![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunom | Structured version Visualization version GIF version |
Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
Ref | Expression |
---|---|
wunom | ⊢ (𝜑 → ω ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑈 ∈ WUni) |
3 | 1 | wunr1om 9541 | . . . . . 6 ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) |
4 | r1funlim 8629 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
5 | 4 | simpli 474 | . . . . . . 7 ⊢ Fun 𝑅1 |
6 | 4 | simpri 478 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
7 | limomss 7070 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
8 | 6, 7 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
9 | funimass4 6247 | . . . . . . 7 ⊢ ((Fun 𝑅1 ∧ ω ⊆ dom 𝑅1) → ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈)) | |
10 | 5, 8, 9 | mp2an 708 | . . . . . 6 ⊢ ((𝑅1 “ ω) ⊆ 𝑈 ↔ ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
11 | 3, 10 | sylib 208 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝑅1‘𝑥) ∈ 𝑈) |
12 | 11 | r19.21bi 2932 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (𝑅1‘𝑥) ∈ 𝑈) |
13 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ ω) | |
14 | 8, 13 | sseldi 3601 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ dom 𝑅1) |
15 | onssr1 8694 | . . . . 5 ⊢ (𝑥 ∈ dom 𝑅1 → 𝑥 ⊆ (𝑅1‘𝑥)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ⊆ (𝑅1‘𝑥)) |
17 | 2, 12, 16 | wunss 9534 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ω) → 𝑥 ∈ 𝑈) |
18 | 17 | ex 450 | . 2 ⊢ (𝜑 → (𝑥 ∈ ω → 𝑥 ∈ 𝑈)) |
19 | 18 | ssrdv 3609 | 1 ⊢ (𝜑 → ω ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 dom cdm 5114 “ cima 5117 Lim wlim 5724 Fun wfun 5882 ‘cfv 5888 ωcom 7065 𝑅1cr1 8625 WUnicwun 9522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-r1 8627 df-rank 8628 df-wun 9524 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |