| Step | Hyp | Ref
| Expression |
| 1 | | dvcmul.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 2 | | dvcmul.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 3 | | fconstg 6092 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶{𝐴}) |
| 4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑋 × {𝐴}):𝑋⟶{𝐴}) |
| 5 | 2 | snssd 4340 |
. . . 4
⊢ (𝜑 → {𝐴} ⊆ ℂ) |
| 6 | 4, 5 | fssd 6057 |
. . 3
⊢ (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ) |
| 7 | | dvcmul.f |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| 8 | | c0ex 10034 |
. . . . . 6
⊢ 0 ∈
V |
| 9 | 8 | fconst 6091 |
. . . . 5
⊢ (𝑋 × {0}):𝑋⟶{0} |
| 10 | | recnprss 23668 |
. . . . . . . . 9
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 11 | 1, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 12 | | fconstg 6092 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶{𝐴}) |
| 13 | 2, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 × {𝐴}):𝑆⟶{𝐴}) |
| 14 | 13, 5 | fssd 6057 |
. . . . . . . 8
⊢ (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ) |
| 15 | | ssid 3624 |
. . . . . . . . 9
⊢ 𝑆 ⊆ 𝑆 |
| 16 | 15 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ 𝑆) |
| 17 | | dvcmulf.df |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| 18 | | dvbsss 23666 |
. . . . . . . . . 10
⊢ dom
(𝑆 D 𝐹) ⊆ 𝑆 |
| 19 | 18 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑆) |
| 20 | 17, 19 | eqsstr3d 3640 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 21 | | eqid 2622 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 22 | | eqid 2622 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ↾t 𝑆) =
((TopOpen‘ℂfld) ↾t 𝑆) |
| 23 | 21, 22 | dvres 23675 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ (𝑆 × {𝐴}):𝑆⟶ℂ) ∧ (𝑆 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆)) → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))) |
| 24 | 11, 14, 16, 20, 23 | syl22anc 1327 |
. . . . . . 7
⊢ (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = ((𝑆 D (𝑆 × {𝐴})) ↾
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋))) |
| 25 | 20 | resmptd 5452 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝑆 ↦ 𝐴) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 26 | | fconstmpt 5163 |
. . . . . . . . . 10
⊢ (𝑆 × {𝐴}) = (𝑥 ∈ 𝑆 ↦ 𝐴) |
| 27 | 26 | reseq1i 5392 |
. . . . . . . . 9
⊢ ((𝑆 × {𝐴}) ↾ 𝑋) = ((𝑥 ∈ 𝑆 ↦ 𝐴) ↾ 𝑋) |
| 28 | | fconstmpt 5163 |
. . . . . . . . 9
⊢ (𝑋 × {𝐴}) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
| 29 | 25, 27, 28 | 3eqtr4g 2681 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 × {𝐴}) ↾ 𝑋) = (𝑋 × {𝐴})) |
| 30 | 29 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ↾ 𝑋)) = (𝑆 D (𝑋 × {𝐴}))) |
| 31 | 20 | resmptd 5452 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝑆 ↦ 0) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 32 | | fconstg 6092 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → (ℂ
× {𝐴}):ℂ⟶{𝐴}) |
| 33 | 2, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℂ × {𝐴}):ℂ⟶{𝐴}) |
| 34 | 33, 5 | fssd 6057 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ) |
| 35 | | ssid 3624 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 37 | | dvconst 23680 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ → (ℂ
D (ℂ × {𝐴})) =
(ℂ × {0})) |
| 38 | 2, 37 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℂ D (ℂ
