MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddf Structured version   Visualization version   GIF version

Theorem xaddf 12055
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xaddf +𝑒 :(ℝ* × ℝ*)⟶ℝ*

Proof of Theorem xaddf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 10086 . . . . . 6 0 ∈ ℝ*
2 pnfxr 10092 . . . . . 6 +∞ ∈ ℝ*
31, 2keepel 4155 . . . . 5 if(𝑦 = -∞, 0, +∞) ∈ ℝ*
43a1i 11 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → if(𝑦 = -∞, 0, +∞) ∈ ℝ*)
5 mnfxr 10096 . . . . . . 7 -∞ ∈ ℝ*
61, 5keepel 4155 . . . . . 6 if(𝑦 = +∞, 0, -∞) ∈ ℝ*
76a1i 11 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ 𝑥 = -∞) → if(𝑦 = +∞, 0, -∞) ∈ ℝ*)
82a1i 11 . . . . . . . 8 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ 𝑦 = +∞) → +∞ ∈ ℝ*)
95a1i 11 . . . . . . . . 9 (((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) ∧ 𝑦 = -∞) → -∞ ∈ ℝ*)
10 ioran 511 . . . . . . . . . . . . . 14 (¬ (𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞))
11 elxr 11950 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
12 3orass 1040 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞) ↔ (𝑥 ∈ ℝ ∨ (𝑥 = +∞ ∨ 𝑥 = -∞)))
1311, 12sylbb 209 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → (𝑥 ∈ ℝ ∨ (𝑥 = +∞ ∨ 𝑥 = -∞)))
1413ord 392 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (¬ 𝑥 ∈ ℝ → (𝑥 = +∞ ∨ 𝑥 = -∞)))
1514con1d 139 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (¬ (𝑥 = +∞ ∨ 𝑥 = -∞) → 𝑥 ∈ ℝ))
1615imp 445 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ ¬ (𝑥 = +∞ ∨ 𝑥 = -∞)) → 𝑥 ∈ ℝ)
1710, 16sylan2br 493 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) → 𝑥 ∈ ℝ)
18 ioran 511 . . . . . . . . . . . . . 14 (¬ (𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))
19 elxr 11950 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
20 3orass 1040 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) ↔ (𝑦 ∈ ℝ ∨ (𝑦 = +∞ ∨ 𝑦 = -∞)))
2119, 20sylbb 209 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ∨ (𝑦 = +∞ ∨ 𝑦 = -∞)))
2221ord 392 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ* → (¬ 𝑦 ∈ ℝ → (𝑦 = +∞ ∨ 𝑦 = -∞)))
2322con1d 139 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (¬ (𝑦 = +∞ ∨ 𝑦 = -∞) → 𝑦 ∈ ℝ))
2423imp 445 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ ¬ (𝑦 = +∞ ∨ 𝑦 = -∞)) → 𝑦 ∈ ℝ)
2518, 24sylan2br 493 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) → 𝑦 ∈ ℝ)
26 readdcl 10019 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
2717, 25, 26syl2an 494 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ (𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈ ℝ)
2827rexrd 10089 . . . . . . . . . . 11 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ (𝑦 ∈ ℝ* ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞))) → (𝑥 + 𝑦) ∈ ℝ*)
2928anassrs 680 . . . . . . . . . 10 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ (¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞)) → (𝑥 + 𝑦) ∈ ℝ*)
3029anassrs 680 . . . . . . . . 9 (((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑦 = -∞) → (𝑥 + 𝑦) ∈ ℝ*)
319, 30ifclda 4120 . . . . . . . 8 ((((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) ∧ ¬ 𝑦 = +∞) → if(𝑦 = -∞, -∞, (𝑥 + 𝑦)) ∈ ℝ*)
328, 31ifclda 4120 . . . . . . 7 (((𝑥 ∈ ℝ* ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) ∧ 𝑦 ∈ ℝ*) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
3332an32s 846 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞)) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
3433anassrs 680 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) ∧ ¬ 𝑥 = -∞) → if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))) ∈ ℝ*)
357, 34ifclda 4120 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥 = +∞) → if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦)))) ∈ ℝ*)
364, 35ifclda 4120 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*)
3736rgen2a 2977 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ*
38 df-xadd 11947 . . 3 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
3938fmpt2 7237 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))) ∈ ℝ* ↔ +𝑒 :(ℝ* × ℝ*)⟶ℝ*)
4037, 39mpbi 220 1 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383  wa 384  w3o 1036   = wceq 1483  wcel 1990  wral 2912  ifcif 4086   × cxp 5112  wf 5884  (class class class)co 6650  cr 9935  0cc0 9936   + caddc 9939  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   +𝑒 cxad 11944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-pnf 10076  df-mnf 10077  df-xr 10078  df-xadd 11947
This theorem is referenced by:  xaddcl  12070  xrsadd  19763  xrofsup  29533  xrge0pluscn  29986  xrge0tmdOLD  29991
  Copyright terms: Public domain W3C validator