MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulval Structured version   Visualization version   GIF version

Theorem xmulval 12056
Description: Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmulval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))

Proof of Theorem xmulval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
21eqeq1d 2624 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 0 ↔ 𝐴 = 0))
3 simpr 477 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
43eqeq1d 2624 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = 0 ↔ 𝐵 = 0))
52, 4orbi12d 746 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 = 0 ∨ 𝑦 = 0) ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
63breq2d 4665 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (0 < 𝑦 ↔ 0 < 𝐵))
71eqeq1d 2624 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = +∞ ↔ 𝐴 = +∞))
86, 7anbi12d 747 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑦𝑥 = +∞) ↔ (0 < 𝐵𝐴 = +∞)))
93breq1d 4663 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 < 0 ↔ 𝐵 < 0))
101eqeq1d 2624 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = -∞ ↔ 𝐴 = -∞))
119, 10anbi12d 747 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑦 < 0 ∧ 𝑥 = -∞) ↔ (𝐵 < 0 ∧ 𝐴 = -∞)))
128, 11orbi12d 746 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ↔ ((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞))))
131breq2d 4665 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (0 < 𝑥 ↔ 0 < 𝐴))
143eqeq1d 2624 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = +∞ ↔ 𝐵 = +∞))
1513, 14anbi12d 747 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑥𝑦 = +∞) ↔ (0 < 𝐴𝐵 = +∞)))
161breq1d 4663 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 0 ↔ 𝐴 < 0))
173eqeq1d 2624 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 = -∞ ↔ 𝐵 = -∞))
1816, 17anbi12d 747 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 < 0 ∧ 𝑦 = -∞) ↔ (𝐴 < 0 ∧ 𝐵 = -∞)))
1915, 18orbi12d 746 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) ↔ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))))
2012, 19orbi12d 746 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))) ↔ (((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))))
216, 10anbi12d 747 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑦𝑥 = -∞) ↔ (0 < 𝐵𝐴 = -∞)))
229, 7anbi12d 747 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑦 < 0 ∧ 𝑥 = +∞) ↔ (𝐵 < 0 ∧ 𝐴 = +∞)))
2321, 22orbi12d 746 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ↔ ((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞))))
2413, 17anbi12d 747 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((0 < 𝑥𝑦 = -∞) ↔ (0 < 𝐴𝐵 = -∞)))
2516, 14anbi12d 747 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥 < 0 ∧ 𝑦 = +∞) ↔ (𝐴 < 0 ∧ 𝐵 = +∞)))
2624, 25orbi12d 746 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) ↔ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))
2723, 26orbi12d 746 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))) ↔ (((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))))
28 oveq12 6659 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 · 𝑦) = (𝐴 · 𝐵))
2927, 28ifbieq2d 4111 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)) = if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))
3020, 29ifbieq2d 4111 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))) = if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))
315, 30ifbieq2d 4111 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
32 df-xmul 11948 . 2 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
33 c0ex 10034 . . 3 0 ∈ V
34 pnfex 10093 . . . 4 +∞ ∈ V
35 mnfxr 10096 . . . . . 6 -∞ ∈ ℝ*
3635elexi 3213 . . . . 5 -∞ ∈ V
37 ovex 6678 . . . . 5 (𝐴 · 𝐵) ∈ V
3836, 37ifex 4156 . . . 4 if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)) ∈ V
3934, 38ifex 4156 . . 3 if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))) ∈ V
4033, 39ifex 4156 . 2 if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))) ∈ V
4131, 32, 40ovmpt2a 6791 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  ifcif 4086   class class class wbr 4653  (class class class)co 6650  0cc0 9936   · cmul 9941  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074   ·e cxmu 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pnf 10076  df-mnf 10077  df-xr 10078  df-xmul 11948
This theorem is referenced by:  xmulcom  12096  xmul01  12097  xmulneg1  12099  rexmul  12101  xmulpnf1  12104
  Copyright terms: Public domain W3C validator