![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wepwso | Structured version Visualization version GIF version |
Description: A well-ordering induces a strict ordering on the power set. EDITORIAL: when well-orderings are set like, this can be strengthened to remove 𝐴 ∈ 𝑉. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
wepwso.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} |
Ref | Expression |
---|---|
wepwso | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 7720 | . . . . 5 ⊢ 2𝑜 ∈ ω | |
2 | nnord 7073 | . . . . 5 ⊢ (2𝑜 ∈ ω → Ord 2𝑜) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ Ord 2𝑜 |
4 | ordwe 5736 | . . . 4 ⊢ (Ord 2𝑜 → E We 2𝑜) | |
5 | weso 5105 | . . . 4 ⊢ ( E We 2𝑜 → E Or 2𝑜) | |
6 | 3, 4, 5 | mp2b 10 | . . 3 ⊢ E Or 2𝑜 |
7 | eqid 2622 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
8 | 7 | wemapso 8456 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ∧ E Or 2𝑜) → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2𝑜 ↑𝑚 𝐴)) |
9 | 6, 8 | mp3an3 1413 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2𝑜 ↑𝑚 𝐴)) |
10 | elex 3212 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
11 | wepwso.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑧 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑥) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)))} | |
12 | eqid 2622 | . . . . 5 ⊢ (𝑎 ∈ (2𝑜 ↑𝑚 𝐴) ↦ (◡𝑎 “ {1𝑜})) = (𝑎 ∈ (2𝑜 ↑𝑚 𝐴) ↦ (◡𝑎 “ {1𝑜})) | |
13 | 11, 7, 12 | wepwsolem 37612 | . . . 4 ⊢ (𝐴 ∈ V → (𝑎 ∈ (2𝑜 ↑𝑚 𝐴) ↦ (◡𝑎 “ {1𝑜})) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2𝑜 ↑𝑚 𝐴), 𝒫 𝐴)) |
14 | isoso 6598 | . . . 4 ⊢ ((𝑎 ∈ (2𝑜 ↑𝑚 𝐴) ↦ (◡𝑎 “ {1𝑜})) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, 𝑇((2𝑜 ↑𝑚 𝐴), 𝒫 𝐴) → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2𝑜 ↑𝑚 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) | |
15 | 10, 13, 14 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2𝑜 ↑𝑚 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
16 | 15 | adantr 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧) E (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} Or (2𝑜 ↑𝑚 𝐴) ↔ 𝑇 Or 𝒫 𝐴)) |
17 | 9, 16 | mpbid 222 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝑇 Or 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 Vcvv 3200 𝒫 cpw 4158 {csn 4177 class class class wbr 4653 {copab 4712 ↦ cmpt 4729 E cep 5028 Or wor 5034 We wwe 5072 ◡ccnv 5113 “ cima 5117 Ord word 5722 ‘cfv 5888 Isom wiso 5889 (class class class)co 6650 ωcom 7065 1𝑜c1o 7553 2𝑜c2o 7554 ↑𝑚 cmap 7857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-1o 7560 df-2o 7561 df-map 7859 |
This theorem is referenced by: aomclem1 37624 |
Copyright terms: Public domain | W3C validator |