e. 
_V  /\  R  Fr  A )  /\  ( dom  ( a  \  b
)  C_  A  /\  dom  ( a  \  b
)  =/=  (/) ) )  ->  E. c  e.  dom  ( a  \  b
) A. d  e. 
dom  ( a  \ 
b )  -.  d R c )
3520, 23, 19, 33, 34syl22anc 1327 . . 3  |-  ( ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  /\  ( ( a  e.  ( B  ^m  A
)  /\  b  e.  ( B  ^m  A ) )  /\  a  =/=  b ) )  ->  E. c  e.  dom  ( a  \  b
) A. d  e. 
dom  ( a  \ 
b )  -.  d R c )
362, 3, 4, 6, 7, 35wemapsolem 8455 . 2  |-  ( ( A  e.  _V  /\  R  We  A  /\  S  Or  B )  ->  T  Or  ( B  ^m  A ) )
371, 36syl3an1 1359 1  |-  ( ( A  e.  V  /\  R  We  A  /\  S  Or  B )  ->  T  Or  ( B  ^m  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   class class class wbr 4653   {copab 4712    Or wor 5034    Fr wfr 5070    We wwe 5072   dom cdm 5114    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  opsrtoslem2  19485  wepwso  37613
  Copyright terms: Public domain W3C validator