Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
af_packet.c
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * PACKET - implements raw packet sockets.
7  *
8  * Authors: Ross Biro
9  * Fred N. van Kempen, <[email protected]>
10  * Alan Cox, <[email protected]>
11  *
12  * Fixes:
13  * Alan Cox : verify_area() now used correctly
14  * Alan Cox : new skbuff lists, look ma no backlogs!
15  * Alan Cox : tidied skbuff lists.
16  * Alan Cox : Now uses generic datagram routines I
17  * added. Also fixed the peek/read crash
18  * from all old Linux datagram code.
19  * Alan Cox : Uses the improved datagram code.
20  * Alan Cox : Added NULL's for socket options.
21  * Alan Cox : Re-commented the code.
22  * Alan Cox : Use new kernel side addressing
23  * Rob Janssen : Correct MTU usage.
24  * Dave Platt : Counter leaks caused by incorrect
25  * interrupt locking and some slightly
26  * dubious gcc output. Can you read
27  * compiler: it said _VOLATILE_
28  * Richard Kooijman : Timestamp fixes.
29  * Alan Cox : New buffers. Use sk->mac.raw.
30  * Alan Cox : sendmsg/recvmsg support.
31  * Alan Cox : Protocol setting support
32  * Alexey Kuznetsov : Untied from IPv4 stack.
33  * Cyrus Durgin : Fixed kerneld for kmod.
34  * Michal Ostrowski : Module initialization cleanup.
35  * Ulises Alonso : Frame number limit removal and
36  * packet_set_ring memory leak.
37  * Eric Biederman : Allow for > 8 byte hardware addresses.
38  * The convention is that longer addresses
39  * will simply extend the hardware address
40  * byte arrays at the end of sockaddr_ll
41  * and packet_mreq.
42  * Johann Baudy : Added TX RING.
43  * Chetan Loke : Implemented TPACKET_V3 block abstraction
44  * layer.
45  * Copyright (C) 2011, <[email protected]>
46  *
47  *
48  * This program is free software; you can redistribute it and/or
49  * modify it under the terms of the GNU General Public License
50  * as published by the Free Software Foundation; either version
51  * 2 of the License, or (at your option) any later version.
52  *
53  */
54 
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 
96 #include "internal.h"
97 
98 /*
99  Assumptions:
100  - if device has no dev->hard_header routine, it adds and removes ll header
101  inside itself. In this case ll header is invisible outside of device,
102  but higher levels still should reserve dev->hard_header_len.
103  Some devices are enough clever to reallocate skb, when header
104  will not fit to reserved space (tunnel), another ones are silly
105  (PPP).
106  - packet socket receives packets with pulled ll header,
107  so that SOCK_RAW should push it back.
108 
109 On receive:
110 -----------
111 
112 Incoming, dev->hard_header!=NULL
113  mac_header -> ll header
114  data -> data
115 
116 Outgoing, dev->hard_header!=NULL
117  mac_header -> ll header
118  data -> ll header
119 
120 Incoming, dev->hard_header==NULL
121  mac_header -> UNKNOWN position. It is very likely, that it points to ll
122  header. PPP makes it, that is wrong, because introduce
123  assymetry between rx and tx paths.
124  data -> data
125 
126 Outgoing, dev->hard_header==NULL
127  mac_header -> data. ll header is still not built!
128  data -> data
129 
130 Resume
131  If dev->hard_header==NULL we are unlikely to restore sensible ll header.
132 
133 
134 On transmit:
135 ------------
136 
137 dev->hard_header != NULL
138  mac_header -> ll header
139  data -> ll header
140 
141 dev->hard_header == NULL (ll header is added by device, we cannot control it)
142  mac_header -> data
143  data -> data
144 
145  We should set nh.raw on output to correct posistion,
146  packet classifier depends on it.
147  */
148 
149 /* Private packet socket structures. */
150 
151 /* identical to struct packet_mreq except it has
152  * a longer address field.
153  */
156  unsigned short mr_type;
157  unsigned short mr_alen;
158  unsigned char mr_address[MAX_ADDR_LEN];
159 };
160 
161 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
162  int closing, int tx_ring);
163 
164 
165 #define V3_ALIGNMENT (8)
166 
167 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
168 
169 #define BLK_PLUS_PRIV(sz_of_priv) \
170  (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
171 
172 #define PGV_FROM_VMALLOC 1
173 
174 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
175 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
176 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
177 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
178 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
179 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
180 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
181 
182 struct packet_sock;
183 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
184 
185 static void *packet_previous_frame(struct packet_sock *po,
186  struct packet_ring_buffer *rb,
187  int status);
188 static void packet_increment_head(struct packet_ring_buffer *buff);
189 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
190  struct tpacket_block_desc *);
191 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
192  struct packet_sock *);
193 static void prb_retire_current_block(struct tpacket_kbdq_core *,
194  struct packet_sock *, unsigned int status);
195 static int prb_queue_frozen(struct tpacket_kbdq_core *);
196 static void prb_open_block(struct tpacket_kbdq_core *,
197  struct tpacket_block_desc *);
198 static void prb_retire_rx_blk_timer_expired(unsigned long);
199 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
200 static void prb_init_blk_timer(struct packet_sock *,
201  struct tpacket_kbdq_core *,
202  void (*func) (unsigned long));
203 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
204 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
205  struct tpacket3_hdr *);
206 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
207  struct tpacket3_hdr *);
208 static void packet_flush_mclist(struct sock *sk);
209 
211  unsigned int origlen;
212  union {
214  struct sockaddr_ll ll;
215  } sa;
216 };
217 
218 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
219 
220 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
221 #define GET_PBLOCK_DESC(x, bid) \
222  ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
223 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
224  ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
225 #define GET_NEXT_PRB_BLK_NUM(x) \
226  (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
227  ((x)->kactive_blk_num+1) : 0)
228 
229 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
230 static void __fanout_link(struct sock *sk, struct packet_sock *po);
231 
232 /* register_prot_hook must be invoked with the po->bind_lock held,
233  * or from a context in which asynchronous accesses to the packet
234  * socket is not possible (packet_create()).
235  */
236 static void register_prot_hook(struct sock *sk)
237 {
238  struct packet_sock *po = pkt_sk(sk);
239  if (!po->running) {
240  if (po->fanout)
241  __fanout_link(sk, po);
242  else
243  dev_add_pack(&po->prot_hook);
244  sock_hold(sk);
245  po->running = 1;
246  }
247 }
248 
249 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
250  * held. If the sync parameter is true, we will temporarily drop
251  * the po->bind_lock and do a synchronize_net to make sure no
252  * asynchronous packet processing paths still refer to the elements
253  * of po->prot_hook. If the sync parameter is false, it is the
254  * callers responsibility to take care of this.
255  */
256 static void __unregister_prot_hook(struct sock *sk, bool sync)
257 {
258  struct packet_sock *po = pkt_sk(sk);
259 
260  po->running = 0;
261  if (po->fanout)
262  __fanout_unlink(sk, po);
263  else
264  __dev_remove_pack(&po->prot_hook);
265  __sock_put(sk);
266 
267  if (sync) {
268  spin_unlock(&po->bind_lock);
269  synchronize_net();
270  spin_lock(&po->bind_lock);
271  }
272 }
273 
274 static void unregister_prot_hook(struct sock *sk, bool sync)
275 {
276  struct packet_sock *po = pkt_sk(sk);
277 
278  if (po->running)
279  __unregister_prot_hook(sk, sync);
280 }
281 
282 static inline __pure struct page *pgv_to_page(void *addr)
283 {
284  if (is_vmalloc_addr(addr))
285  return vmalloc_to_page(addr);
286  return virt_to_page(addr);
287 }
288 
289 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
290 {
291  union {
292  struct tpacket_hdr *h1;
293  struct tpacket2_hdr *h2;
294  void *raw;
295  } h;
296 
297  h.raw = frame;
298  switch (po->tp_version) {
299  case TPACKET_V1:
300  h.h1->tp_status = status;
301  flush_dcache_page(pgv_to_page(&h.h1->tp_status));
302  break;
303  case TPACKET_V2:
304  h.h2->tp_status = status;
305  flush_dcache_page(pgv_to_page(&h.h2->tp_status));
306  break;
307  case TPACKET_V3:
308  default:
309  WARN(1, "TPACKET version not supported.\n");
310  BUG();
311  }
312 
313  smp_wmb();
314 }
315 
316 static int __packet_get_status(struct packet_sock *po, void *frame)
317 {
318  union {
319  struct tpacket_hdr *h1;
320  struct tpacket2_hdr *h2;
321  void *raw;
322  } h;
323 
324  smp_rmb();
325 
326  h.raw = frame;
327  switch (po->tp_version) {
328  case TPACKET_V1:
329  flush_dcache_page(pgv_to_page(&h.h1->tp_status));
330  return h.h1->tp_status;
331  case TPACKET_V2:
332  flush_dcache_page(pgv_to_page(&h.h2->tp_status));
333  return h.h2->tp_status;
334  case TPACKET_V3:
335  default:
336  WARN(1, "TPACKET version not supported.\n");
337  BUG();
338  return 0;
339  }
340 }
341 
342 static void *packet_lookup_frame(struct packet_sock *po,
343  struct packet_ring_buffer *rb,
344  unsigned int position,
345  int status)
346 {
347  unsigned int pg_vec_pos, frame_offset;
348  union {
349  struct tpacket_hdr *h1;
350  struct tpacket2_hdr *h2;
351  void *raw;
352  } h;
353 
354  pg_vec_pos = position / rb->frames_per_block;
355  frame_offset = position % rb->frames_per_block;
356 
357  h.raw = rb->pg_vec[pg_vec_pos].buffer +
358  (frame_offset * rb->frame_size);
359 
360  if (status != __packet_get_status(po, h.raw))
361  return NULL;
362 
363  return h.raw;
364 }
365 
366 static void *packet_current_frame(struct packet_sock *po,
367  struct packet_ring_buffer *rb,
368  int status)
369 {
370  return packet_lookup_frame(po, rb, rb->head, status);
371 }
372 
373 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
374 {
376 }
377 
378 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
379  int tx_ring,
380  struct sk_buff_head *rb_queue)
381 {
382  struct tpacket_kbdq_core *pkc;
383 
384  pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
385 
386  spin_lock(&rb_queue->lock);
387  pkc->delete_blk_timer = 1;
388  spin_unlock(&rb_queue->lock);
389 
390  prb_del_retire_blk_timer(pkc);
391 }
392 
393 static void prb_init_blk_timer(struct packet_sock *po,
394  struct tpacket_kbdq_core *pkc,
395  void (*func) (unsigned long))
396 {
398  pkc->retire_blk_timer.data = (long)po;
399  pkc->retire_blk_timer.function = func;
400  pkc->retire_blk_timer.expires = jiffies;
401 }
402 
403 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring)
404 {
405  struct tpacket_kbdq_core *pkc;
406 
407  if (tx_ring)
408  BUG();
409 
410  pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc;
411  prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
412 }
413 
414 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
415  int blk_size_in_bytes)
416 {
417  struct net_device *dev;
418  unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
419  struct ethtool_cmd ecmd;
420  int err;
421  u32 speed;
422 
423  rtnl_lock();
424  dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
425  if (unlikely(!dev)) {
426  rtnl_unlock();
427  return DEFAULT_PRB_RETIRE_TOV;
428  }
429  err = __ethtool_get_settings(dev, &ecmd);
430  speed = ethtool_cmd_speed(&ecmd);
431  rtnl_unlock();
432  if (!err) {
433  /*
434  * If the link speed is so slow you don't really
435  * need to worry about perf anyways
436  */
437  if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
438  return DEFAULT_PRB_RETIRE_TOV;
439  } else {
440  msec = 1;
441  div = speed / 1000;
442  }
443  }
444 
445  mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
446 
447  if (div)
448  mbits /= div;
449 
450  tmo = mbits * msec;
451 
452  if (div)
453  return tmo+1;
454  return tmo;
455 }
456 
457 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
458  union tpacket_req_u *req_u)
459 {
460  p1->feature_req_word = req_u->req3.tp_feature_req_word;
461 }
462 
463 static void init_prb_bdqc(struct packet_sock *po,
464  struct packet_ring_buffer *rb,
465  struct pgv *pg_vec,
466  union tpacket_req_u *req_u, int tx_ring)
467 {
468  struct tpacket_kbdq_core *p1 = &rb->prb_bdqc;
469  struct tpacket_block_desc *pbd;
470 
471  memset(p1, 0x0, sizeof(*p1));
472 
473  p1->knxt_seq_num = 1;
474  p1->pkbdq = pg_vec;
475  pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
476  p1->pkblk_start = pg_vec[0].buffer;
477  p1->kblk_size = req_u->req3.tp_block_size;
478  p1->knum_blocks = req_u->req3.tp_block_nr;
479  p1->hdrlen = po->tp_hdrlen;
480  p1->version = po->tp_version;
481  p1->last_kactive_blk_num = 0;
482  po->stats_u.stats3.tp_freeze_q_cnt = 0;
483  if (req_u->req3.tp_retire_blk_tov)
484  p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
485  else
486  p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
487  req_u->req3.tp_block_size);
489  p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
490 
491  prb_init_ft_ops(p1, req_u);
492  prb_setup_retire_blk_timer(po, tx_ring);
493  prb_open_block(p1, pbd);
494 }
495 
496 /* Do NOT update the last_blk_num first.
497  * Assumes sk_buff_head lock is held.
498  */
499 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
500 {
502  jiffies + pkc->tov_in_jiffies);
504 }
505 
506 /*
507  * Timer logic:
508  * 1) We refresh the timer only when we open a block.
509  * By doing this we don't waste cycles refreshing the timer
510  * on packet-by-packet basis.
511  *
512  * With a 1MB block-size, on a 1Gbps line, it will take
513  * i) ~8 ms to fill a block + ii) memcpy etc.
514  * In this cut we are not accounting for the memcpy time.
515  *
516  * So, if the user sets the 'tmo' to 10ms then the timer
517  * will never fire while the block is still getting filled
518  * (which is what we want). However, the user could choose
519  * to close a block early and that's fine.
520  *
521  * But when the timer does fire, we check whether or not to refresh it.
522  * Since the tmo granularity is in msecs, it is not too expensive
523  * to refresh the timer, lets say every '8' msecs.
524  * Either the user can set the 'tmo' or we can derive it based on
525  * a) line-speed and b) block-size.
526  * prb_calc_retire_blk_tmo() calculates the tmo.
