Proof of Theorem wfrlem15
| Step | Hyp | Ref
| Expression |
| 1 | | wfrlem13.1 |
. . . . . 6
⊢ 𝑅 We 𝐴 |
| 2 | | wfrlem13.3 |
. . . . . 6
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| 3 | 1, 2 | wfrlem10 7424 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹) |
| 4 | | eldifi 3732 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧 ∈ 𝐴) |
| 5 | | wfrlem13.2 |
. . . . . . 7
⊢ 𝑅 Se 𝐴 |
| 6 | | setlikespec 5701 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 7 | 4, 5, 6 | sylancl 694 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 8 | 7 | adantr 481 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
| 9 | 3, 8 | eqeltrrd 2702 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → dom 𝐹 ∈ V) |
| 10 | | snex 4908 |
. . . 4
⊢ {𝑧} ∈ V |
| 11 | | unexg 6959 |
. . . 4
⊢ ((dom
𝐹 ∈ V ∧ {𝑧} ∈ V) → (dom 𝐹 ∪ {𝑧}) ∈ V) |
| 12 | 9, 10, 11 | sylancl 694 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ∈ V) |
| 13 | | wfrlem13.4 |
. . . . . 6
⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
| 14 | 1, 5, 2, 13 | wfrlem13 7427 |
. . . . 5
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
| 15 | 14 | adantr 481 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
| 16 | 2 | wfrdmss 7421 |
. . . . . . 7
⊢ dom 𝐹 ⊆ 𝐴 |
| 17 | 4 | snssd 4340 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → {𝑧} ⊆ 𝐴) |
| 18 | | unss 3787 |
. . . . . . . 8
⊢ ((dom
𝐹 ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴) |
| 19 | 18 | biimpi 206 |
. . . . . . 7
⊢ ((dom
𝐹 ⊆ 𝐴 ∧ {𝑧} ⊆ 𝐴) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴) |
| 20 | 16, 17, 19 | sylancr 695 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴) |
| 21 | 20 | adantr 481 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴) |
| 22 | | elun 3753 |
. . . . . . . 8
⊢ (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ {𝑧})) |
| 23 | | velsn 4193 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧) |
| 24 | 23 | orbi2i 541 |
. . . . . . . 8
⊢ ((𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧)) |
| 25 | 22, 24 | bitri 264 |
. . . . . . 7
⊢ (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧)) |
| 26 | 2 | wfrdmcl 7423 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹) |
| 27 | | ssun3 3778 |
. . . . . . . . . 10
⊢
(Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) |
| 29 | 28 | a1i 11 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 30 | | ssun1 3776 |
. . . . . . . . . 10
⊢ dom 𝐹 ⊆ (dom 𝐹 ∪ {𝑧}) |
| 31 | 3, 30 | syl6eqss 3655 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧})) |
| 32 | | predeq3 5684 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧)) |
| 33 | 32 | sseq1d 3632 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}) ↔ Pred(𝑅, 𝐴, 𝑧) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 34 | 31, 33 | syl5ibrcom 237 |
. . . . . . . 8
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 35 | 29, 34 | jaod 395 |
. . . . . . 7
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 36 | 25, 35 | syl5bi 232 |
. . . . . 6
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 37 | 36 | ralrimiv 2965 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) |
| 38 | 21, 37 | jca 554 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 39 | 1, 5, 2, 13 | wfrlem14 7428 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 40 | 39 | ralrimiv 2965 |
. . . . 5
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 41 | 40 | adantr 481 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 42 | 15, 38, 41 | 3jca 1242 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 43 | | fneq2 5980 |
. . . . 5
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝐶 Fn 𝑥 ↔ 𝐶 Fn (dom 𝐹 ∪ {𝑧}))) |
| 44 | | sseq1 3626 |
. . . . . 6
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (𝑥 ⊆ 𝐴 ↔ (dom 𝐹 ∪ {𝑧}) ⊆ 𝐴)) |
| 45 | | sseq2 3627 |
. . . . . . 7
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 46 | 45 | raleqbi1dv 3146 |
. . . . . 6
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧}))) |
| 47 | 44, 46 | anbi12d 747 |
. . . . 5
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})))) |
| 48 | | raleq 3138 |
. . . . 5
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → (∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 49 | 43, 47, 48 | 3anbi123d 1399 |
. . . 4
⊢ (𝑥 = (dom 𝐹 ∪ {𝑧}) → ((𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 50 | 49 | spcegv 3294 |
. . 3
⊢ ((dom
𝐹 ∪ {𝑧}) ∈ V → ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ ((dom 𝐹 ∪ {𝑧}) ⊆ 𝐴 ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})Pred(𝑅, 𝐴, 𝑦) ⊆ (dom 𝐹 ∪ {𝑧})) ∧ ∀𝑦 ∈ (dom 𝐹 ∪ {𝑧})(𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 51 | 12, 42, 50 | sylc 65 |
. 2
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 52 | 10, 11 | mpan2 707 |
. . . . 5
⊢ (dom
𝐹 ∈ V → (dom
𝐹 ∪ {𝑧}) ∈ V) |
| 53 | | fnex 6481 |
. . . . 5
⊢ ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ (dom 𝐹 ∪ {𝑧}) ∈ V) → 𝐶 ∈ V) |
| 54 | 52, 53 | sylan2 491 |
. . . 4
⊢ ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ dom 𝐹 ∈ V) → 𝐶 ∈ V) |
| 55 | 15, 9, 54 | syl2anc 693 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ V) |
| 56 | | fneq1 5979 |
. . . . . 6
⊢ (𝑓 = 𝐶 → (𝑓 Fn 𝑥 ↔ 𝐶 Fn 𝑥)) |
| 57 | | fveq1 6190 |
. . . . . . . 8
⊢ (𝑓 = 𝐶 → (𝑓‘𝑦) = (𝐶‘𝑦)) |
| 58 | | reseq1 5390 |
. . . . . . . . 9
⊢ (𝑓 = 𝐶 → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) |
| 59 | 58 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑓 = 𝐶 → (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 60 | 57, 59 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑓 = 𝐶 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 61 | 60 | ralbidv 2986 |
. . . . . 6
⊢ (𝑓 = 𝐶 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 62 | 56, 61 | 3anbi13d 1401 |
. . . . 5
⊢ (𝑓 = 𝐶 → ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 63 | 62 | exbidv 1850 |
. . . 4
⊢ (𝑓 = 𝐶 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 64 | 63 | elabg 3351 |
. . 3
⊢ (𝐶 ∈ V → (𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 65 | 55, 64 | syl 17 |
. 2
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → (𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝐶 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 66 | 51, 65 | mpbird 247 |
1
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → 𝐶 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}) |