Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
smp.c
Go to the documentation of this file.
1 /*
2  * linux/arch/arm/kernel/smp.c
3  *
4  * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
55 
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
61 
69 };
70 
71 static DECLARE_COMPLETION(cpu_running);
72 
73 static struct smp_operations smp_ops;
74 
76 {
77  if (ops)
78  smp_ops = *ops;
79 };
80 
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83  int ret;
84 
85  /*
86  * We need to tell the secondary core where to find
87  * its stack and the page tables.
88  */
89  secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
93  outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
94 
95  /*
96  * Now bring the CPU into our world.
97  */
98  ret = boot_secondary(cpu, idle);
99  if (ret == 0) {
100  /*
101  * CPU was successfully started, wait for it
102  * to come online or time out.
103  */
104  wait_for_completion_timeout(&cpu_running,
105  msecs_to_jiffies(1000));
106 
107  if (!cpu_online(cpu)) {
108  pr_crit("CPU%u: failed to come online\n", cpu);
109  ret = -EIO;
110  }
111  } else {
112  pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113  }
114 
116  secondary_data.pgdir = 0;
117 
118  return ret;
119 }
120 
121 /* platform specific SMP operations */
123 {
124  if (smp_ops.smp_init_cpus)
125  smp_ops.smp_init_cpus();
126 }
127 
128 static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
129 {
131  smp_ops.smp_prepare_cpus(max_cpus);
132 }
133 
134 static void __cpuinit platform_secondary_init(unsigned int cpu)
135 {
136  if (smp_ops.smp_secondary_init)
137  smp_ops.smp_secondary_init(cpu);
138 }
139 
140 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
141 {
142  if (smp_ops.smp_boot_secondary)
143  return smp_ops.smp_boot_secondary(cpu, idle);
144  return -ENOSYS;
145 }
146 
147 #ifdef CONFIG_HOTPLUG_CPU
148 static void percpu_timer_stop(void);
149 
150 static int platform_cpu_kill(unsigned int cpu)
151 {
152  if (smp_ops.cpu_kill)
153  return smp_ops.cpu_kill(cpu);
154  return 1;
155 }
156 
157 static void platform_cpu_die(unsigned int cpu)
158 {
159  if (smp_ops.cpu_die)
160  smp_ops.cpu_die(cpu);
161 }
162 
163 static int platform_cpu_disable(unsigned int cpu)
164 {
165  if (smp_ops.cpu_disable)
166  return smp_ops.cpu_disable(cpu);
167 
168  /*
169  * By default, allow disabling all CPUs except the first one,
170  * since this is special on a lot of platforms, e.g. because
171  * of clock tick interrupts.
172  */
173  return cpu == 0 ? -EPERM : 0;
174 }
175 /*
176  * __cpu_disable runs on the processor to be shutdown.
177  */
178 int __cpuinit __cpu_disable(void)
179 {
180  unsigned int cpu = smp_processor_id();
181  int ret;
182 
183  ret = platform_cpu_disable(cpu);
184  if (ret)
185  return ret;
186 
187  /*
188  * Take this CPU offline. Once we clear this, we can't return,
189  * and we must not schedule until we're ready to give up the cpu.
190  */
191  set_cpu_online(cpu, false);
192 
193  /*
194  * OK - migrate IRQs away from this CPU
195  */
196  migrate_irqs();
197 
198  /*
199  * Stop the local timer for this CPU.
200  */
201  percpu_timer_stop();
202 
203  /*
204  * Flush user cache and TLB mappings, and then remove this CPU
205  * from the vm mask set of all processes.
206  *
207  * Caches are flushed to the Level of Unification Inner Shareable
208  * to write-back dirty lines to unified caches shared by all CPUs.
209  */
212 
213  clear_tasks_mm_cpumask(cpu);
214 
215  return 0;
216 }
217 
218 static DECLARE_COMPLETION(cpu_died);
219 
220 /*
221  * called on the thread which is asking for a CPU to be shutdown -
222  * waits until shutdown has completed, or it is timed out.