527  *
528  */
529 static void prb_retire_rx_blk_timer_expired(unsigned long data)
530 {
531  struct packet_sock *po = (struct packet_sock *)data;
532  struct tpacket_kbdq_core *pkc = &po->rx_ring.prb_bdqc;
533  unsigned int frozen;
534  struct tpacket_block_desc *pbd;
535 
536  spin_lock(&po->sk.sk_receive_queue.lock);
537 
538  frozen = prb_queue_frozen(pkc);
540 
541  if (unlikely(pkc->delete_blk_timer))
542  goto out;
543 
544  /* We only need to plug the race when the block is partially filled.
545  * tpacket_rcv:
546  * lock(); increment BLOCK_NUM_PKTS; unlock()
547  * copy_bits() is in progress ...
548  * timer fires on other cpu:
549  * we can't retire the current block because copy_bits
550  * is in progress.
551  *
552  */
553  if (BLOCK_NUM_PKTS(pbd)) {
554  while (atomic_read(&pkc->blk_fill_in_prog)) {
555  /* Waiting for skb_copy_bits to finish... */
556  cpu_relax();
557  }
558  }
559 
560  if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
561  if (!frozen) {
562  prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
563  if (!prb_dispatch_next_block(pkc, po))
564  goto refresh_timer;
565  else
566  goto out;
567  } else {
568  /* Case 1. Queue was frozen because user-space was
569  * lagging behind.
570  */
571  if (prb_curr_blk_in_use(pkc, pbd)) {
572  /*
573  * Ok, user-space is still behind.
574  * So just refresh the timer.
575  */
576  goto refresh_timer;
577  } else {
578  /* Case 2. queue was frozen,user-space caught up,
579  * now the link went idle && the timer fired.
580  * We don't have a block to close.So we open this
581  * block and restart the timer.
582  * opening a block thaws the queue,restarts timer
583  * Thawing/timer-refresh is a side effect.
584  */
585  prb_open_block(pkc, pbd);
586  goto out;
587  }
588  }
589  }
590 
591 refresh_timer:
592  _prb_refresh_rx_retire_blk_timer(pkc);
593 
594 out:
595  spin_unlock(&po->sk.sk_receive_queue.lock);
596 }
597 
598 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
599  struct tpacket_block_desc *pbd1, __u32 status)
600 {
601  /* Flush everything minus the block header */
602 
603 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
604  u8 *start, *end;
605 
606  start = (u8 *)pbd1;
607 
608  /* Skip the block header(we know header WILL fit in 4K) */
609  start += PAGE_SIZE;
610 
611  end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
612  for (; start < end; start += PAGE_SIZE)
613  flush_dcache_page(pgv_to_page(start));
614 
615  smp_wmb();
616 #endif
617 
618  /* Now update the block status. */
619 
620  BLOCK_STATUS(pbd1) = status;
621 
622  /* Flush the block header */
623 
624 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
625  start = (u8 *)pbd1;
626  flush_dcache_page(pgv_to_page(start));
627 
628  smp_wmb();
629 #endif
630 }
631 
632 /*
633  * Side effect:
634  *
635  * 1) flush the block
636  * 2) Increment active_blk_num
637  *
638  * Note:We DONT refresh the timer on purpose.
639  * Because almost always the next block will be opened.
640  */
641 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
642  struct tpacket_block_desc *pbd1,
643  struct packet_sock *po, unsigned int stat)
644 {
645  __u32 status = TP_STATUS_USER | stat;
646 
647  struct tpacket3_hdr *last_pkt;
648  struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
649 
650  if (po->stats.tp_drops)
651  status |= TP_STATUS_LOSING;
652 
653  last_pkt = (struct tpacket3_hdr *)pkc1->prev;
654  last_pkt->tp_next_offset = 0;
655 
656  /* Get the ts of the last pkt */
657  if (BLOCK_NUM_PKTS(pbd1)) {
658  h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
659  h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
660  } else {
661  /* Ok, we tmo'd - so get the current time */
662  struct timespec ts;
663  getnstimeofday(&ts);
664  h1->ts_last_pkt.ts_sec = ts.tv_sec;
665  h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
666  }
667 
668  smp_wmb();
669 
670  /* Flush the block */
671  prb_flush_block(pkc1, pbd1, status);
672 
674 }
675 
676 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
677 {
678  pkc->reset_pending_on_curr_blk = 0;
679 }
680 
681 /*
682  * Side effect of opening a block:
683  *
684  * 1) prb_queue is thawed.
685  * 2) retire_blk_timer is refreshed.
686  *
687  */
688 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
689  struct tpacket_block_desc *pbd1)
690 {
691  struct timespec ts;
692  struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
693 
694  smp_rmb();
695 
696  if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd1))) {
697 
698  /* We could have just memset this but we will lose the
699  * flexibility of making the priv area sticky
700  */
701  BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
702  BLOCK_NUM_PKTS(pbd1) = 0;
703  BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
704  getnstimeofday(&ts);
705  h1->ts_first_pkt.ts_sec = ts.tv_sec;
706  h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
707  pkc1->pkblk_start = (char *)pbd1;
708  pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
710  BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
711  pbd1->version = pkc1->version;
712  pkc1->prev = pkc1->nxt_offset;
713  pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
714  prb_thaw_queue(pkc1);
715  _prb_refresh_rx_retire_blk_timer(pkc1);
716 
717  smp_wmb();
718 
719  return;
720  }
721 
722  WARN(1, "ERROR block:%p is NOT FREE status:%d kactive_blk_num:%d\n",
723  pbd1, BLOCK_STATUS(pbd1), pkc1->kactive_blk_num);
724  dump_stack();
725  BUG();
726 }
727 
728 /*
729  * Queue freeze logic:
730  * 1) Assume tp_block_nr = 8 blocks.
731  * 2) At time 't0', user opens Rx ring.
732  * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
733  * 4) user-space is either sleeping or processing block '0'.
734  * 5) tpacket_rcv is currently filling block '7', since there is no space left,
735  * it will close block-7,loop around and try to fill block '0'.
736  * call-flow:
737  * __packet_lookup_frame_in_block
738  * prb_retire_current_block()
739  * prb_dispatch_next_block()
740  * |->(BLOCK_STATUS == USER) evaluates to true
741  * 5.1) Since block-0 is currently in-use, we just freeze the queue.
742  * 6) Now there are two cases:
743  * 6.1) Link goes idle right after the queue is frozen.
744  * But remember, the last open_block() refreshed the timer.
745  * When this timer expires,it will refresh itself so that we can
746  * re-open block-0 in near future.
747  * 6.2) Link is busy and keeps on receiving packets. This is a simple
748  * case and __packet_lookup_frame_in_block will check if block-0
749  * is free and can now be re-used.
750  */
751 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
752  struct packet_sock *po)
753 {
754  pkc->reset_pending_on_curr_blk = 1;
755  po->stats_u.stats3.tp_freeze_q_cnt++;
756 }
757 
758 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
759 
760 /*
761  * If the next block is free then we will dispatch it
762  * and return a good offset.
763  * Else, we will freeze the queue.
764  * So, caller must check the return value.
765  */
766 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
767  struct packet_sock *po)
768 {
769  struct tpacket_block_desc *pbd;
770 
771  smp_rmb();
772 
773  /* 1. Get current block num */
775 
776  /* 2. If this block is currently in_use then freeze the queue */
777  if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
778  prb_freeze_queue(pkc, po);
779  return NULL;
780  }
781 
782  /*
783  * 3.
784  * open this block and return the offset where the first packet
785  * needs to get stored.
786  */
787  prb_open_block(pkc, pbd);
788  return (void *)pkc->nxt_offset;
789 }
790 
791 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
792  struct packet_sock *po, unsigned int status)
793 {
795 
796  /* retire/close the current block */
797  if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
798  /*
799  * Plug the case where copy_bits() is in progress on
800  * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
801  * have space to copy the pkt in the current block and
802  * called prb_retire_current_block()
803  *
804  * We don't need to worry about the TMO case because
805  * the timer-handler already handled this case.
806  */
807  if (!(status & TP_STATUS_BLK_TMO)) {
808  while (atomic_read(&pkc->blk_fill_in_prog)) {
809  /* Waiting for skb_copy_bits to finish... */
810  cpu_relax();
811  }
812  }
813  prb_close_block(pkc, pbd, po, status);
814  return;
815  }
816 
817  WARN(1, "ERROR-pbd[%d]:%p\n", pkc->kactive_blk_num, pbd);
818  dump_stack();
819  BUG();
820 }
821 
822 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
823  struct tpacket_block_desc *pbd)
824 {
825  return TP_STATUS_USER & BLOCK_STATUS(pbd);
826 }
827 
828 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
829 {
830  return pkc->reset_pending_on_curr_blk;
831 }
832 
833 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
834 {
835  struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
837 }
838 
839 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
840  struct tpacket3_hdr *ppd)
841 {
842  ppd->hv1.tp_rxhash = skb_get_rxhash(pkc->skb);
843 }
844 
845 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
846  struct tpacket3_hdr *ppd)
847 {
848  ppd->hv1.tp_rxhash = 0;
849 }
850 
851 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
852  struct tpacket3_hdr *ppd)
853 {
854  if (vlan_tx_tag_present(pkc->skb)) {
855  ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb);
857  } else {
858  ppd->hv1.tp_vlan_tci = 0;
860  }
861 }
862 
863 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
864  struct tpacket3_hdr *ppd)
865 {
866  prb_fill_vlan_info(pkc, ppd);
867 
869  prb_fill_rxhash(pkc, ppd);
870  else
871  prb_clear_rxhash(pkc, ppd);
872 }
873 
874 static void prb_fill_curr_block(char *curr,
875  struct tpacket_kbdq_core *pkc,
876  struct tpacket_block_desc *pbd,
877  unsigned int len)
878 {
879  struct tpacket3_hdr *ppd;
880 
881  ppd = (struct tpacket3_hdr *)curr;
883  pkc->prev = curr;
885  BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
886  BLOCK_NUM_PKTS(pbd) += 1;
888  prb_run_all_ft_ops(pkc, ppd);
889 }
890 
891 /* Assumes caller has the sk->rx_queue.lock */
892 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
893  struct sk_buff *skb,
894  int status,
895  unsigned int len
896  )
897 {
898  struct tpacket_kbdq_core *pkc;
899  struct tpacket_block_desc *pbd;
900  char *curr, *end;
901 
902  pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
904 
905  /* Queue is frozen when user space is lagging behind */
906  if (prb_queue_frozen(pkc)) {
907  /*
908  * Check if that last block which caused the queue to freeze,
909  * is still in_use by user-space.
910  */
911  if (prb_curr_blk_in_use(pkc, pbd)) {
912  /* Can't record this packet */
913  return NULL;
914  } else {
915  /*
916  * Ok, the block was released by user-space.
917  * Now let's open that block.
918  * opening a block also thaws the queue.
919  * Thawing is a side effect.
920  */
921  prb_open_block(pkc, pbd);
922  }
923  }
924 
925  smp_mb();
926  curr = pkc->nxt_offset;
927  pkc->skb = skb;
928  end = (char *)pbd + pkc->kblk_size;
929 
930  /* first try the current block */
931  if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
932  prb_fill_curr_block(curr, pkc, pbd, len);
933  return (void *)curr;
934  }
935 
936  /* Ok, close the current block */
937  prb_retire_current_block(pkc, po, 0);
938 
939  /* Now, try to dispatch the next block */
940  curr = (char *)prb_dispatch_next_block(pkc, po);
941  if (curr) {
943  prb_fill_curr_block(curr, pkc, pbd, len);
944  return (void *)curr;
945  }
946 
947  /*
948  * No free blocks are available.user_space hasn't caught up yet.
949  * Queue was just frozen and now this packet will get dropped.
950  */
951  return NULL;
952 }
953 
954 static void *packet_current_rx_frame(struct packet_sock *po,
955  struct sk_buff *skb,
956  int status, unsigned int len)
957 {
958  char *curr = NULL;
959  switch (po->tp_version) {
960  case TPACKET_V1:
961  case TPACKET_V2:
962  curr = packet_lookup_frame(po, &po->rx_ring,
963  po->rx_ring.head, status);
964  return curr;
965  case TPACKET_V3:
966  return __packet_lookup_frame_in_block(po, skb, status, len);
967  default:
968  WARN(1, "TPACKET version not supported\n");
969  BUG();
970  return NULL;
971  }
972 }
973 
974 static void *prb_lookup_block(struct packet_sock *po,
975  struct packet_ring_buffer *rb,
976  unsigned int previous,
977  int status)
978 {
979  struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
980  struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, previous);
981 
982  if (status != BLOCK_STATUS(pbd))
983  return NULL;
984  return pbd;
985 }
986 
987 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
988 {
989  unsigned int prev;
990  if (rb->prb_bdqc.kactive_blk_num)
991  prev = rb->prb_bdqc.kactive_blk_num-1;
992  else
993  prev = rb->prb_bdqc.knum_blocks-1;
994  return prev;
995 }
996 
997 /* Assumes caller has held the rx_queue.lock */
998 static void *__prb_previous_block(struct packet_sock *po,
999  struct packet_ring_buffer *rb,
1000  int status)
1001 {
1002  unsigned int previous = prb_previous_blk_num(rb);
1003  return prb_lookup_block(po, rb, previous, status);
1004 }
1005 
1006 static void *packet_previous_rx_frame(struct packet_sock *po,
1007  struct packet_ring_buffer *rb,
1008  int status)
1009 {
1010  if (po->tp_version <= TPACKET_V2)
1011  return packet_previous_frame(po, rb, status);
1012 
1013  return __prb_previous_block(po, rb, status);
1014 }
1015 
1016 static void packet_increment_rx_head(struct packet_sock *po,
1017  struct packet_ring_buffer *rb)
1018 {
1019  switch (po->tp_version) {
1020  case TPACKET_V1:
1021  case TPACKET_V2:
1022  return packet_increment_head(rb);
1023  case TPACKET_V3:
1024  default:
1025  WARN(1, "TPACKET version not supported.\n");
1026  BUG();
1027  return;
1028  }
1029 }
1030 
1031 static void *packet_previous_frame(struct packet_sock *po,
1032  struct packet_ring_buffer *rb,
1033  int status)
1034 {
1035  unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1036  return packet_lookup_frame(po, rb, previous, status);
1037 }
1038 
1039 static void packet_increment_head(struct packet_ring_buffer *buff)
1040 {
1041  buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1042 }
1043 
1044 static void packet_sock_destruct(struct sock *sk)
1045 {
1047 
1048  WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1050 
1051  if (!sock_flag(sk, SOCK_DEAD)) {
1052  pr_err("Attempt to release alive packet socket: %p\n", sk);
1053  return;
1054  }
1055 
1056  sk_refcnt_debug_dec(sk);
1057 }
1058 
1059 static int fanout_rr_next(struct packet_fanout *f, unsigned int num)
1060 {
1061  int x = atomic_read(&f->rr_cur) + 1;
1062 
1063  if (x >= num)
1064  x = 0;
1065 
1066  return x;
1067 }
1068 
1069 static struct sock *fanout_demux_hash(struct packet_fanout *f, struct sk_buff *skb, unsigned int num)
1070 {
1071  u32 idx, hash = skb->rxhash;
1072 
1073  idx = ((u64)hash * num) >> 32;
1074 
1075  return f->arr[idx];
1076 }
1077 
1078 static struct sock *fanout_demux_lb(struct packet_fanout *f, struct sk_buff *skb, unsigned int num)
1079 {
1080  int cur, old;
1081 
1082  cur = atomic_read(&f->rr_cur);
1083  while ((old = atomic_cmpxchg(&f->rr_cur, cur,
1084  fanout_rr_next(f, num))) != cur)
1085  cur = old;
1086  return f->arr[cur];
1087 }
1088 
1089 static struct sock *fanout_demux_cpu(struct packet_fanout *f, struct sk_buff *skb, unsigned int num)
1090 {
1091  unsigned int cpu = smp_processor_id();
1092 
1093  return f->arr[cpu % num];
1094 }
1095 
1096 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1097  struct packet_type *pt, struct net_device *orig_dev)
1098 {
1099  struct packet_fanout *f = pt->af_packet_priv;
1100  unsigned int num = f->num_members;
1101  struct packet_sock *po;
1102  struct sock *sk;
1103 
1104  if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1105  !num) {
1106  kfree_skb(skb);
1107  return 0;
1108  }
1109 
1110  switch (f->type) {
1111  case PACKET_FANOUT_HASH:
1112  default:
1113  if (f->defrag) {
1115  if (!skb)
1116  return 0;
1117  }
1118  skb_get_rxhash(skb);
1119  sk = fanout_demux_hash(f, skb, num);
1120  break;
1121  case PACKET_FANOUT_LB:
1122  sk = fanout_demux_lb(f, skb, num);
1123  break;
1124  case PACKET_FANOUT_CPU:
1125  sk = fanout_demux_cpu(f, skb, num);
1126  break;
1127  }
1128 
1129  po = pkt_sk(sk);
1130 
1131  return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1132 }
1133 
1134 DEFINE_MUTEX(fanout_mutex);
1135 EXPORT_SYMBOL_GPL(fanout_mutex);
1136 static LIST_HEAD(fanout_list);
1137 
1138 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1139 {
1140  struct packet_fanout *f = po->fanout;
1141 
1142  spin_lock(&f->lock);
1143  f->arr[f->num_members] = sk;
1144  smp_wmb();
1145  f->num_members++;
1146  spin_unlock(&f->lock);
1147 }
1148 
1149 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1150 {
1151  struct packet_fanout *f = po->fanout;
1152  int i;
1153 
1154  spin_lock(&f->lock);
1155  for (i = 0; i < f->num_members; i++) {
1156  if (f->arr[i] == sk)
1157  break;
1158  }
1159  BUG_ON(i >= f->num_members);
1160  f->arr[i] = f->arr[f->num_members - 1];
1161  f->num_members--;
1162  spin_unlock(&f->lock);
1163 }
1164 
1165 static bool match_fanout_group(struct packet_type *ptype, struct sock * sk)
1166 {
1167  if (ptype->af_packet_priv == (void*)((struct packet_sock *)sk)->fanout)
1168  return true;
1169 
1170  return false;
1171 }
1172 
1173 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1174 {
1175  struct packet_sock *po = pkt_sk(sk);
1176  struct packet_fanout *f, *match;
1177  u8 type = type_flags & 0xff;
1178  u8 defrag = (type_flags & PACKET_FANOUT_FLAG_DEFRAG) ? 1 : 0;
1179  int err;
1180 
1181  switch (type) {
1182  case PACKET_FANOUT_HASH:
1183  case PACKET_FANOUT_LB:
1184  case PACKET_FANOUT_CPU:
1185  break;
1186  default:
1187  return -EINVAL;
1188  }
1189 
1190  if (!po->running)
1191  return -EINVAL;
1192 
1193  if (po->fanout)
1194  return -EALREADY;
1195 
1196  mutex_lock(&fanout_mutex);
1197  match = NULL;
1198  list_for_each_entry(f, &fanout_list, list) {
1199  if (f->id == id &&
1200  read_pnet(&f->net) == sock_net(sk)) {
1201  match = f;
1202  break;
1203  }
1204  }
1205  err = -EINVAL;
1206  if (match && match->defrag != defrag)
1207  goto out;
1208  if (!match) {
1209  err = -ENOMEM;
1210  match = kzalloc(sizeof(*match), GFP_KERNEL);
1211  if (!match)
1212  goto out;
1213  write_pnet(&match->net, sock_net(sk));
1214  match->id = id;
1215  match->type = type;
1216  match->defrag = defrag;
1217  atomic_set(&match->rr_cur, 0);
1218  INIT_LIST_HEAD(&match->list);
1219  spin_lock_init(&match->lock);
1220  atomic_set(&match->sk_ref, 0);
1221  match->prot_hook.type = po->prot_hook.type;
1222  match->prot_hook.dev = po->prot_hook.dev;
1223  match->prot_hook.func = packet_rcv_fanout;
1224  match->prot_hook.af_packet_priv = match;
1225  match->prot_hook.id_match = match_fanout_group;
1226  dev_add_pack(&match->prot_hook);
1227  list_add(&match->list, &fanout_list);
1228  }
1229  err = -EINVAL;
1230  if (match->type == type &&
1231  match->prot_hook.type == po->prot_hook.type &&
1232  match->prot_hook.dev == po->prot_hook.dev) {
1233  err = -ENOSPC;
1234  if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1235  __dev_remove_pack(&po->prot_hook);
1236  po->fanout = match;
1237  atomic_inc(&match->sk_ref);
1238  __fanout_link(sk, po);
1239  err = 0;
1240  }
1241  }
1242 out:
1243  mutex_unlock(&fanout_mutex);
1244  return err;
1245 }
1246 
1247 static void fanout_release(struct sock *sk)
1248 {
1249  struct packet_sock *po = pkt_sk(sk);
1250  struct packet_fanout *f;
1251 
1252  f = po->fanout;
1253  if (!f)
1254  return;
1255 
1256  mutex_lock(&fanout_mutex);
1257  po->fanout = NULL;
1258 
1259  if (atomic_dec_and_test(&f->sk_ref)) {
1260  list_del(&f->list);
1261  dev_remove_pack(&f->prot_hook);
1262  kfree(f);
1263  }
1264  mutex_unlock(&fanout_mutex);
1265 }
1266 
1267 static const struct proto_ops packet_ops;
1268 
1269 static const struct proto_ops packet_ops_spkt;
1270 
1271 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1272  struct packet_type *pt, struct net_device *orig_dev)
1273 {
1274  struct sock *sk;
1275  struct sockaddr_pkt *spkt;
1276 
1277  /*
1278  * When we registered the protocol we saved the socket in the data
1279  * field for just this event.
1280  */
1281 
1282  sk = pt->af_packet_priv;
1283 
1284  /*
1285  * Yank back the headers [hope the device set this
1286  * right or kerboom...]
1287  *
1288  * Incoming packets have ll header pulled,
1289  * push it back.
1290  *
1291  * For outgoing ones skb->data == skb_mac_header(skb)
1292  * so that this procedure is noop.
1293  */
1294 
1295  if (skb->pkt_type == PACKET_LOOPBACK)
1296  goto out;
1297 
1298  if (!net_eq(dev_net(dev), sock_net(sk)))
1299  goto out;
1300 
1301  skb = skb_share_check(skb, GFP_ATOMIC);
1302  if (skb == NULL)
1303  goto oom;
1304 
1305  /* drop any routing info */
1306  skb_dst_drop(skb);
1307 
1308  /* drop conntrack reference */
1309  nf_reset(skb);
1310 
1311  spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1312 
1313  skb_push(skb, skb->data - skb_mac_header(skb));
1314 
1315  /*
1316  * The SOCK_PACKET socket receives _all_ frames.
1317  */
1318 
1319  spkt->spkt_family = dev->type;
1320  strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1321  spkt->spkt_protocol = skb->protocol;
1322 
1323  /*
1324  * Charge the memory to the socket. This is done specifically
1325  * to prevent sockets using all the memory up.
1326  */
1327 
1328  if (sock_queue_rcv_skb(sk, skb) == 0)
1329  return 0;
1330 
1331 out:
1332  kfree_skb(skb);
1333 oom:
1334  return 0;
1335 }
1336 
1337 
1338 /*
1339  * Output a raw packet to a device layer. This bypasses all the other
1340  * protocol layers and you must therefore supply it with a complete frame
1341  */
1342 
1343 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock,
1344  struct msghdr *msg, size_t len)
1345 {
1346  struct sock *sk = sock->sk;
1347  struct sockaddr_pkt *saddr = (struct sockaddr_pkt *)msg->msg_name;
1348  struct sk_buff *skb = NULL;
1349  struct net_device *dev;
1350  __be16 proto = 0;
1351  int err;
1352  int extra_len = 0;
1353 
1354  /*
1355  * Get and verify the address.
1356  */
1357 
1358  if (saddr) {
1359  if (msg->msg_namelen < sizeof(struct sockaddr))
1360  return -EINVAL;
1361  if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1362  proto = saddr->spkt_protocol;
1363  } else
1364  return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1365 
1366  /*
1367  * Find the device first to size check it
1368  */
1369 
1370  saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1371 retry:
1372  rcu_read_lock();
1373  dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1374  err = -ENODEV;
1375  if (dev == NULL)
1376  goto out_unlock;
1377 
1378  err = -ENETDOWN;
1379  if (!(dev->flags & IFF_UP))
1380  goto out_unlock;
1381 
1382  /*
1383  * You may not queue a frame bigger than the mtu. This is the lowest level
1384  * raw protocol and you must do your own fragmentation at this level.
1385  */
1386 
1387  if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1388  if (!netif_supports_nofcs(dev)) {
1389  err = -EPROTONOSUPPORT;
1390  goto out_unlock;
1391  }
1392  extra_len = 4; /* We're doing our own CRC */
1393  }
1394 
1395  err = -EMSGSIZE;
1396  if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1397  goto out_unlock;
1398 
1399  if (!skb) {
1400  size_t reserved = LL_RESERVED_SPACE(dev);
1401  int tlen = dev->needed_tailroom;
1402  unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1403 
1404  rcu_read_unlock();
1405  skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1406  if (skb == NULL)
1407  return -ENOBUFS;
1408  /* FIXME: Save some space for broken drivers that write a hard
1409  * header at transmission time by themselves. PPP is the notable
1410  * one here. This should really be fixed at the driver level.
1411  */
1412  skb_reserve(skb, reserved);
1413  skb_reset_network_header(skb);
1414 
1415  /* Try to align data part correctly */
1416  if (hhlen) {
1417  skb->data -= hhlen;
1418  skb->tail -= hhlen;
1419  if (len < hhlen)
1420  skb_reset_network_header(skb);
1421  }
1422  err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
1423  if (err)
1424  goto out_free;
1425  goto retry;
1426  }
1427 
1428  if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1429  /* Earlier code assumed this would be a VLAN pkt,
1430  * double-check this now that we have the actual
1431  * packet in hand.
1432  */
1433  struct ethhdr *ehdr;
1434  skb_reset_mac_header(skb);
1435  ehdr = eth_hdr(skb);
1436  if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1437  err = -EMSGSIZE;
1438  goto out_unlock;
1439  }
1440  }
1441 
1442  skb->protocol = proto;
1443  skb->dev = dev;
1444  skb->priority = sk->sk_priority;
1445  skb->mark = sk->sk_mark;
1446  err = sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1447  if (err < 0)
1448  goto out_unlock;
1449 
1450  if (unlikely(extra_len == 4))
1451  skb->no_fcs = 1;
1452 
1453  dev_queue_xmit(skb);
1454  rcu_read_unlock();
1455  return len;
1456 
1457 out_unlock:
1458  rcu_read_unlock();
1459 out_free:
1460  kfree_skb(skb);
1461  return err;
1462 }
1463 
1464 static unsigned int run_filter(const struct sk_buff *skb,
1465  const struct sock *sk,
1466  unsigned int res)
1467 {
1468  struct sk_filter *filter;
1469 
1470  rcu_read_lock();
1471  filter = rcu_dereference(sk->sk_filter);
1472  if (filter != NULL)
1473  res = SK_RUN_FILTER(filter, skb);
1474  rcu_read_unlock();
1475 
1476  return res;
1477 }
1478 
1479 /*
1480  * This function makes lazy skb cloning in hope that most of packets
1481  * are discarded by BPF.
1482  *
1483  * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1484  * and skb->cb are mangled. It works because (and until) packets
1485  * falling here are owned by current CPU. Output packets are cloned
1486  * by dev_queue_xmit_nit(), input packets are processed by net_bh
1487  * sequencially, so that if we return skb to original state on exit,
1488  * we will not harm anyone.
1489  */
1490 
1491 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1492  struct packet_type *pt, struct net_device *orig_dev)
1493 {
1494  struct sock *sk;
1495  struct sockaddr_ll *sll;
1496  struct packet_sock *po;
1497  u8 *skb_head = skb->data;
1498  int skb_len = skb->len;
1499  unsigned int snaplen, res;
1500 
1501  if (skb->pkt_type == PACKET_LOOPBACK)
1502  goto drop;
1503 
1504  sk = pt->af_packet_priv;
1505  po = pkt_sk(sk);
1506 
1507  if (!net_eq(dev_net(dev), sock_net(sk)))
1508  goto drop;
1509 
1510  skb->dev = dev;
1511 
1512  if (dev->header_ops) {
1513  /* The device has an explicit notion of ll header,
1514  * exported to higher levels.
1515  *
1516  * Otherwise, the device hides details of its frame
1517  * structure, so that corresponding packet head is
1518  * never delivered to user.
