![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmul01 | Structured version Visualization version GIF version |
Description: Extended real version of mul01 10215. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmul01 | ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10086 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | xmulval 12056 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0))))) | |
3 | 1, 2 | mpan2 707 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0))))) |
4 | eqid 2622 | . . . 4 ⊢ 0 = 0 | |
5 | 4 | olci 406 | . . 3 ⊢ (𝐴 = 0 ∨ 0 = 0) |
6 | 5 | iftruei 4093 | . 2 ⊢ if((𝐴 = 0 ∨ 0 = 0), 0, if((((0 < 0 ∧ 𝐴 = +∞) ∨ (0 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 0 = +∞) ∨ (𝐴 < 0 ∧ 0 = -∞))), +∞, if((((0 < 0 ∧ 𝐴 = -∞) ∨ (0 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 0 = -∞) ∨ (𝐴 < 0 ∧ 0 = +∞))), -∞, (𝐴 · 0)))) = 0 |
7 | 3, 6 | syl6eq 2672 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ifcif 4086 class class class wbr 4653 (class class class)co 6650 0cc0 9936 · cmul 9941 +∞cpnf 10071 -∞cmnf 10072 ℝ*cxr 10073 < clt 10074 ·e cxmu 11945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-pnf 10076 df-mnf 10077 df-xr 10078 df-xmul 11948 |
This theorem is referenced by: xmul02 12098 xmulge0 12114 xmulass 12117 xlemul1a 12118 xadddilem 12124 xadddi2 12127 psmetge0 22117 xmetge0 22149 nmoix 22533 xrge0mulc1cn 29987 esumcst 30125 |
Copyright terms: Public domain | W3C validator |