223  */
224 void __cpuinit __cpu_die(unsigned int cpu)
225 {
226  if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
227  pr_err("CPU%u: cpu didn't die\n", cpu);
228  return;
229  }
230  printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
231 
232  if (!platform_cpu_kill(cpu))
233  printk("CPU%u: unable to kill\n", cpu);
234 }
235 
236 /*
237  * Called from the idle thread for the CPU which has been shutdown.
238  *
239  * Note that we disable IRQs here, but do not re-enable them
240  * before returning to the caller. This is also the behaviour
241  * of the other hotplug-cpu capable cores, so presumably coming
242  * out of idle fixes this.
243  */
244 void __ref cpu_die(void)
245 {
246  unsigned int cpu = smp_processor_id();
247 
248  idle_task_exit();
249 
251  mb();
252 
253  /* Tell __cpu_die() that this CPU is now safe to dispose of */
254  RCU_NONIDLE(complete(&cpu_died));
255 
256  /*
257  * actual CPU shutdown procedure is at least platform (if not
258  * CPU) specific.
259  */
260  platform_cpu_die(cpu);
261 
262  /*
263  * Do not return to the idle loop - jump back to the secondary
264  * cpu initialisation. There's some initialisation which needs
265  * to be repeated to undo the effects of taking the CPU offline.
266  */
267  __asm__("mov sp, %0\n"
268  " mov fp, #0\n"
269  " b secondary_start_kernel"
270  :
271  : "r" (task_stack_page(current) + THREAD_SIZE - 8));
272 }
273 #endif /* CONFIG_HOTPLUG_CPU */
274 
275 /*
276  * Called by both boot and secondaries to move global data into
277  * per-processor storage.
278  */
279 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
280 {
281  struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
282 
283  cpu_info->loops_per_jiffy = loops_per_jiffy;
284 
285  store_cpu_topology(cpuid);
286 }
287 
288 static void percpu_timer_setup(void);
289 
290 /*
291  * This is the secondary CPU boot entry. We're using this CPUs
292  * idle thread stack, but a set of temporary page tables.
293  */
295 {
296  struct mm_struct *mm = &init_mm;
297  unsigned int cpu;
298 
299  /*
300  * The identity mapping is uncached (strongly ordered), so
301  * switch away from it before attempting any exclusive accesses.
302  */
303  cpu_switch_mm(mm->pgd, mm);
304  enter_lazy_tlb(mm, current);
306 
307  /*
308  * All kernel threads share the same mm context; grab a
309  * reference and switch to it.
310  */
311  cpu = smp_processor_id();
312  atomic_inc(&mm->mm_count);
313  current->active_mm = mm;
314  cpumask_set_cpu(cpu, mm_cpumask(mm));
315 
316  printk("CPU%u: Booted secondary processor\n", cpu);
317 
318  cpu_init();
319  preempt_disable();
321 
322  /*
323  * Give the platform a chance to do its own initialisation.
324  */
325  platform_secondary_init(cpu);
326 
327  notify_cpu_starting(cpu);
328 
329  calibrate_delay();
330 
331  smp_store_cpu_info(cpu);
332 
333  /*
334  * OK, now it's safe to let the boot CPU continue. Wait for
335  * the CPU migration code to notice that the CPU is online
336  * before we continue - which happens after __cpu_up returns.
337  */
338  set_cpu_online(cpu, true);
339  complete(&cpu_running);
340 
341  /*
342  * Setup the percpu timer for this CPU.