1519  */
1520  if (sk->sk_type != SOCK_DGRAM)
1521  skb_push(skb, skb->data - skb_mac_header(skb));
1522  else if (skb->pkt_type == PACKET_OUTGOING) {
1523  /* Special case: outgoing packets have ll header at head */
1524  skb_pull(skb, skb_network_offset(skb));
1525  }
1526  }
1527 
1528  snaplen = skb->len;
1529 
1530  res = run_filter(skb, sk, snaplen);
1531  if (!res)
1532  goto drop_n_restore;
1533  if (snaplen > res)
1534  snaplen = res;
1535 
1536  if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
1537  goto drop_n_acct;
1538 
1539  if (skb_shared(skb)) {
1540  struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1541  if (nskb == NULL)
1542  goto drop_n_acct;
1543 
1544  if (skb_head != skb->data) {
1545  skb->data = skb_head;
1546  skb->len = skb_len;
1547  }
1548  consume_skb(skb);
1549  skb = nskb;
1550  }
1551 
1552  BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 >
1553  sizeof(skb->cb));
1554 
1555  sll = &PACKET_SKB_CB(skb)->sa.ll;
1556  sll->sll_family = AF_PACKET;
1557  sll->sll_hatype = dev->type;
1558  sll->sll_protocol = skb->protocol;
1559  sll->sll_pkttype = skb->pkt_type;
1560  if (unlikely(po->origdev))
1561  sll->sll_ifindex = orig_dev->ifindex;
1562  else
1563  sll->sll_ifindex = dev->ifindex;
1564 
1565  sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1566 
1567  PACKET_SKB_CB(skb)->origlen = skb->len;
1568 
1569  if (pskb_trim(skb, snaplen))
1570  goto drop_n_acct;
1571 
1572  skb_set_owner_r(skb, sk);
1573  skb->dev = NULL;
1574  skb_dst_drop(skb);
1575 
1576  /* drop conntrack reference */
1577  nf_reset(skb);
1578 
1579  spin_lock(&sk->sk_receive_queue.lock);
1580  po->stats.tp_packets++;
1581  skb->dropcount = atomic_read(&sk->sk_drops);
1582  __skb_queue_tail(&sk->sk_receive_queue, skb);
1583  spin_unlock(&sk->sk_receive_queue.lock);
1584  sk->sk_data_ready(sk, skb->len);
1585  return 0;
1586 
1587 drop_n_acct:
1588  spin_lock(&sk->sk_receive_queue.lock);
1589  po->stats.tp_drops++;
1590  atomic_inc(&sk->sk_drops);
1591  spin_unlock(&sk->sk_receive_queue.lock);
1592 
1593 drop_n_restore:
1594  if (skb_head != skb->data && skb_shared(skb)) {
1595  skb->data = skb_head;
1596  skb->len = skb_len;
1597  }
1598 drop:
1599  consume_skb(skb);
1600  return 0;
1601 }
1602 
1603 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
1604  struct packet_type *pt, struct net_device *orig_dev)
1605 {
1606  struct sock *sk;
1607  struct packet_sock *po;
1608  struct sockaddr_ll *sll;
1609  union {
1610  struct tpacket_hdr *h1;
1611  struct tpacket2_hdr *h2;
1612  struct tpacket3_hdr *h3;
1613  void *raw;
1614  } h;
1615  u8 *skb_head = skb->data;
1616  int skb_len = skb->len;
1617  unsigned int snaplen, res;
1618  unsigned long status = TP_STATUS_USER;
1619  unsigned short macoff, netoff, hdrlen;
1620  struct sk_buff *copy_skb = NULL;
1621  struct timeval tv;
1622  struct timespec ts;
1623  struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
1624 
1625  if (skb->pkt_type == PACKET_LOOPBACK)
1626  goto drop;
1627 
1628  sk = pt->af_packet_priv;
1629  po = pkt_sk(sk);
1630 
1631  if (!net_eq(dev_net(dev), sock_net(sk)))
1632  goto drop;
1633 
1634  if (dev->header_ops) {
1635  if (sk->sk_type != SOCK_DGRAM)
1636  skb_push(skb, skb->data - skb_mac_header(skb));
1637  else if (skb->pkt_type == PACKET_OUTGOING) {
1638  /* Special case: outgoing packets have ll header at head */
1639  skb_pull(skb, skb_network_offset(skb));
1640  }
1641  }
1642 
1643  if (skb->ip_summed == CHECKSUM_PARTIAL)
1644  status |= TP_STATUS_CSUMNOTREADY;
1645 
1646  snaplen = skb->len;
1647 
1648  res = run_filter(skb, sk, snaplen);
1649  if (!res)
1650  goto drop_n_restore;
1651  if (snaplen > res)
1652  snaplen = res;
1653 
1654  if (sk->sk_type == SOCK_DGRAM) {
1655  macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
1656  po->tp_reserve;
1657  } else {
1658  unsigned int maclen = skb_network_offset(skb);
1659  netoff = TPACKET_ALIGN(po->tp_hdrlen +
1660  (maclen < 16 ? 16 : maclen)) +
1661  po->tp_reserve;
1662  macoff = netoff - maclen;
1663  }
1664  if (po->tp_version <= TPACKET_V2) {
1665  if (macoff + snaplen > po->rx_ring.frame_size) {
1666  if (po->copy_thresh &&
1667  atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1668  if (skb_shared(skb)) {
1669  copy_skb = skb_clone(skb, GFP_ATOMIC);
1670  } else {
1671  copy_skb = skb_get(skb);
1672  skb_head = skb->data;
1673  }
1674  if (copy_skb)
1675  skb_set_owner_r(copy_skb, sk);
1676  }
1677  snaplen = po->rx_ring.frame_size - macoff;
1678  if ((int)snaplen < 0)
1679  snaplen = 0;
1680  }
1681  }
1682  spin_lock(&sk->sk_receive_queue.lock);
1683  h.raw = packet_current_rx_frame(po, skb,
1684  TP_STATUS_KERNEL, (macoff+snaplen));
1685  if (!h.raw)
1686  goto ring_is_full;
1687  if (po->tp_version <= TPACKET_V2) {
1688  packet_increment_rx_head(po, &po->rx_ring);
1689  /*
1690  * LOSING will be reported till you read the stats,
1691  * because it's COR - Clear On Read.
1692  * Anyways, moving it for V1/V2 only as V3 doesn't need this
1693  * at packet level.
1694  */
1695  if (po->stats.tp_drops)
1696  status |= TP_STATUS_LOSING;
1697  }
1698  po->stats.tp_packets++;
1699  if (copy_skb) {
1700  status |= TP_STATUS_COPY;
1701  __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
1702  }
1703  spin_unlock(&sk->sk_receive_queue.lock);
1704 
1705  skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
1706 
1707  switch (po->tp_version) {
1708  case TPACKET_V1:
1709  h.h1->tp_len = skb->len;
1710  h.h1->tp_snaplen = snaplen;
1711  h.h1->tp_mac = macoff;
1712  h.h1->tp_net = netoff;
1714  && shhwtstamps->syststamp.tv64)
1715  tv = ktime_to_timeval(shhwtstamps->syststamp);
1716  else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE)
1717  && shhwtstamps->hwtstamp.tv64)
1718  tv = ktime_to_timeval(shhwtstamps->hwtstamp);
1719  else if (skb->tstamp.tv64)
1720  tv = ktime_to_timeval(skb->tstamp);
1721  else
1722  do_gettimeofday(&tv);
1723  h.h1->tp_sec = tv.tv_sec;
1724  h.h1->tp_usec = tv.tv_usec;
1725  hdrlen = sizeof(*h.h1);
1726  break;
1727  case TPACKET_V2:
1728  h.h2->tp_len = skb->len;
1729  h.h2->tp_snaplen = snaplen;
1730  h.h2->tp_mac = macoff;
1731  h.h2->tp_net = netoff;
1733  && shhwtstamps->syststamp.tv64)
1734  ts = ktime_to_timespec(shhwtstamps->syststamp);
1735  else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE)
1736  && shhwtstamps->hwtstamp.tv64)
1737  ts = ktime_to_timespec(shhwtstamps->hwtstamp);
1738  else if (skb->tstamp.tv64)
1739  ts = ktime_to_timespec(skb->tstamp);
1740  else
1741  getnstimeofday(&ts);
1742  h.h2->tp_sec = ts.tv_sec;
1743  h.h2->tp_nsec = ts.tv_nsec;
1744  if (vlan_tx_tag_present(skb)) {
1745  h.h2->tp_vlan_tci = vlan_tx_tag_get(skb);
1746  status |= TP_STATUS_VLAN_VALID;
1747  } else {
1748  h.h2->tp_vlan_tci = 0;
1749  }
1750  h.h2->tp_padding = 0;
1751  hdrlen = sizeof(*h.h2);
1752  break;
1753  case TPACKET_V3:
1754  /* tp_nxt_offset,vlan are already populated above.
1755  * So DONT clear those fields here
1756  */
1757  h.h3->tp_status |= status;
1758  h.h3->tp_len = skb->len;
1759  h.h3->tp_snaplen = snaplen;
1760  h.h3->tp_mac = macoff;
1761  h.h3->tp_net = netoff;
1763  && shhwtstamps->syststamp.tv64)
1764  ts = ktime_to_timespec(shhwtstamps->syststamp);
1765  else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE)
1766  && shhwtstamps->hwtstamp.tv64)
1767  ts = ktime_to_timespec(shhwtstamps->hwtstamp);
1768  else if (skb->tstamp.tv64)
1769  ts = ktime_to_timespec(skb->tstamp);
1770  else
1771  getnstimeofday(&ts);
1772  h.h3->tp_sec = ts.tv_sec;
1773  h.h3->tp_nsec = ts.tv_nsec;
1774  hdrlen = sizeof(*h.h3);
1775  break;
1776  default:
1777  BUG();
1778  }
1779 
1780  sll = h.raw + TPACKET_ALIGN(hdrlen);
1781  sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
1782  sll->sll_family = AF_PACKET;
1783  sll->sll_hatype = dev->type;
1784  sll->sll_protocol = skb->protocol;
1785  sll->sll_pkttype = skb->pkt_type;
1786  if (unlikely(po->origdev))
1787  sll->sll_ifindex = orig_dev->ifindex;
1788  else
1789  sll->sll_ifindex = dev->ifindex;
1790 
1791  smp_mb();
1792 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
1793  {
1794  u8 *start, *end;
1795 
1796  if (po->tp_version <= TPACKET_V2) {
1797  end = (u8 *)PAGE_ALIGN((unsigned long)h.raw
1798  + macoff + snaplen);
1799  for (start = h.raw; start < end; start += PAGE_SIZE)
1800  flush_dcache_page(pgv_to_page(start));
1801  }
1802  smp_wmb();
1803  }
1804 #endif
1805  if (po->tp_version <= TPACKET_V2)
1806  __packet_set_status(po, h.raw, status);
1807  else
1808  prb_clear_blk_fill_status(&po->rx_ring);
1809 
1810  sk->sk_data_ready(sk, 0);
1811 
1812 drop_n_restore:
1813  if (skb_head != skb->data && skb_shared(skb)) {
1814  skb->data = skb_head;
1815  skb->len = skb_len;
1816  }
1817 drop:
1818  kfree_skb(skb);
1819  return 0;
1820 
1821 ring_is_full:
1822  po->stats.tp_drops++;
1823  spin_unlock(&sk->sk_receive_queue.lock);
1824 
1825  sk->sk_data_ready(sk, 0);
1826  kfree_skb(copy_skb);
1827  goto drop_n_restore;
1828 }
1829 
1830 static void tpacket_destruct_skb(struct sk_buff *skb)
1831 {
1832  struct packet_sock *po = pkt_sk(skb->sk);
1833  void *ph;
1834 
1835  if (likely(po->tx_ring.pg_vec)) {
1836  ph = skb_shinfo(skb)->destructor_arg;
1837  BUG_ON(atomic_read(&po->tx_ring.pending) == 0);
1838  atomic_dec(&po->tx_ring.pending);
1839  __packet_set_status(po, ph, TP_STATUS_AVAILABLE);
1840  }
1841 
1842  sock_wfree(skb);
1843 }
1844 
1845 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
1846  void *frame, struct net_device *dev, int size_max,
1847  __be16 proto, unsigned char *addr, int hlen)
1848 {
1849  union {
1850  struct tpacket_hdr *h1;
1851  struct tpacket2_hdr *h2;
1852  void *raw;
1853  } ph;
1854  int to_write, offset, len, tp_len, nr_frags, len_max;
1855  struct socket *sock = po->sk.sk_socket;
1856  struct page *page;
1857  void *data;
1858  int err;
1859 
1860  ph.raw = frame;
1861 
1862  skb->protocol = proto;
1863  skb->dev = dev;
1864  skb->priority = po->sk.sk_priority;
1865  skb->mark = po->sk.sk_mark;
1866  skb_shinfo(skb)->destructor_arg = ph.raw;
1867 
1868  switch (po->tp_version) {
1869  case TPACKET_V2:
1870  tp_len = ph.h2->tp_len;
1871  break;
1872  default:
1873  tp_len = ph.h1->tp_len;
1874  break;
1875  }
1876  if (unlikely(tp_len > size_max)) {
1877  pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
1878  return -EMSGSIZE;
1879  }
1880 
1881  skb_reserve(skb, hlen);
1882  skb_reset_network_header(skb);
1883 
1884  data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
1885  to_write = tp_len;
1886 
1887  if (sock->type == SOCK_DGRAM) {
1888  err = dev_hard_header(skb, dev, ntohs(proto), addr,
1889  NULL, tp_len);
1890  if (unlikely(err < 0))
1891  return -EINVAL;
1892  } else if (dev->hard_header_len) {
1893  /* net device doesn't like empty head */
1894  if (unlikely(tp_len <= dev->hard_header_len)) {
1895  pr_err("packet size is too short (%d < %d)\n",
1896  tp_len, dev->hard_header_len);
1897  return -EINVAL;
1898  }
1899 
1900  skb_push(skb, dev->hard_header_len);
1901  err = skb_store_bits(skb, 0, data,
1902  dev->hard_header_len);
1903  if (unlikely(err))
1904  return err;
1905 
1906  data += dev->hard_header_len;
1907  to_write -= dev->hard_header_len;
1908  }
1909 
1910  err = -EFAULT;
1911  offset = offset_in_page(data);
1912  len_max = PAGE_SIZE - offset;
1913  len = ((to_write > len_max) ? len_max : to_write);
1914 
1915  skb->data_len = to_write;
1916  skb->len += to_write;
1917  skb->truesize += to_write;
1918  atomic_add(to_write, &po->sk.sk_wmem_alloc);
1919 
1920  while (likely(to_write)) {
1921  nr_frags = skb_shinfo(skb)->nr_frags;
1922 
1923  if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
1924  pr_err("Packet exceed the number of skb frags(%lu)\n",
1925  MAX_SKB_FRAGS);
1926  return -EFAULT;
1927  }
1928 
1929  page = pgv_to_page(data);
1930  data += len;
1931  flush_dcache_page(page);
1932  get_page(page);
1933  skb_fill_page_desc(skb, nr_frags, page, offset, len);
1934  to_write -= len;
1935  offset = 0;
1936  len_max = PAGE_SIZE;
1937  len = ((to_write > len_max) ? len_max : to_write);
1938  }
1939 
1940  return tp_len;
1941 }
1942 
1943 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
1944 {
1945  struct sk_buff *skb;
1946  struct net_device *dev;
1947  __be16 proto;
1948  bool need_rls_dev = false;
1949  int err, reserve = 0;
1950  void *ph;
1951  struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
1952  int tp_len, size_max;
1953  unsigned char *addr;
1954  int len_sum = 0;
1955  int status = TP_STATUS_AVAILABLE;
1956  int hlen, tlen;
1957 
