MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmul Structured version   Visualization version   GIF version

Theorem dvcmul 23707
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvcmul.f (𝜑𝐹:𝑋⟶ℂ)
dvcmul.a (𝜑𝐴 ∈ ℂ)
dvcmul.x (𝜑𝑋𝑆)
dvcmul.c (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
Assertion
Ref Expression
dvcmul (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))

Proof of Theorem dvcmul
StepHypRef Expression
1 dvcmul.a . . . 4 (𝜑𝐴 ∈ ℂ)
2 fconst6g 6094 . . . 4 (𝐴 ∈ ℂ → (𝑆 × {𝐴}):𝑆⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑆 × {𝐴}):𝑆⟶ℂ)
4 ssid 3624 . . . 4 𝑆𝑆
54a1i 11 . . 3 (𝜑𝑆𝑆)
6 dvcmul.f . . 3 (𝜑𝐹:𝑋⟶ℂ)
7 dvcmul.x . . 3 (𝜑𝑋𝑆)
8 dvcmul.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
9 recnprss 23668 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
108, 9syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
1110, 6, 7dvbss 23665 . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
12 dvcmul.c . . . . . 6 (𝜑𝐶 ∈ dom (𝑆 D 𝐹))
1311, 12sseldd 3604 . . . . 5 (𝜑𝐶𝑋)
147, 13sseldd 3604 . . . 4 (𝜑𝐶𝑆)
15 fconst6g 6094 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
161, 15syl 17 . . . . . . . 8 (𝜑 → (ℂ × {𝐴}):ℂ⟶ℂ)
17 ssid 3624 . . . . . . . . 9 ℂ ⊆ ℂ
1817a1i 11 . . . . . . . 8 (𝜑 → ℂ ⊆ ℂ)
19 dvconst 23680 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
201, 19syl 17 . . . . . . . . . . 11 (𝜑 → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
2120dmeqd 5326 . . . . . . . . . 10 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = dom (ℂ × {0}))
22 c0ex 10034 . . . . . . . . . . . 12 0 ∈ V
2322fconst 6091 . . . . . . . . . . 11 (ℂ × {0}):ℂ⟶{0}
2423fdmi 6052 . . . . . . . . . 10 dom (ℂ × {0}) = ℂ
2521, 24syl6eq 2672 . . . . . . . . 9 (𝜑 → dom (ℂ D (ℂ × {𝐴})) = ℂ)
2610, 25sseqtr4d 3642 . . . . . . . 8 (𝜑𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))
27 dvres3 23677 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ (ℂ × {𝐴}):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom (ℂ D (ℂ × {𝐴})))) → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
288, 16, 18, 26, 27syl22anc 1327 . . . . . . 7 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = ((ℂ D (ℂ × {𝐴})) ↾ 𝑆))
29 xpssres 5434 . . . . . . . . 9 (𝑆 ⊆ ℂ → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
3010, 29syl 17 . . . . . . . 8 (𝜑 → ((ℂ × {𝐴}) ↾ 𝑆) = (𝑆 × {𝐴}))
3130oveq2d 6666 . . . . . . 7 (𝜑 → (𝑆 D ((ℂ × {𝐴}) ↾ 𝑆)) = (𝑆 D (𝑆 × {𝐴})))
3220reseq1d 5395 . . . . . . . 8 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = ((ℂ × {0}) ↾ 𝑆))
33 xpssres 5434 . . . . . . . . 9 (𝑆 ⊆ ℂ → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
3410, 33syl 17 . . . . . . . 8 (𝜑 → ((ℂ × {0}) ↾ 𝑆) = (𝑆 × {0}))
3532, 34eqtrd 2656 . . . . . . 7 (𝜑 → ((ℂ D (ℂ × {𝐴})) ↾ 𝑆) = (𝑆 × {0}))
3628, 31, 353eqtr3d 2664 . . . . . 6 (𝜑 → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
3722fconst2 6470 . . . . . 6 ((𝑆 D (𝑆 × {𝐴})):𝑆⟶{0} ↔ (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0}))
3836, 37sylibr 224 . . . . 5 (𝜑 → (𝑆 D (𝑆 × {𝐴})):𝑆⟶{0})
39 fdm 6051 . . . . 5 ((𝑆 D (𝑆 × {𝐴})):𝑆⟶{0} → dom (𝑆 D (𝑆 × {𝐴})) = 𝑆)
4038, 39syl 17 . . . 4 (𝜑 → dom (𝑆 D (𝑆 × {𝐴})) = 𝑆)
4114, 40eleqtrrd 2704 . . 3 (𝜑𝐶 ∈ dom (𝑆 D (𝑆 × {𝐴})))
423, 5, 6, 7, 8, 41, 12dvmul 23704 . 2 (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹))‘𝐶) = ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))))
4336fveq1d 6193 . . . . . 6 (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = ((𝑆 × {0})‘𝐶))
4422fvconst2 6469 . . . . . . 7 (𝐶𝑆 → ((𝑆 × {0})‘𝐶) = 0)
4514, 44syl 17 . . . . . 6 (𝜑 → ((𝑆 × {0})‘𝐶) = 0)
4643, 45eqtrd 2656 . . . . 5 (𝜑 → ((𝑆 D (𝑆 × {𝐴}))‘𝐶) = 0)
4746oveq1d 6665 . . . 4 (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) = (0 · (𝐹𝐶)))
486, 13ffvelrnd 6360 . . . . 5 (𝜑 → (𝐹𝐶) ∈ ℂ)
4948mul02d 10234 . . . 4 (𝜑 → (0 · (𝐹𝐶)) = 0)
5047, 49eqtrd 2656 . . 3 (𝜑 → (((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) = 0)
51 fvconst2g 6467 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶𝑆) → ((𝑆 × {𝐴})‘𝐶) = 𝐴)
521, 14, 51syl2anc 693 . . . . 5 (𝜑 → ((𝑆 × {𝐴})‘𝐶) = 𝐴)
5352oveq2d 6666 . . . 4 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (((𝑆 D 𝐹)‘𝐶) · 𝐴))
54 dvfg 23670 . . . . . . 7 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
558, 54syl 17 . . . . . 6 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
5655, 12ffvelrnd 6360 . . . . 5 (𝜑 → ((𝑆 D 𝐹)‘𝐶) ∈ ℂ)
5756, 1mulcomd 10061 . . . 4 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · 𝐴) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5853, 57eqtrd 2656 . . 3 (𝜑 → (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶)) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
5950, 58oveq12d 6668 . 2 (𝜑 → ((((𝑆 D (𝑆 × {𝐴}))‘𝐶) · (𝐹𝐶)) + (((𝑆 D 𝐹)‘𝐶) · ((𝑆 × {𝐴})‘𝐶))) = (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))))
601, 56mulcld 10060 . . 3 (𝜑 → (𝐴 · ((𝑆 D 𝐹)‘𝐶)) ∈ ℂ)
6160addid2d 10237 . 2 (𝜑 → (0 + (𝐴 · ((𝑆 D 𝐹)‘𝐶))) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
6242, 59, 613eqtrd 2660 1 (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wss 3574  {csn 4177  {cpr 4179   × cxp 5112  dom cdm 5114  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator