![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmexlem3 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 9254. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g. using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
hsmexlem.f | ⊢ 𝐹 = OrdIso( E , 𝐵) |
hsmexlem.g | ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
hsmexlem3 | ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdomref 8477 | . . . . 5 ⊢ (𝐶 ∈ On → 𝐶 ≼* 𝐶) | |
2 | xpwdomg 8490 | . . . . 5 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ≼* 𝐶) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) | |
3 | 1, 2 | sylan2 491 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) |
4 | wdompwdom 8483 | . . . 4 ⊢ ((𝐴 × 𝐶) ≼* (𝐷 × 𝐶) → 𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶)) | |
5 | harword 8470 | . . . 4 ⊢ (𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
7 | 6 | adantr 481 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
8 | relwdom 8471 | . . . . . 6 ⊢ Rel ≼* | |
9 | 8 | brrelexi 5158 | . . . . 5 ⊢ (𝐴 ≼* 𝐷 → 𝐴 ∈ V) |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → 𝐴 ∈ V) |
11 | 10 | adantr 481 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐴 ∈ V) |
12 | simplr 792 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐶 ∈ On) | |
13 | simpr 477 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) | |
14 | hsmexlem.f | . . . 4 ⊢ 𝐹 = OrdIso( E , 𝐵) | |
15 | hsmexlem.g | . . . 4 ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) | |
16 | 14, 15 | hsmexlem2 9249 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
17 | 11, 12, 13, 16 | syl3anc 1326 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
18 | 7, 17 | sseldd 3604 | 1 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 ∪ ciun 4520 class class class wbr 4653 E cep 5028 × cxp 5112 dom cdm 5114 Oncon0 5723 ‘cfv 5888 ≼ cdom 7953 OrdIsocoi 8414 harchar 8461 ≼* cwdom 8462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-smo 7443 df-recs 7468 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-oi 8415 df-har 8463 df-wdom 8464 |
This theorem is referenced by: hsmexlem4 9251 hsmexlem5 9252 |
Copyright terms: Public domain | W3C validator |