1958  mutex_lock(&po->pg_vec_lock);
1959 
1960  err = -EBUSY;
1961  if (saddr == NULL) {
1962  dev = po->prot_hook.dev;
1963  proto = po->num;
1964  addr = NULL;
1965  } else {
1966  err = -EINVAL;
1967  if (msg->msg_namelen < sizeof(struct sockaddr_ll))
1968  goto out;
1969  if (msg->msg_namelen < (saddr->sll_halen
1970  + offsetof(struct sockaddr_ll,
1971  sll_addr)))
1972  goto out;
1973  proto = saddr->sll_protocol;
1974  addr = saddr->sll_addr;
1975  dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
1976  need_rls_dev = true;
1977  }
1978 
1979  err = -ENXIO;
1980  if (unlikely(dev == NULL))
1981  goto out;
1982 
1983  reserve = dev->hard_header_len;
1984 
1985  err = -ENETDOWN;
1986  if (unlikely(!(dev->flags & IFF_UP)))
1987  goto out_put;
1988 
1989  size_max = po->tx_ring.frame_size
1990  - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
1991 
1992  if (size_max > dev->mtu + reserve)
1993  size_max = dev->mtu + reserve;
1994 
1995  do {
1996  ph = packet_current_frame(po, &po->tx_ring,
1998 
1999  if (unlikely(ph == NULL)) {
2000  schedule();
2001  continue;
2002  }
2003 
2004  status = TP_STATUS_SEND_REQUEST;
2005  hlen = LL_RESERVED_SPACE(dev);
2006  tlen = dev->needed_tailroom;
2007  skb = sock_alloc_send_skb(&po->sk,
2008  hlen + tlen + sizeof(struct sockaddr_ll),
2009  0, &err);
2010 
2011  if (unlikely(skb == NULL))
2012  goto out_status;
2013 
2014  tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2015  addr, hlen);
2016 
2017  if (unlikely(tp_len < 0)) {
2018  if (po->tp_loss) {
2019  __packet_set_status(po, ph,
2021  packet_increment_head(&po->tx_ring);
2022  kfree_skb(skb);
2023  continue;
2024  } else {
2025  status = TP_STATUS_WRONG_FORMAT;
2026  err = tp_len;
2027  goto out_status;
2028  }
2029  }
2030 
2031  skb->destructor = tpacket_destruct_skb;
2032  __packet_set_status(po, ph, TP_STATUS_SENDING);
2033  atomic_inc(&po->tx_ring.pending);
2034 
2035  status = TP_STATUS_SEND_REQUEST;
2036  err = dev_queue_xmit(skb);
2037  if (unlikely(err > 0)) {
2038  err = net_xmit_errno(err);
2039  if (err && __packet_get_status(po, ph) ==
2041  /* skb was destructed already */
2042  skb = NULL;
2043  goto out_status;
2044  }
2045  /*
2046  * skb was dropped but not destructed yet;
2047  * let's treat it like congestion or err < 0
2048  */
2049  err = 0;
2050  }
2051  packet_increment_head(&po->tx_ring);
2052  len_sum += tp_len;
2053  } while (likely((ph != NULL) ||
2054  ((!(msg->msg_flags & MSG_DONTWAIT)) &&
2055  (atomic_read(&po->tx_ring.pending))))
2056  );
2057 
2058  err = len_sum;
2059  goto out_put;
2060 
2061 out_status:
2062  __packet_set_status(po, ph, status);
2063  kfree_skb(skb);
2064 out_put:
2065  if (need_rls_dev)
2066  dev_put(dev);
2067 out:
2068  mutex_unlock(&po->pg_vec_lock);
2069  return err;
2070 }
2071 
2072 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2073  size_t reserve, size_t len,
2074  size_t linear, int noblock,
2075  int *err)
2076 {
2077  struct sk_buff *skb;
2078 
2079  /* Under a page? Don't bother with paged skb. */
2080  if (prepad + len < PAGE_SIZE || !linear)
2081  linear = len;
2082 
2083  skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2084  err);
2085  if (!skb)
2086  return NULL;
2087 
2088  skb_reserve(skb, reserve);
2089  skb_put(skb, linear);
2090  skb->data_len = len - linear;
2091  skb->len += len - linear;
2092 
2093  return skb;
2094 }
2095 
2096 static int packet_snd(struct socket *sock,
2097  struct msghdr *msg, size_t len)
2098 {
2099  struct sock *sk = sock->sk;
2100  struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name;
2101  struct sk_buff *skb;
2102  struct net_device *dev;
2103  __be16 proto;
2104  bool need_rls_dev = false;
2105  unsigned char *addr;
2106  int err, reserve = 0;
2107  struct virtio_net_hdr vnet_hdr = { 0 };
2108  int offset = 0;
2109  int vnet_hdr_len;
2110  struct packet_sock *po = pkt_sk(sk);
2111  unsigned short gso_type = 0;
2112  int hlen, tlen;
2113  int extra_len = 0;
2114 
2115  /*
2116  * Get and verify the address.
2117  */
2118 
2119  if (saddr == NULL) {
2120  dev = po->prot_hook.dev;
2121  proto = po->num;
2122  addr = NULL;
2123  } else {
2124  err = -EINVAL;
2125  if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2126  goto out;
2127  if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2128  goto out;
2129  proto = saddr->sll_protocol;
2130  addr = saddr->sll_addr;
2131  dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2132  need_rls_dev = true;
2133  }
2134 
2135  err = -ENXIO;
2136  if (dev == NULL)
2137  goto out_unlock;
2138  if (sock->type == SOCK_RAW)
2139  reserve = dev->hard_header_len;
2140 
2141  err = -ENETDOWN;
2142  if (!(dev->flags & IFF_UP))
2143  goto out_unlock;
2144 
2145  if (po->has_vnet_hdr) {
2146  vnet_hdr_len = sizeof(vnet_hdr);
2147 
2148  err = -EINVAL;
2149  if (len < vnet_hdr_len)
2150  goto out_unlock;
2151 
2152  len -= vnet_hdr_len;
2153 
2154  err = memcpy_fromiovec((void *)&vnet_hdr, msg->msg_iov,
2155  vnet_hdr_len);
2156  if (err < 0)
2157  goto out_unlock;
2158 
2159  if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2160  (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 >
2161  vnet_hdr.hdr_len))
2162  vnet_hdr.hdr_len = vnet_hdr.csum_start +
2163  vnet_hdr.csum_offset + 2;
2164 
2165  err = -EINVAL;
2166  if (vnet_hdr.hdr_len > len)
2167  goto out_unlock;
2168 
2169  if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2170  switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2172  gso_type = SKB_GSO_TCPV4;
2173  break;
2175  gso_type = SKB_GSO_TCPV6;
2176  break;
2178  gso_type = SKB_GSO_UDP;
2179  break;
2180  default:
2181  goto out_unlock;
2182  }
2183 
2184  if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2185  gso_type |= SKB_GSO_TCP_ECN;
2186 
2187  if (vnet_hdr.gso_size == 0)
2188  goto out_unlock;
2189 
2190  }
2191  }
2192 
2193  if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2194  if (!netif_supports_nofcs(dev)) {
2195  err = -EPROTONOSUPPORT;
2196  goto out_unlock;
2197  }
2198  extra_len = 4; /* We're doing our own CRC */
2199  }
2200 
2201  err = -EMSGSIZE;
2202  if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2203  goto out_unlock;
2204 
2205  err = -ENOBUFS;
2206  hlen = LL_RESERVED_SPACE(dev);
2207  tlen = dev->needed_tailroom;
2208  skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, vnet_hdr.hdr_len,
2209  msg->msg_flags & MSG_DONTWAIT, &err);
2210  if (skb == NULL)
2211  goto out_unlock;
2212 
2213  skb_set_network_header(skb, reserve);
2214 
2215  err = -EINVAL;
2216  if (sock->type == SOCK_DGRAM &&
2217  (offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len)) < 0)
2218  goto out_free;
2219 
2220  /* Returns -EFAULT on error */
2221  err = skb_copy_datagram_from_iovec(skb, offset, msg->msg_iov, 0, len);
2222  if (err)
2223  goto out_free;
2224  err = sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2225  if (err < 0)
2226  goto out_free;
2227 
2228  if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2229  /* Earlier code assumed this would be a VLAN pkt,
2230  * double-check this now that we have the actual
2231  * packet in hand.
2232  */
2233  struct ethhdr *ehdr;
2234  skb_reset_mac_header(skb);
2235  ehdr = eth_hdr(skb);
2236  if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2237  err = -EMSGSIZE;
2238  goto out_free;
2239  }
2240  }
2241 
2242  skb->protocol = proto;
2243  skb->dev = dev;
2244  skb->priority = sk->sk_priority;
2245  skb->mark = sk->sk_mark;
2246 
2247  if (po->has_vnet_hdr) {
2248  if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2249  if (!skb_partial_csum_set(skb, vnet_hdr.csum_start,
2250  vnet_hdr.csum_offset)) {
2251  err = -EINVAL;
2252  goto out_free;
2253  }
2254  }
2255 
2256  skb_shinfo(skb)->gso_size = vnet_hdr.gso_size;
2257  skb_shinfo(skb)->gso_type = gso_type;
2258 
2259  /* Header must be checked, and gso_segs computed. */
2260  skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2261  skb_shinfo(skb)->gso_segs = 0;
2262 
2263  len += vnet_hdr_len;
2264  }
2265 
2266  if (unlikely(extra_len == 4))
2267  skb->no_fcs = 1;
2268 
2269  /*
2270  * Now send it
2271  */
2272 
2273  err = dev_queue_xmit(skb);
2274  if (err > 0 && (err = net_xmit_errno(err)) != 0)
2275  goto out_unlock;
2276 
2277  if (need_rls_dev)
2278  dev_put(dev);
2279 
2280  return len;
2281 
2282 out_free:
2283  kfree_skb(skb);
2284 out_unlock:
2285  if (dev && need_rls_dev)
2286  dev_put(dev);
2287 out:
2288  return err;
2289 }
2290 
2291 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock,
2292  struct msghdr *msg, size_t len)
2293 {
2294  struct sock *sk = sock->sk;
2295  struct packet_sock *po = pkt_sk(sk);
2296  if (po->tx_ring.pg_vec)
2297  return tpacket_snd(po, msg);
2298  else
2299  return packet_snd(sock, msg, len);
2300 }
2301 
2302 /*
2303  * Close a PACKET socket. This is fairly simple. We immediately go
2304  * to 'closed' state and remove our protocol entry in the device list.
2305  */
2306 
2307 static int packet_release(struct socket *sock)
2308 {
2309  struct sock *sk = sock->sk;
2310  struct packet_sock *po;
2311  struct net *net;
2312  union tpacket_req_u req_u;
2313 
2314  if (!sk)
2315  return 0;
2316 
2317  net = sock_net(sk);
2318  po = pkt_sk(sk);
2319 
2320  mutex_lock(&net->packet.sklist_lock);
2322  mutex_unlock(&net->packet.sklist_lock);
2323 
2324  preempt_disable();
2325  sock_prot_inuse_add(net, sk->sk_prot, -1);
2326  preempt_enable();
2327 
2328  spin_lock(&po->bind_lock);
2329  unregister_prot_hook(sk, false);
2330  if (po->prot_hook.dev) {
2331  dev_put(po->prot_hook.dev);
2332  po->prot_hook.dev = NULL;
2333  }
2334  spin_unlock(&po->bind_lock);
2335 
2336  packet_flush_mclist(sk);
2337 
2338  memset(&req_u, 0, sizeof(req_u));
2339 
2340  if (po->rx_ring.pg_vec)
2341  packet_set_ring(sk, &req_u, 1, 0);
2342 
2343  if (po->tx_ring.pg_vec)
2344  packet_set_ring(sk, &req_u, 1, 1);
2345 
2346  fanout_release(sk);
2347 
2348  synchronize_net();
2349  /*
2350  * Now the socket is dead. No more input will appear.
2351  */
2352  sock_orphan(sk);
2353  sock->sk = NULL;
2354 
2355  /* Purge queues */
2356 
2359 
2360  sock_put(sk);
2361  return 0;
2362 }
2363 
2364 /*
2365  * Attach a packet hook.
2366  */
2367 
2368 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 protocol)
2369 {
2370  struct packet_sock *po = pkt_sk(sk);
2371 
2372  if (po->fanout) {
2373  if (dev)
2374  dev_put(dev);
2375 
2376  return -EINVAL;
2377  }
2378 
2379  lock_sock(sk);
2380 
2381  spin_lock(&po->bind_lock);
2382  unregister_prot_hook(sk, true);
2383  po->num = protocol;
2384  po->prot_hook.type = protocol;
2385  if (po->prot_hook.dev)
2386  dev_put(po->prot_hook.dev);
2387  po->prot_hook.dev = dev;
2388 
2389  po->ifindex = dev ? dev->ifindex : 0;
2390 
2391  if (protocol == 0)
2392  goto out_unlock;
2393 
2394  if (!dev || (dev->flags & IFF_UP)) {
2395  register_prot_hook(sk);
2396  } else {
2397  sk->sk_err = ENETDOWN;
2398  if (!sock_flag(sk, SOCK_DEAD))
2399  sk->sk_error_report(sk);
2400  }
2401 
2402 out_unlock:
2403  spin_unlock(&po->bind_lock);
2404  release_sock(sk);
2405  return 0;
2406 }
2407 
2408 /*
2409  * Bind a packet socket to a device
2410  */
2411 
2412 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2413  int addr_len)
2414 {
2415  struct sock *sk = sock->sk;
2416  char name[15];
2417  struct net_device *dev;
2418  int err = -ENODEV;
2419 
2420  /*
2421  * Check legality
2422  */
2423 
2424  if (addr_len != sizeof(struct sockaddr))
2425  return -EINVAL;
2426  strlcpy(name, uaddr->sa_data, sizeof(name));
2427 
2428  dev = dev_get_by_name(sock_net(sk), name);
2429  if (dev)
2430  err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2431  return err;
2432 }
2433 
2434 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2435 {
2436  struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2437  struct sock *sk = sock->sk;
2438  struct net_device *dev = NULL;
2439  int err;
2440 
2441 
2442  /*
2443  * Check legality
2444  */
2445 
2446  if (addr_len < sizeof(struct sockaddr_ll))
2447  return -EINVAL;
2448  if (sll->sll_family != AF_PACKET)
2449  return -EINVAL;
2450 
2451  if (sll->sll_ifindex) {
2452  err = -ENODEV;
2453  dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
2454  if (dev == NULL)
2455  goto out;
2456  }
2457  err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
2458 
2459 out:
2460  return err;
2461 }
2462 
2463 static struct proto packet_proto = {
2464  .name = "PACKET",
2465  .owner = THIS_MODULE,
2466  .obj_size = sizeof(struct packet_sock),
2467 };
2468 
2469 /*
2470  * Create a packet of type SOCK_PACKET.
2471  */
2472 
2473 static int packet_create(struct net *net, struct socket *sock, int protocol,
2474  int kern)
2475 {
2476  struct sock *sk;
2477  struct packet_sock *po;
2478  __be16 proto = (__force __be16)protocol; /* weird, but documented */
2479  int err;
2480 
2481  if (!capable(CAP_NET_RAW))
2482  return -EPERM;
2483  if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
2484  sock->type != SOCK_PACKET)
2485  return -ESOCKTNOSUPPORT;
2486 
2487  sock->state = SS_UNCONNECTED;
2488 
2489  err = -ENOBUFS;
2490  sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto);
2491  if (sk == NULL)
2492  goto out;
2493 
2494  sock->ops = &packet_ops;
2495  if (sock->type == SOCK_PACKET)
2496  sock->ops = &packet_ops_spkt;
2497 
2498  sock_init_data(sock, sk);
2499 
2500  po = pkt_sk(sk);
2501  sk->sk_family = PF_PACKET;
2502  po->num = proto;
2503 
2504  sk->sk_destruct = packet_sock_destruct;
2505  sk_refcnt_debug_inc(sk);
2506 
2507  /*
2508  * Attach a protocol block
2509  */
2510 
2511  spin_lock_init(&po->bind_lock);
2512  mutex_init(&po->pg_vec_lock);
2513  po->prot_hook.func = packet_rcv;
2514 
2515  if (sock->type == SOCK_PACKET)
2516  po->prot_hook.func = packet_rcv_spkt;
2517 
2518  po->prot_hook.af_packet_priv = sk;
2519 
2520  if (proto) {
2521  po->prot_hook.type = proto;
2522  register_prot_hook(sk);
2523  }
2524 
2525  mutex_lock(&net->packet.sklist_lock);
2526  sk_add_node_rcu(sk, &net->packet.sklist);
2527  mutex_unlock(&net->packet.sklist_lock);
2528 
2529  preempt_disable();
2530  sock_prot_inuse_add(net, &packet_proto, 1);
2531  preempt_enable();
2532 
2533  return 0;
2534 out:
2535  return err;
2536 }
2537 
2538 static int packet_recv_error(struct sock *sk, struct msghdr *msg, int len)
2539 {
2540  struct sock_exterr_skb *serr;
2541  struct sk_buff *skb, *skb2;
2542  int copied, err;
2543 
2544  err = -EAGAIN;
2545  skb = skb_dequeue(&sk->sk_error_queue);
2546  if (skb == NULL)
2547  goto out;
2548 
2549  copied = skb->len;
2550  if (copied > len) {
2551  msg->msg_flags |= MSG_TRUNC;
2552  copied = len;
2553  }
2554  err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2555  if (err)
2556  goto out_free_skb;
2557 
2558  sock_recv_timestamp(msg, sk, skb);
2559 
2560  serr = SKB_EXT_ERR(skb);
2562  sizeof(serr->ee), &serr->ee);
2563 
2564  msg->msg_flags |= MSG_ERRQUEUE;
2565  err = copied;
2566 
2567  /* Reset and regenerate socket error */
2568  spin_lock_bh(&sk->sk_error_queue.lock);
2569  sk->sk_err = 0;
2570  if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2571  sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2572  spin_unlock_bh(&sk->sk_error_queue.lock);
2573  sk->sk_error_report(sk);
2574  } else
2575  spin_unlock_bh(&sk->sk_error_queue.lock);
2576 
2577 out_free_skb:
2578  kfree_skb(skb);
2579 out:
2580  return err;
2581 }
2582 
2583 /*
2584  * Pull a packet from our receive queue and hand it to the user.
2585  * If necessary we block.
2586  */
2587 
2588 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock,
2589  struct msghdr *msg, size_t len, int flags)
2590 {
2591  struct sock *sk = sock->sk;
2592  struct sk_buff *skb;
2593  int copied, err;
2594  struct sockaddr_ll *sll;
2595  int vnet_hdr_len = 0;
2596 
2597  err = -EINVAL;
2599  goto out;
2600 
2601 #if 0
2602  /* What error should we return now? EUNATTACH? */
2603  if (pkt_sk(sk)->ifindex < 0)
2604  return -ENODEV;
2605 #endif
2606 
2607  if (flags & MSG_ERRQUEUE) {
2608  err = packet_recv_error(sk, msg, len);
2609  goto out;
2610  }
2611 
2612  /*
2613  * Call the generic datagram receiver. This handles all sorts
2614  * of horrible races and re-entrancy so we can forget about it
2615  * in the protocol layers.
2616  *
2617  * Now it will return ENETDOWN, if device have just gone down,
2618  * but then it will block.
2619  */
2620 
2621  skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
2622 
2623  /*
2624  * An error occurred so return it. Because skb_recv_datagram()
2625  * handles the blocking we don't see and worry about blocking
2626  * retries.
2627  */
2628 
2629  if (skb == NULL)
2630  goto out;
2631 
2632  if (pkt_sk(sk)->has_vnet_hdr) {
2633  struct virtio_net_hdr vnet_hdr = { 0 };
2634 
2635  err = -EINVAL;
2636  vnet_hdr_len = sizeof(vnet_hdr);
2637  if (len < vnet_hdr_len)
2638  goto out_free;
2639 
2640  len -= vnet_hdr_len;
2641 
2642  if (skb_is_gso(skb)) {
2643  struct skb_shared_info *sinfo = skb_shinfo(skb);
2644 
2645  /* This is a hint as to how much should be linear. */
2646  vnet_hdr.hdr_len = skb_headlen(skb);
2647  vnet_hdr.gso_size = sinfo->gso_size;
2648  if (sinfo->gso_type & SKB_GSO_TCPV4)
2650  else if (sinfo->gso_type & SKB_GSO_TCPV6)
2652  else if (sinfo->gso_type & SKB_GSO_UDP)
2653  vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
2654  else if (sinfo->gso_type & SKB_GSO_FCOE)
2655  goto out_free;
2656  else
2657  BUG();
2658  if (sinfo->gso_type & SKB_GSO_TCP_ECN)
2659  vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
2660  } else
2661  vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
2662 
2663  if (skb->ip_summed == CHECKSUM_PARTIAL) {
2665  vnet_hdr.csum_start = skb_checksum_start_offset(skb);
2666  vnet_hdr.csum_offset = skb->csum_offset;
2667  } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2669  } /* else everything is zero */
2670 
2671  err = memcpy_toiovec(msg->msg_iov, (void *)&vnet_hdr,
2672  vnet_hdr_len);
2673  if (err < 0)
2674  goto out_free;
2675  }
2676 
2677  /*
2678  * If the address length field is there to be filled in, we fill
2679  * it in now.
2680  */
2681 
2682  sll = &PACKET_SKB_CB(skb)->sa.ll;
2683  if (sock->type == SOCK_PACKET)
2684  msg->msg_namelen = sizeof(struct sockaddr_pkt);
2685  else
2686  msg->msg_namelen = sll->sll_halen + offsetof(struct sockaddr_ll, sll_addr);
2687 
2688  /*
2689  * You lose any data beyond the buffer you gave. If it worries a
2690  * user program they can ask the device for its MTU anyway.
2691  */
2692 
2693  copied = skb->len;
2694  if (copied > len) {
2695  copied = len;
2696  msg->msg_flags |= MSG_TRUNC;
2697  }
2698 
2699  err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2700  if (err)
2701  goto out_free;
2702 
2703  sock_recv_ts_and_drops(msg, sk, skb);
2704 
2705  if (msg->msg_name)
2706  memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
2707  msg->msg_namelen);
2708 
2709  if (pkt_sk(sk)->auxdata) {
2710  struct tpacket_auxdata aux;
2711 
2712  aux.tp_status = TP_STATUS_USER;
2713  if (skb->ip_summed == CHECKSUM_PARTIAL)
2714  aux.tp_status |= TP_STATUS_CSUMNOTREADY;
2715  aux.tp_len = PACKET_SKB_CB(skb)->origlen;
2716  aux.tp_snaplen = skb->len;
2717  aux.tp_mac = 0;
2718  aux.tp_net = skb_network_offset(skb);
2719  if (vlan_tx_tag_present(skb)) {
2720  aux.tp_vlan_tci = vlan_tx_tag_get(skb);
2721  aux.tp_status |= TP_STATUS_VLAN_VALID;
2722  } else {
2723  aux.tp_vlan_tci = 0;
2724  }
2725  aux.tp_padding = 0;
2726  put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
2727  }
2728 
2729  /*
2730  * Free or return the buffer as appropriate. Again this
2731  * hides all the races and re-entrancy issues from us.
2732  */
2733  err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
2734 
2735 out_free:
2736  skb_free_datagram(sk, skb);
2737 out:
2738  return err;
2739 }
2740 
2741 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
2742  int *uaddr_len, int peer)
2743 {
2744  struct net_device *dev;
2745  struct sock *sk = sock->sk;
2746 
2747  if (peer)
2748  return -EOPNOTSUPP;
2749 
2750  uaddr->sa_family = AF_PACKET;
2751  rcu_read_lock();
2752  dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
2753  if (dev)
2754  strncpy(uaddr->sa_data, dev->name, 14);
2755  else
2756  memset(uaddr->sa_data, 0, 14);
2757  rcu_read_unlock();
2758  *uaddr_len = sizeof(*uaddr);
2759 
2760  return 0;
2761 }
2762 
2763 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
2764  int *uaddr_len, int peer)
2765 {
2766  struct net_device *dev;
2767  struct sock *sk = sock->sk;
2768  struct packet_sock *po = pkt_sk(sk);
2769  DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
2770 
2771  if (peer)
2772  return -EOPNOTSUPP;
2773 
2774  sll->sll_family = AF_PACKET;
2775  sll->sll_ifindex = po->ifindex;
2776  sll->sll_protocol = po->num;
2777  sll->sll_pkttype = 0;
2778  rcu_read_lock();
2779  dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
2780  if (dev) {
2781  sll->sll_hatype = dev->type;
2782  sll->sll_halen = dev->addr_len;
2783  memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
2784  } else {
2785  sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
2786  sll->sll_halen = 0;
2787  }
2788  rcu_read_unlock();
2789  *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
2790 
2791  return 0;
2792 }
2793 
2794 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
2795  int what)
2796 {
2797  switch (i->type) {
2798  case PACKET_MR_MULTICAST:
2799  if (i->alen != dev->addr_len)
2800  return -EINVAL;
2801  if (what > 0)
2802  return dev_mc_add(dev, i->addr);
2803  else
2804  return dev_mc_del(dev, i->addr);
2805  break;
2806  case PACKET_MR_PROMISC:
2807  return dev_set_promiscuity(dev, what);
2808  break;
2809  case PACKET_MR_ALLMULTI:
2810  return dev_set_allmulti(dev, what);
2811  break;
2812  case PACKET_MR_UNICAST:
2813  if (i->alen != dev->addr_len)
2814  return -EINVAL;
2815  if (what > 0)
2816  return dev_uc_add(dev, i->addr);
2817  else
2818  return dev_uc_del(dev, i->addr);
2819  break;
2820  default:
2821  break;
2822  }
2823  return 0;
2824 }
2825 
2826 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what)
2827 {
2828  for ( ; i; i = i->next) {
2829  if (i->ifindex == dev->ifindex)
2830  packet_dev_mc(dev, i, what);
2831  }
2832 }
2833 
2834 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
2835 {
2836  struct packet_sock *po = pkt_sk(sk);
2837  struct packet_mclist *ml, *i;
2838  struct net_device *dev;
2839  int err;
2840 
2841  rtnl_lock();
2842 
2843  err = -ENODEV;
2844  dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
2845  if (!dev)
2846  goto done;
2847 
2848  err = -EINVAL;
2849  if (mreq->mr_alen > dev->addr_len)
2850  goto done;
2851 
2852  err = -ENOBUFS;
2853  i = kmalloc(sizeof(*i), GFP_KERNEL);
2854  if (i == NULL)
2855  goto done;
2856 
2857  err = 0;
2858  for (ml = po->mclist; ml; ml = ml->next) {
2859  if (ml->ifindex == mreq->mr_ifindex &&
2860  ml->type == mreq->mr_type &&
2861  ml->alen == mreq->mr_alen &&
2862  memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
2863  ml->count++;
2864  /* Free the new element ... */
2865  kfree(i);
2866  goto done;
2867  }
2868  }
2869 
2870  i->type = mreq->mr_type;
2871  i->ifindex = mreq->mr_ifindex;
2872  i->alen = mreq->mr_alen;
2873  memcpy(i->addr, mreq->mr_address, i->alen);
2874  i->count = 1;
2875  i->next = po->mclist;
2876  po->mclist = i;
2877  err = packet_dev_mc(dev, i, 1);
2878  if (err) {
2879  po->mclist = i->next;
2880  kfree(i);
2881  }
2882 
2883 done:
2884  rtnl_unlock();
2885  return err;
2886 }
2887 
2888 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
2889 {
2890  struct packet_mclist *ml, **mlp;
2891 
2892  rtnl_lock();
2893 
2894  for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