× {𝐴})) = (ℂ
× {0})) |
| 39 | 38 | dmeqd 5326 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom (ℂ D (ℂ
× {𝐴})) = dom
(ℂ × {0})) |
| 40 | 8 | fconst 6091 |
. . . . . . . . . . . . . . 15
⊢ (ℂ
× {0}):ℂ⟶{0} |
| 41 | 40 | fdmi 6052 |
. . . . . . . . . . . . . 14
⊢ dom
(ℂ × {0}) = ℂ |
| 42 | 39, 41 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (ℂ D (ℂ
× {𝐴})) =
ℂ) |
| 43 | 11, 42 | sseqtr4d 3642 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ dom (ℂ D (ℂ ×
{𝐴}))) |
| 44 | | dvres3 23677 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ {ℝ, ℂ} ∧
(ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ
⊆ ℂ ∧ 𝑆
⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) |
| 45 | 1, 34, 36, 43, 44 | syl22anc 1327 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆)) |
| 46 | | xpssres 5434 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ ℂ →
((ℂ × {𝐴})
↾ 𝑆) = (𝑆 × {𝐴})) |
| 47 | 11, 46 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴})) |
| 48 | 47 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴}))) |
| 49 | 38 | reseq1d 5395 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℂ D (ℂ
× {𝐴})) ↾ 𝑆) = ((ℂ × {0})
↾ 𝑆)) |
| 50 | | xpssres 5434 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ ℂ →
((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0})) |
| 51 | 11, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((ℂ × {0})
↾ 𝑆) = (𝑆 × {0})) |
| 52 | 49, 51 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ D (ℂ
× {𝐴})) ↾ 𝑆) = (𝑆 × {0})) |
| 53 | 45, 48, 52 | 3eqtr3d 2664 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) |
| 54 | | fconstmpt 5163 |
. . . . . . . . . 10
⊢ (𝑆 × {0}) = (𝑥 ∈ 𝑆 ↦ 0) |
| 55 | 53, 54 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑥 ∈ 𝑆 ↦ 0)) |
| 56 | 21 | cnfldtopon 22586 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 57 | | resttopon 20965 |
. . . . . . . . . . . . 13
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 58 | 56, 11, 57 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 59 | | topontop 20718 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top) |
| 61 | | toponuni 20719 |
. . . . . . . . . . . . 13
⊢
(((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 62 | 58, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 = ∪
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 63 | 20, 62 | sseqtrd 3641 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ⊆ ∪
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 64 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ ∪ ((TopOpen‘ℂfld)
↾t 𝑆) =
∪ ((TopOpen‘ℂfld)
↾t 𝑆) |
| 65 | 64 | ntrss2 20861 |
. . . . . . . . . . 11
⊢
((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ ((TopOpen‘ℂfld)
↾t 𝑆))
→ ((int‘((TopOpen‘ℂfld) ↾t
𝑆))‘𝑋) ⊆ 𝑋) |
| 66 | 60, 63, 65 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
| 67 | 11, 7, 20, 22, 21 | dvbssntr 23664 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
| 68 | 17, 67 | eqsstr3d 3640 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ⊆
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) |
| 69 | 66, 68 | eqssd 3620 |
. . . . . . . . 9
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋) = 𝑋) |
| 70 | 55, 69 | reseq12d 5397 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = ((𝑥 ∈ 𝑆 ↦ 0) ↾ 𝑋)) |
| 71 | | fconstmpt 5163 |
