![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limomss | Structured version Visualization version GIF version |
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
limomss | ⊢ (Lim 𝐴 → ω ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 5784 | . 2 ⊢ (Lim 𝐴 → Ord 𝐴) | |
2 | ordeleqon 6988 | . . 3 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
3 | elom 7068 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦))) | |
4 | 3 | simprbi 480 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) |
5 | limeq 5735 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → (Lim 𝑦 ↔ Lim 𝐴)) | |
6 | eleq2 2690 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)) | |
7 | 5, 6 | imbi12d 334 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → ((Lim 𝑦 → 𝑥 ∈ 𝑦) ↔ (Lim 𝐴 → 𝑥 ∈ 𝐴))) |
8 | 7 | spcgv 3293 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦) → (Lim 𝐴 → 𝑥 ∈ 𝐴))) |
9 | 4, 8 | syl5 34 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑥 ∈ ω → (Lim 𝐴 → 𝑥 ∈ 𝐴))) |
10 | 9 | com23 86 | . . . . . . 7 ⊢ (𝐴 ∈ On → (Lim 𝐴 → (𝑥 ∈ ω → 𝑥 ∈ 𝐴))) |
11 | 10 | imp 445 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑥 ∈ ω → 𝑥 ∈ 𝐴)) |
12 | 11 | ssrdv 3609 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝐴) → ω ⊆ 𝐴) |
13 | 12 | ex 450 | . . . 4 ⊢ (𝐴 ∈ On → (Lim 𝐴 → ω ⊆ 𝐴)) |
14 | omsson 7069 | . . . . . 6 ⊢ ω ⊆ On | |
15 | sseq2 3627 | . . . . . 6 ⊢ (𝐴 = On → (ω ⊆ 𝐴 ↔ ω ⊆ On)) | |
16 | 14, 15 | mpbiri 248 | . . . . 5 ⊢ (𝐴 = On → ω ⊆ 𝐴) |
17 | 16 | a1d 25 | . . . 4 ⊢ (𝐴 = On → (Lim 𝐴 → ω ⊆ 𝐴)) |
18 | 13, 17 | jaoi 394 | . . 3 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (Lim 𝐴 → ω ⊆ 𝐴)) |
19 | 2, 18 | sylbi 207 | . 2 ⊢ (Ord 𝐴 → (Lim 𝐴 → ω ⊆ 𝐴)) |
20 | 1, 19 | mpcom 38 | 1 ⊢ (Lim 𝐴 → ω ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 ∀wal 1481 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 Ord word 5722 Oncon0 5723 Lim wlim 5724 ωcom 7065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 |
This theorem is referenced by: limom 7080 rdg0 7517 frfnom 7530 frsuc 7532 r1fin 8636 rankdmr1 8664 rankeq0b 8723 cardlim 8798 ackbij2 9065 cfom 9086 wunom 9542 inar1 9597 |
Copyright terms: Public domain | W3C validator |