2895  if (ml->ifindex == mreq->mr_ifindex &&
2896  ml->type == mreq->mr_type &&
2897  ml->alen == mreq->mr_alen &&
2898  memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
2899  if (--ml->count == 0) {
2900  struct net_device *dev;
2901  *mlp = ml->next;
2902  dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
2903  if (dev)
2904  packet_dev_mc(dev, ml, -1);
2905  kfree(ml);
2906  }
2907  rtnl_unlock();
2908  return 0;
2909  }
2910  }
2911  rtnl_unlock();
2912  return -EADDRNOTAVAIL;
2913 }
2914 
2915 static void packet_flush_mclist(struct sock *sk)
2916 {
2917  struct packet_sock *po = pkt_sk(sk);
2918  struct packet_mclist *ml;
2919 
2920  if (!po->mclist)
2921  return;
2922 
2923  rtnl_lock();
2924  while ((ml = po->mclist) != NULL) {
2925  struct net_device *dev;
2926 
2927  po->mclist = ml->next;
2928  dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
2929  if (dev != NULL)
2930  packet_dev_mc(dev, ml, -1);
2931  kfree(ml);
2932  }
2933  rtnl_unlock();
2934 }
2935 
2936 static int
2937 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
2938 {
2939  struct sock *sk = sock->sk;
2940  struct packet_sock *po = pkt_sk(sk);
2941  int ret;
2942 
2943  if (level != SOL_PACKET)
2944  return -ENOPROTOOPT;
2945 
2946  switch (optname) {
2947  case PACKET_ADD_MEMBERSHIP:
2949  {
2950  struct packet_mreq_max mreq;
2951  int len = optlen;
2952  memset(&mreq, 0, sizeof(mreq));
2953  if (len < sizeof(struct packet_mreq))
2954  return -EINVAL;
2955  if (len > sizeof(mreq))
2956  len = sizeof(mreq);
2957  if (copy_from_user(&mreq, optval, len))
2958  return -EFAULT;
2959  if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
2960  return -EINVAL;
2961  if (optname == PACKET_ADD_MEMBERSHIP)
2962  ret = packet_mc_add(sk, &mreq);
2963  else
2964  ret = packet_mc_drop(sk, &mreq);
2965  return ret;
2966  }
2967 
2968  case PACKET_RX_RING:
2969  case PACKET_TX_RING:
2970  {
2971  union tpacket_req_u req_u;
2972  int len;
2973 
2974  switch (po->tp_version) {
2975  case TPACKET_V1:
2976  case TPACKET_V2:
2977  len = sizeof(req_u.req);
2978  break;
2979  case TPACKET_V3:
2980  default:
2981  len = sizeof(req_u.req3);
2982  break;
2983  }
2984  if (optlen < len)
2985  return -EINVAL;
2986  if (pkt_sk(sk)->has_vnet_hdr)
2987  return -EINVAL;
2988  if (copy_from_user(&req_u.req, optval, len))
2989  return -EFAULT;
2990  return packet_set_ring(sk, &req_u, 0,
2991  optname == PACKET_TX_RING);
2992  }
2993  case PACKET_COPY_THRESH:
2994  {
2995  int val;
2996 
2997  if (optlen != sizeof(val))
2998  return -EINVAL;
2999  if (copy_from_user(&val, optval, sizeof(val)))
3000  return -EFAULT;
3001 
3002  pkt_sk(sk)->copy_thresh = val;
3003  return 0;
3004  }
3005  case PACKET_VERSION:
3006  {
3007  int val;
3008 
3009  if (optlen != sizeof(val))
3010  return -EINVAL;
3011  if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3012  return -EBUSY;
3013  if (copy_from_user(&val, optval, sizeof(val)))
3014  return -EFAULT;
3015  switch (val) {
3016  case TPACKET_V1:
3017  case TPACKET_V2:
3018  case TPACKET_V3:
3019  po->tp_version = val;
3020  return 0;
3021  default:
3022  return -EINVAL;
3023  }
3024  }
3025  case PACKET_RESERVE:
3026  {
3027  unsigned int val;
3028 
3029  if (optlen != sizeof(val))
3030  return -EINVAL;
3031  if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3032  return -EBUSY;
3033  if (copy_from_user(&val, optval, sizeof(val)))
3034  return -EFAULT;
3035  po->tp_reserve = val;
3036  return 0;
3037  }
3038  case PACKET_LOSS:
3039  {
3040  unsigned int val;
3041 
3042  if (optlen != sizeof(val))
3043  return -EINVAL;
3044  if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3045  return -EBUSY;
3046  if (copy_from_user(&val, optval, sizeof(val)))
3047  return -EFAULT;
3048  po->tp_loss = !!val;
3049  return 0;
3050  }
3051  case PACKET_AUXDATA:
3052  {
3053  int val;
3054 
3055  if (optlen < sizeof(val))
3056  return -EINVAL;
3057  if (copy_from_user(&val, optval, sizeof(val)))
3058  return -EFAULT;
3059 
3060  po->auxdata = !!val;
3061  return 0;
3062  }
3063  case PACKET_ORIGDEV:
3064  {
3065  int val;
3066 
3067  if (optlen < sizeof(val))
3068  return -EINVAL;
3069  if (copy_from_user(&val, optval, sizeof(val)))
3070  return -EFAULT;
3071 
3072  po->origdev = !!val;
3073  return 0;
3074  }
3075  case PACKET_VNET_HDR:
3076  {
3077  int val;
3078 
3079  if (sock->type != SOCK_RAW)
3080  return -EINVAL;
3081  if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3082  return -EBUSY;
3083  if (optlen < sizeof(val))
3084  return -EINVAL;
3085  if (copy_from_user(&val, optval, sizeof(val)))
3086  return -EFAULT;
3087 
3088  po->has_vnet_hdr = !!val;
3089  return 0;
3090  }
3091  case PACKET_TIMESTAMP:
3092  {
3093  int val;
3094 
3095  if (optlen != sizeof(val))
3096  return -EINVAL;
3097  if (copy_from_user(&val, optval, sizeof(val)))
3098  return -EFAULT;
3099 
3100  po->tp_tstamp = val;
3101  return 0;
3102  }
3103  case PACKET_FANOUT:
3104  {
3105  int val;
3106 
3107  if (optlen != sizeof(val))
3108  return -EINVAL;
3109  if (copy_from_user(&val, optval, sizeof(val)))
3110  return -EFAULT;
3111 
3112  return fanout_add(sk, val & 0xffff, val >> 16);
3113  }
3114  default:
3115  return -ENOPROTOOPT;
3116  }
3117 }
3118 
3119 static int packet_getsockopt(struct socket *sock, int level, int optname,
3120  char __user *optval, int __user *optlen)
3121 {
3122  int len;
3123  int val, lv = sizeof(val);
3124  struct sock *sk = sock->sk;
3125  struct packet_sock *po = pkt_sk(sk);
3126  void *data = &val;
3127  struct tpacket_stats st;
3128  union tpacket_stats_u st_u;
3129 
3130  if (level != SOL_PACKET)
3131  return -ENOPROTOOPT;
3132 
3133  if (get_user(len, optlen))
3134  return -EFAULT;
3135 
3136  if (len < 0)
3137  return -EINVAL;
3138 
3139  switch (optname) {
3140  case PACKET_STATISTICS:
3141  spin_lock_bh(&sk->sk_receive_queue.lock);
3142  if (po->tp_version == TPACKET_V3) {
3143  lv = sizeof(struct tpacket_stats_v3);
3144  memcpy(&st_u.stats3, &po->stats,
3145  sizeof(struct tpacket_stats));
3146  st_u.stats3.tp_freeze_q_cnt =
3147  po->stats_u.stats3.tp_freeze_q_cnt;
3148  st_u.stats3.tp_packets += po->stats.tp_drops;
3149  data = &st_u.stats3;
3150  } else {
3151  lv = sizeof(struct tpacket_stats);
3152  st = po->stats;
3153  st.tp_packets += st.tp_drops;
3154  data = &st;
3155  }
3156  memset(&po->stats, 0, sizeof(st));
3157  spin_unlock_bh(&sk->sk_receive_queue.lock);
3158  break;
3159  case PACKET_AUXDATA:
3160  val = po->auxdata;
3161  break;
3162  case PACKET_ORIGDEV:
3163  val = po->origdev;
3164  break;
3165  case PACKET_VNET_HDR:
3166  val = po->has_vnet_hdr;
3167  break;
3168  case PACKET_VERSION:
3169  val = po->tp_version;
3170  break;
3171  case PACKET_HDRLEN:
3172  if (len > sizeof(int))
3173  len = sizeof(int);
3174  if (copy_from_user(&val, optval, len))
3175  return -EFAULT;
3176  switch (val) {
3177  case TPACKET_V1:
3178  val = sizeof(struct tpacket_hdr);
3179  break;
3180  case TPACKET_V2:
3181  val = sizeof(struct tpacket2_hdr);
3182  break;
3183  case TPACKET_V3:
3184  val = sizeof(struct tpacket3_hdr);
3185  break;
3186  default:
3187  return -EINVAL;
3188  }
3189  break;
3190  case PACKET_RESERVE:
3191  val = po->tp_reserve;
3192  break;
3193  case PACKET_LOSS:
3194  val = po->tp_loss;
3195  break;
3196  case PACKET_TIMESTAMP:
3197  val = po->tp_tstamp;
3198  break;
3199  case PACKET_FANOUT:
3200  val = (po->fanout ?
3201  ((u32)po->fanout->id |
3202  ((u32)po->fanout->type << 16)) :
3203  0);
3204  break;
3205  default:
3206  return -ENOPROTOOPT;
3207  }
3208 
3209  if (len > lv)
3210  len = lv;
3211  if (put_user(len, optlen))
3212  return -EFAULT;
3213  if (copy_to_user(optval, data, len))
3214  return -EFAULT;
3215  return 0;
3216 }
3217 
3218 
3219 static int packet_notifier(struct notifier_block *this, unsigned long msg, void *data)
3220 {
3221  struct sock *sk;
3222  struct hlist_node *node;
3223  struct net_device *dev = data;
3224  struct net *net = dev_net(dev);
3225 
3226  rcu_read_lock();
3227  sk_for_each_rcu(sk, node, &net->packet.sklist) {
3228  struct packet_sock *po = pkt_sk(sk);
3229 
3230  switch (msg) {
3231  case NETDEV_UNREGISTER:
3232  if (po->mclist)
3233  packet_dev_mclist(dev, po->mclist, -1);
3234  /* fallthrough */
3235 
3236  case NETDEV_DOWN:
3237  if (dev->ifindex == po->ifindex) {
3238  spin_lock(&po->bind_lock);
3239  if (po->running) {
3240  __unregister_prot_hook(sk, false);
3241  sk->sk_err = ENETDOWN;
3242  if (!sock_flag(sk, SOCK_DEAD))
3243  sk->sk_error_report(sk);
3244  }
3245  if (msg == NETDEV_UNREGISTER) {
3246  po->ifindex = -1;
3247  if (po->prot_hook.dev)
3248  dev_put(po->prot_hook.dev);
3249  po->prot_hook.dev = NULL;
3250  }
3251  spin_unlock(&po->bind_lock);
3252  }
3253  break;
3254  case NETDEV_UP:
3255  if (dev->ifindex == po->ifindex) {
3256  spin_lock(&po->bind_lock);
3257  if (po->num)
3258  register_prot_hook(sk);
3259  spin_unlock(&po->bind_lock);
3260  }
3261  break;
3262  }
3263  }
3264  rcu_read_unlock();
3265  return NOTIFY_DONE;
3266 }
3267 
3268 
3269 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3270  unsigned long arg)
3271 {
3272  struct sock *sk = sock->sk;
3273 
3274  switch (cmd) {
3275  case SIOCOUTQ:
3276  {
3277  int amount = sk_wmem_alloc_get(sk);
3278 
3279  return put_user(amount, (int __user *)arg);
3280  }
3281  case SIOCINQ:
3282  {
3283  struct sk_buff *skb;
3284  int amount = 0;
3285 
3286  spin_lock_bh(&sk->sk_receive_queue.lock);
3287  skb = skb_peek(&sk->sk_receive_queue);
3288  if (skb)
3289  amount = skb->len;
3290  spin_unlock_bh(&sk->sk_receive_queue.lock);
3291  return put_user(amount, (int __user *)arg);
3292  }
3293  case SIOCGSTAMP:
3294  return sock_get_timestamp(sk, (struct timeval __user *)arg);
3295  case SIOCGSTAMPNS:
3296  return sock_get_timestampns(sk, (struct timespec __user *)arg);
3297 
3298 #ifdef CONFIG_INET
3299  case SIOCADDRT:
3300  case SIOCDELRT:
3301  case SIOCDARP:
3302  case SIOCGARP:
3303  case SIOCSARP:
3304  case SIOCGIFADDR:
3305  case SIOCSIFADDR:
3306  case SIOCGIFBRDADDR:
3307  case SIOCSIFBRDADDR:
3308  case SIOCGIFNETMASK:
3309  case SIOCSIFNETMASK:
3310  case SIOCGIFDSTADDR:
3311  case SIOCSIFDSTADDR:
3312  case SIOCSIFFLAGS:
3313  return inet_dgram_ops.ioctl(sock, cmd, arg);
3314 #endif
3315 
3316  default:
3317  return -ENOIOCTLCMD;
3318  }
3319  return 0;
3320 }
3321 
3322 static unsigned int packet_poll(struct file *file, struct socket *sock,
3323  poll_table *wait)
3324 {
3325  struct sock *sk = sock->sk;
3326  struct packet_sock *po = pkt_sk(sk);
3327  unsigned int mask = datagram_poll(file, sock, wait);
3328 
3329  spin_lock_bh(&sk->sk_receive_queue.lock);
3330  if (po->rx_ring.pg_vec) {
3331  if (!packet_previous_rx_frame(po, &po->rx_ring,
3333  mask |= POLLIN | POLLRDNORM;
3334  }
3335  spin_unlock_bh(&sk->sk_receive_queue.lock);
3336  spin_lock_bh(&sk->sk_write_queue.lock);
3337  if (po->tx_ring.pg_vec) {
3338  if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3339  mask |= POLLOUT | POLLWRNORM;
3340  }
3341  spin_unlock_bh(&sk->sk_write_queue.lock);
3342  return mask;
3343 }
3344 
3345 
3346 /* Dirty? Well, I still did not learn better way to account
3347  * for user mmaps.