. . . . . . . . 9
⊢ (𝑋 × {0}) = (𝑥 ∈ 𝑋 ↦ 0) |
| 72 | 71 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 × {0}) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 73 | 31, 70, 72 | 3eqtr4d 2666 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 D (𝑆 × {𝐴})) ↾
((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘𝑋)) = (𝑋 × {0})) |
| 74 | 24, 30, 73 | 3eqtr3d 2664 |
. . . . . 6
⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) |
| 75 | 74 | feq1d 6030 |
. . . . 5
⊢ (𝜑 → ((𝑆 D (𝑋 × {𝐴})):𝑋⟶{0} ↔ (𝑋 × {0}):𝑋⟶{0})) |
| 76 | 9, 75 | mpbiri 248 |
. . . 4
⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})):𝑋⟶{0}) |
| 77 | | fdm 6051 |
. . . 4
⊢ ((𝑆 D (𝑋 × {𝐴})):𝑋⟶{0} → dom (𝑆 D (𝑋 × {𝐴})) = 𝑋) |
| 78 | 76, 77 | syl 17 |
. . 3
⊢ (𝜑 → dom (𝑆 D (𝑋 × {𝐴})) = 𝑋) |
| 79 | 1, 6, 7, 78, 17 | dvmulf 23706 |
. 2
⊢ (𝜑 → (𝑆 D ((𝑋 × {𝐴}) ∘𝑓 ·
𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 ·
𝐹)
∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 ·
(𝑋 × {𝐴})))) |
| 80 | | sseqin2 3817 |
. . . . . 6
⊢ (𝑋 ⊆ 𝑆 ↔ (𝑆 ∩ 𝑋) = 𝑋) |
| 81 | 20, 80 | sylib 208 |
. . . . 5
⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑋) |
| 82 | 81 | mpteq1d 4738 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑋) ↦ (𝐴 · (𝐹‘𝑥))) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (𝐹‘𝑥)))) |
| 83 | | ffn 6045 |
. . . . . 6
⊢ ((𝑆 × {𝐴}):𝑆⟶{𝐴} → (𝑆 × {𝐴}) Fn 𝑆) |
| 84 | 13, 83 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑆 × {𝐴}) Fn 𝑆) |
| 85 | | ffn 6045 |
. . . . . 6
⊢ (𝐹:𝑋⟶ℂ → 𝐹 Fn 𝑋) |
| 86 | 7, 85 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 87 | 1, 20 | ssexd 4805 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ V) |
| 88 | | eqid 2622 |
. . . . 5
⊢ (𝑆 ∩ 𝑋) = (𝑆 ∩ 𝑋) |
| 89 | | fvconst2g 6467 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴) |
| 90 | 2, 89 | sylan 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑆 × {𝐴})‘𝑥) = 𝐴) |
| 91 | | eqidd 2623 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 92 | 84, 86, 1, 87, 88, 90, 91 | offval 6904 |
. . . 4
⊢ (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 ·
𝐹) = (𝑥 ∈ (𝑆 ∩ 𝑋) ↦ (𝐴 · (𝐹‘𝑥)))) |
| 93 | | ffn 6045 |
. . . . . 6
⊢ ((𝑋 × {𝐴}):𝑋⟶{𝐴} → (𝑋 × {𝐴}) Fn 𝑋) |
| 94 | 4, 93 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑋 × {𝐴}) Fn 𝑋) |
| 95 | | inidm 3822 |
. . . . 5
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
| 96 | | fvconst2g 6467 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) |
| 97 | 2, 96 | sylan 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) |
| 98 | 94, 86, 87, 87, 95, 97, 91 | offval 6904 |
. . . 4
⊢ (𝜑 → ((𝑋 × {𝐴}) ∘𝑓 ·
𝐹) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (𝐹‘𝑥)))) |
| 99 | 82, 92, 98 | 3eqtr4d 2666 |
. . 3
⊢ (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 ·
𝐹) = ((𝑋 × {𝐴}) ∘𝑓 ·
𝐹)) |
| 100 | 99 | oveq2d 6666 |
. 2
⊢ (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 ·
𝐹)) = (𝑆 D ((𝑋 × {𝐴}) ∘𝑓 ·
𝐹))) |
| 101 | 81 | mpteq1d 4738 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝑆 ∩ 𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥))) = (𝑥 ∈ 𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥)))) |
| 102 | | dvfg 23670 |
. . . . . . 7
⊢ (𝑆 ∈ {ℝ, ℂ}