3348  */
3349 
3350 static void packet_mm_open(struct vm_area_struct *vma)
3351 {
3352  struct file *file = vma->vm_file;
3353  struct socket *sock = file->private_data;
3354  struct sock *sk = sock->sk;
3355 
3356  if (sk)
3357  atomic_inc(&pkt_sk(sk)->mapped);
3358 }
3359 
3360 static void packet_mm_close(struct vm_area_struct *vma)
3361 {
3362  struct file *file = vma->vm_file;
3363  struct socket *sock = file->private_data;
3364  struct sock *sk = sock->sk;
3365 
3366  if (sk)
3367  atomic_dec(&pkt_sk(sk)->mapped);
3368 }
3369 
3370 static const struct vm_operations_struct packet_mmap_ops = {
3371  .open = packet_mm_open,
3372  .close = packet_mm_close,
3373 };
3374 
3375 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3376  unsigned int len)
3377 {
3378  int i;
3379 
3380  for (i = 0; i < len; i++) {
3381  if (likely(pg_vec[i].buffer)) {
3382  if (is_vmalloc_addr(pg_vec[i].buffer))
3383  vfree(pg_vec[i].buffer);
3384  else
3385  free_pages((unsigned long)pg_vec[i].buffer,
3386  order);
3387  pg_vec[i].buffer = NULL;
3388  }
3389  }
3390  kfree(pg_vec);
3391 }
3392 
3393 static char *alloc_one_pg_vec_page(unsigned long order)
3394 {
3395  char *buffer = NULL;
3396  gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3398 
3399  buffer = (char *) __get_free_pages(gfp_flags, order);
3400 
3401  if (buffer)
3402  return buffer;
3403 
3404  /*
3405  * __get_free_pages failed, fall back to vmalloc
3406  */
3407  buffer = vzalloc((1 << order) * PAGE_SIZE);
3408 
3409  if (buffer)
3410  return buffer;
3411 
3412  /*
3413  * vmalloc failed, lets dig into swap here
3414  */
3415  gfp_flags &= ~__GFP_NORETRY;
3416  buffer = (char *)__get_free_pages(gfp_flags, order);
3417  if (buffer)
3418  return buffer;
3419 
3420  /*
3421  * complete and utter failure
3422  */
3423  return NULL;
3424 }
3425 
3426 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
3427 {
3428  unsigned int block_nr = req->tp_block_nr;
3429  struct pgv *pg_vec;
3430  int i;
3431 
3432  pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
3433  if (unlikely(!pg_vec))
3434  goto out;
3435 
3436  for (i = 0; i < block_nr; i++) {
3437  pg_vec[i].buffer = alloc_one_pg_vec_page(order);
3438  if (unlikely(!pg_vec[i].buffer))
3439  goto out_free_pgvec;
3440  }
3441 
3442 out:
3443  return pg_vec;
3444 
3445 out_free_pgvec:
3446  free_pg_vec(pg_vec, order, block_nr);
3447  pg_vec = NULL;
3448  goto out;
3449 }
3450 
3451 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
3452  int closing, int tx_ring)
3453 {
3454  struct pgv *pg_vec = NULL;
3455  struct packet_sock *po = pkt_sk(sk);
3456  int was_running, order = 0;
3457  struct packet_ring_buffer *rb;
3458  struct sk_buff_head *rb_queue;
3459  __be16 num;
3460  int err = -EINVAL;
3461  /* Added to avoid minimal code churn */
3462  struct tpacket_req *req = &req_u->req;
3463 
3464  /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
3465  if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
3466  WARN(1, "Tx-ring is not supported.\n");
3467  goto out;
3468  }
3469 
3470  rb = tx_ring ? &po->tx_ring : &po->rx_ring;
3471  rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
3472 
3473  err = -EBUSY;
3474  if (!closing) {
3475  if (atomic_read(&po->mapped))
3476  goto out;
3477  if (atomic_read(&rb->pending))
3478  goto out;
3479  }
3480 
3481  if (req->tp_block_nr) {
3482  /* Sanity tests and some calculations */
3483  err = -EBUSY;
3484  if (unlikely(rb->pg_vec))
3485  goto out;
3486 
3487  switch (po->tp_version) {
3488  case TPACKET_V1:
3489  po->tp_hdrlen = TPACKET_HDRLEN;
3490  break;
3491  case TPACKET_V2:
3492  po->tp_hdrlen = TPACKET2_HDRLEN;
3493  break;
3494  case TPACKET_V3:
3495  po->tp_hdrlen = TPACKET3_HDRLEN;
3496  break;
3497  }
3498 
3499  err = -EINVAL;
3500  if (unlikely((int)req->tp_block_size <= 0))
3501  goto out;
3502  if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
3503  goto out;
3504  if (unlikely(req->tp_frame_size < po->tp_hdrlen +
3505  po->tp_reserve))
3506  goto out;
3507  if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
3508  goto out;
3509 
3511  if (unlikely(rb->frames_per_block <= 0))
3512  goto out;
3513  if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
3514  req->tp_frame_nr))
3515  goto out;
3516 
3517  err = -ENOMEM;
3518  order = get_order(req->tp_block_size);
3519  pg_vec = alloc_pg_vec(req, order);
3520  if (unlikely(!pg_vec))
3521  goto out;
3522  switch (po->tp_version) {
3523  case TPACKET_V3:
3524  /* Transmit path is not supported. We checked
3525  * it above but just being paranoid
3526  */
3527  if (!tx_ring)
3528  init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring);
3529  break;
3530  default:
3531  break;
3532  }
3533  }
3534  /* Done */
3535  else {
3536  err = -EINVAL;
3537  if (unlikely(req->tp_frame_nr))
3538  goto out;
3539  }
3540 
3541  lock_sock(sk);
3542 
3543  /* Detach socket from network */
3544  spin_lock(&po->bind_lock);
3545  was_running = po->running;
3546  num = po->num;
3547  if (was_running) {
3548  po->num = 0;
3549  __unregister_prot_hook(sk, false);
3550  }
3551  spin_unlock(&po->bind_lock);
3552 
3553  synchronize_net();
3554 
3555  err = -EBUSY;
3556  mutex_lock(&po->pg_vec_lock);
3557  if (closing || atomic_read(&po->mapped) == 0) {
3558  err = 0;
3559  spin_lock_bh(&rb_queue->lock);
3560  swap(rb->pg_vec, pg_vec);
3561  rb->frame_max = (req->tp_frame_nr - 1);
3562  rb->head = 0;
3563  rb->frame_size = req->tp_frame_size;
3564  spin_unlock_bh(&rb_queue->lock);
3565 
3566  swap(rb->pg_vec_order, order);
3567  swap(rb->pg_vec_len, req->tp_block_nr);
3568 
3570  po->prot_hook.func = (po->rx_ring.pg_vec) ?
3571  tpacket_rcv : packet_rcv;
3572  skb_queue_purge(rb_queue);
3573  if (atomic_read(&po->mapped))
3574  pr_err("packet_mmap: vma is busy: %d\n",
3575  atomic_read(&po->mapped));
3576  }
3577  mutex_unlock(&po->pg_vec_lock);
3578 
3579  spin_lock(&po->bind_lock);
3580  if (was_running) {
3581  po->num = num;
3582  register_prot_hook(sk);
3583  }
3584  spin_unlock(&po->bind_lock);
3585  if (closing && (po->tp_version > TPACKET_V2)) {
3586  /* Because we don't support block-based V3 on tx-ring */
3587  if (!tx_ring)
3588  prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue);
3589  }
3590  release_sock(sk);
3591 
3592  if (pg_vec)
3593  free_pg_vec(pg_vec, order, req->tp_block_nr);
3594 out:
3595  return err;
3596 }
3597 
3598 static int packet_mmap(struct file *file, struct socket *sock,
3599  struct vm_area_struct *vma)
3600 {
3601  struct sock *sk = sock->sk;
3602  struct packet_sock *po = pkt_sk(sk);
3603  unsigned long size, expected_size;
3604  struct packet_ring_buffer *rb;
3605  unsigned long start;
3606  int err = -EINVAL;
3607  int i;
3608 
3609  if (vma->vm_pgoff)
3610  return -EINVAL;
3611 
3612  mutex_lock(&po->pg_vec_lock);
3613 
3614  expected_size = 0;
3615  for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3616  if (rb->pg_vec) {
3617  expected_size += rb->pg_vec_len
3618  * rb->pg_vec_pages
3619  * PAGE_SIZE;
3620  }
3621  }
3622 
3623  if (expected_size == 0)
3624  goto out;
3625 
3626  size = vma->vm_end - vma->vm_start;
3627  if (size != expected_size)
3628  goto out;
3629 
3630  start = vma->vm_start;
3631  for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
3632  if (rb->pg_vec == NULL)
3633  continue;
3634 
3635  for (i = 0; i < rb->pg_vec_len; i++) {
3636  struct page *page;
3637  void *kaddr = rb->pg_vec[i].buffer;
3638  int pg_num;
3639 
3640  for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
3641  page = pgv_to_page(kaddr);
3642  err = vm_insert_page(vma, start, page);
3643  if (unlikely(err))
3644  goto out;
3645  start += PAGE_SIZE;
3646  kaddr += PAGE_SIZE;
3647  }
3648  }
3649  }
3650 
3651  atomic_inc(&po->mapped);
3652  vma->vm_ops = &packet_mmap_ops;
3653  err = 0;
3654 
3655 out:
3656  mutex_unlock(&po->pg_vec_lock);
3657  return err;
3658 }
3659 
3660 static const struct proto_ops packet_ops_spkt = {
3661  .family = PF_PACKET,
3662  .owner = THIS_MODULE,
3663  .release = packet_release,
3664  .bind = packet_bind_spkt,
3665  .connect = sock_no_connect,
3666  .socketpair = sock_no_socketpair,
3667  .accept = sock_no_accept,
3668  .getname = packet_getname_spkt,
3669  .poll = datagram_poll,
3670  .ioctl = packet_ioctl,
3671  .listen = sock_no_listen,
3672  .shutdown = sock_no_shutdown,
3673  .setsockopt = sock_no_setsockopt,
3674  .getsockopt = sock_no_getsockopt,
3675  .sendmsg = packet_sendmsg_spkt,
3676  .recvmsg = packet_recvmsg,
3677  .mmap = sock_no_mmap,
3678  .sendpage = sock_no_sendpage,
3679 };
3680 
3681 static const struct proto_ops packet_ops = {
3682  .family = PF_PACKET,
3683  .owner = THIS_MODULE,
3684  .release = packet_release,
3685  .bind = packet_bind,
3686  .connect = sock_no_connect,
3687  .socketpair = sock_no_socketpair,
3688  .accept = sock_no_accept,
3689  .getname = packet_getname,
3690  .poll = packet_poll,
3691  .ioctl = packet_ioctl,
3692  .listen = sock_no_listen,
3693  .shutdown = sock_no_shutdown,
3694  .setsockopt = packet_setsockopt,
3695  .getsockopt = packet_getsockopt,
3696  .sendmsg = packet_sendmsg,
3697  .recvmsg = packet_recvmsg,
3698  .mmap = packet_mmap,
3699  .sendpage = sock_no_sendpage,
3700 };
3701 
3702 static const struct net_proto_family packet_family_ops = {
3703  .family = PF_PACKET,
3704  .create = packet_create,
3705  .owner = THIS_MODULE,
3706 };
3707 
3708 static struct notifier_block packet_netdev_notifier = {
3709  .notifier_call = packet_notifier,
3710 };
3711 
3712 #ifdef CONFIG_PROC_FS
3713 
3714 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
3715  __acquires(RCU)
3716 {
3717  struct net *net = seq_file_net(seq);
3718 
3719  rcu_read_lock();
3720  return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
3721 }
3722 
3723 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3724 {
3725  struct net *net = seq_file_net(seq);
3726  return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
3727 }
3728 
3729 static void packet_seq_stop(struct seq_file *seq, void *v)
3730  __releases(RCU)
3731 {
3732  rcu_read_unlock();
3733 }
3734 
3735 static int packet_seq_show(struct seq_file *seq, void *v)
3736 {
3737  if (v == SEQ_START_TOKEN)
3738  seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
3739  else {
3740  struct sock *s = sk_entry(v);
3741  const struct packet_sock *po = pkt_sk(s);
3742 
3743  seq_printf(seq,
3744  "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
3745  s,
3746  atomic_read(&s->sk_refcnt),
3747  s->sk_type,
3748  ntohs(po->num),
3749  po->ifindex,
3750  po->running,
3751  atomic_read(&s->sk_rmem_alloc),
3752  from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
3753  sock_i_ino(s));
3754  }
3755 
3756  return 0;
3757 }
3758 
3759 static const struct seq_operations packet_seq_ops = {
3760  .start = packet_seq_start,
3761  .next = packet_seq_next,
3762  .stop = packet_seq_stop,
3763  .show = packet_seq_show,
3764 };
3765 
3766 static int packet_seq_open(struct inode *inode, struct file *file)
3767 {
3768  return seq_open_net(inode, file, &packet_seq_ops,
3769  sizeof(struct seq_net_private));
3770 }
3771 
3772 static const struct file_operations packet_seq_fops = {
3773  .owner = THIS_MODULE,
3774  .open = packet_seq_open,
3775  .read = seq_read,
3776  .llseek = seq_lseek,
3777  .release = seq_release_net,
3778 };
3779 
3780 #endif
3781 
3782 static int __net_init packet_net_init(struct net *net)
3783 {
3784  mutex_init(&net->packet.sklist_lock);
3785  INIT_HLIST_HEAD(&net->packet.sklist);
3786 
3787  if (!proc_net_fops_create(net, "packet", 0, &packet_seq_fops))
3788  return -ENOMEM;
3789 
3790  return 0;
3791 }
3792 
3793 static void __net_exit packet_net_exit(struct net *net)
3794 {
3795  proc_net_remove(net, "packet");
3796 }
3797 
3798 static struct pernet_operations packet_net_ops = {
3799  .init = packet_net_init,
3800  .exit = packet_net_exit,
3801 };
3802 
3803 
3804 static void __exit packet_exit(void)
3805 {
3806  unregister_netdevice_notifier(&packet_netdev_notifier);
3807  unregister_pernet_subsys(&packet_net_ops);
3809  proto_unregister(&packet_proto);
3810 }
3811 
3812 static int __init packet_init(void)
3813 {
3814  int rc = proto_register(&packet_proto, 0);
3815 
3816  if (rc != 0)
3817  goto out;
3818 
3819  sock_register(&packet_family_ops);
3820  register_pernet_subsys(&packet_net_ops);
3821  register_netdevice_notifier(&packet_netdev_notifier);
3822 out:
3823  return rc;
3824 }
3825 
3826 module_init(packet_init);
3827 module_exit(packet_exit);
3828 MODULE_LICENSE("GPL");