→ (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 103 | 1, 102 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 104 | 17 | feq2d 6031 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 105 | 103, 104 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 106 | | ffn 6045 |
. . . . 5
⊢ ((𝑆 D 𝐹):𝑋⟶ℂ → (𝑆 D 𝐹) Fn 𝑋) |
| 107 | 105, 106 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐹) Fn 𝑋) |
| 108 | | eqidd 2623 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑆 D 𝐹)‘𝑥)) |
| 109 | 84, 107, 1, 87, 88, 90, 108 | offval 6904 |
. . 3
⊢ (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 ·
(𝑆 D 𝐹)) = (𝑥 ∈ (𝑆 ∩ 𝑋) ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥)))) |
| 110 | | 0cnd 10033 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℂ) |
| 111 | | ovexd 6680 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ V) |
| 112 | 74 | oveq1d 6665 |
. . . . . . 7
⊢ (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘𝑓 ·
𝐹) = ((𝑋 × {0}) ∘𝑓
· 𝐹)) |
| 113 | | 0cnd 10033 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℂ) |
| 114 | | mul02 10214 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (0
· 𝑥) =
0) |
| 115 | 114 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0) |
| 116 | 87, 7, 113, 113, 115 | caofid2 6928 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 × {0}) ∘𝑓
· 𝐹) = (𝑋 × {0})) |
| 117 | 112, 116 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘𝑓 ·
𝐹) = (𝑋 × {0})) |
| 118 | 117, 71 | syl6eq 2672 |
. . . . 5
⊢ (𝜑 → ((𝑆 D (𝑋 × {𝐴})) ∘𝑓 ·
𝐹) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 119 | | fvexd 6203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ V) |
| 120 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 121 | 105 | feqmptd 6249 |
. . . . . 6
⊢ (𝜑 → (𝑆 D 𝐹) = (𝑥 ∈ 𝑋 ↦ ((𝑆 D 𝐹)‘𝑥))) |
| 122 | 28 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑋 × {𝐴}) = (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 123 | 87, 119, 120, 121, 122 | offval2 6914 |
. . . . 5
⊢ (𝜑 → ((𝑆 D 𝐹) ∘𝑓 ·
(𝑋 × {𝐴})) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D 𝐹)‘𝑥) · 𝐴))) |
| 124 | 87, 110, 111, 118, 123 | offval2 6914 |
. . . 4
⊢ (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 ·
𝐹)
∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 ·
(𝑋 × {𝐴}))) = (𝑥 ∈ 𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)))) |
| 125 | 105 | ffvelrnda 6359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) ∈ ℂ) |
| 126 | 125, 120 | mulcld 10060 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) ∈ ℂ) |
| 127 | 126 | addid2d 10237 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (((𝑆 D 𝐹)‘𝑥) · 𝐴)) |
| 128 | 125, 120 | mulcomd 10061 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝑥))) |
| 129 | 127, 128 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴)) = (𝐴 · ((𝑆 D 𝐹)‘𝑥))) |
| 130 | 129 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (0 + (((𝑆 D 𝐹)‘𝑥) · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥)))) |
| 131 | 124, 130 | eqtrd 2656 |
. . 3
⊢ (𝜑 → (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 ·
𝐹)
∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 ·
(𝑋 × {𝐴}))) = (𝑥 ∈ 𝑋 ↦ (𝐴 · ((𝑆 D 𝐹)‘𝑥)))) |
| 132 | 101, 109,
131 | 3eqtr4d 2666 |
. 2
⊢ (𝜑 → ((𝑆 × {𝐴}) ∘𝑓 ·
(𝑆 D 𝐹)) = (((𝑆 D (𝑋 × {𝐴})) ∘𝑓 ·
𝐹)
∘𝑓 + ((𝑆 D 𝐹) ∘𝑓 ·
(𝑋 × {𝐴})))) |
| 133 | 79, 100, 132 | 3eqtr4d 2666 |
1
⊢ (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 ·
𝐹)) = ((𝑆 × {𝐴}) ∘𝑓 ·
(𝑆 D 𝐹))) |