343  */
344  percpu_timer_setup();
345 
347  local_fiq_enable();
348 
349  /*
350  * OK, it's off to the idle thread for us
351  */
352  cpu_idle();
353 }
354 
355 void __init smp_cpus_done(unsigned int max_cpus)
356 {
357  int cpu;
358  unsigned long bogosum = 0;
359 
361  bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
362 
363  printk(KERN_INFO "SMP: Total of %d processors activated "
364  "(%lu.%02lu BogoMIPS).\n",
365  num_online_cpus(),
366  bogosum / (500000/HZ),
367  (bogosum / (5000/HZ)) % 100);
368 
369  hyp_mode_check();
370 }
371 
373 {
374 }
375 
376 void __init smp_prepare_cpus(unsigned int max_cpus)
377 {
378  unsigned int ncores = num_possible_cpus();
379 
381 
382  smp_store_cpu_info(smp_processor_id());
383 
384  /*
385  * are we trying to boot more cores than exist?
386  */
387  if (max_cpus > ncores)
388  max_cpus = ncores;
389  if (ncores > 1 && max_cpus) {
390  /*
391  * Enable the local timer or broadcast device for the
392  * boot CPU, but only if we have more than one CPU.
393  */
394  percpu_timer_setup();
395 
396  /*
397  * Initialise the present map, which describes the set of CPUs
398  * actually populated at the present time. A platform should
399  * re-initialize the map in platform_smp_prepare_cpus() if
400  * present != possible (e.g. physical hotplug).
401  */
403 
404  /*
405  * Initialise the SCU if there are more than one CPU
406  * and let them know where to start.
407  */
408  platform_smp_prepare_cpus(max_cpus);
409  }
410 }
411 
412 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
413 
414 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
415 {
416  smp_cross_call = fn;
417 }
418 
420 {
421  smp_cross_call(mask, IPI_CALL_FUNC);
422 }
423 
425 {
426  smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
427 }
428 
429 static const char *ipi_types[NR_IPI] = {
430 #define S(x,s) [x] = s
431  S(IPI_WAKEUP, "CPU wakeup interrupts"),
432  S(IPI_TIMER, "Timer broadcast interrupts"),
433  S(IPI_RESCHEDULE, "Rescheduling interrupts"),
434  S(IPI_CALL_FUNC, "Function call interrupts"),
435  S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
436  S(IPI_CPU_STOP, "CPU stop interrupts"),
437 };
438 
439 void show_ipi_list(struct seq_file *p, int prec)
440 {
441  unsigned int cpu, i;
442 
443  for (i = 0; i < NR_IPI; i++) {
444  seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
445 
447  seq_printf(p, "%10u ",
448  __get_irq_stat(cpu, ipi_irqs[i]));
449 
450  seq_printf(p, " %s\n", ipi_types[i]);
451  }
452 }
453 
454 u64 smp_irq_stat_cpu(unsigned int cpu)
455 {
456  u64 sum = 0;
457  int i;
458 
459  for (i = 0; i < NR_IPI; i++)
460  sum += __get_irq_stat(cpu, ipi_irqs[i]);
461 
462  return sum;
463 }
464 
465 /*
466  * Timer (local or broadcast) support
467  */
468 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
469 
470 static void ipi_timer(void)
471 {
472  struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
473  evt->event_handler(evt);
474 }
475 
476 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
477 static void smp_timer_broadcast(const struct cpumask *mask)
478 {
479  smp_cross_call(mask, IPI_TIMER);
480 }
481 #else
482 #define smp_timer_broadcast NULL
483 #endif
484 
485 static void broadcast_timer_set_mode(enum clock_event_mode mode,
486  struct clock_event_device *evt)
487 {
488 }
489 
490 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
491 {
492  evt->name = "dummy_timer";
493  evt->features = CLOCK_EVT_FEAT_ONESHOT |
494  CLOCK_EVT_FEAT_PERIODIC |
495  CLOCK_EVT_FEAT_DUMMY;
496  evt->rating = 400;
497  evt->mult = 1;
498  evt->set_mode = broadcast_timer_set_mode;
499 
501 }
502 
503 static struct local_timer_ops *lt_ops;
504 
505 #ifdef CONFIG_LOCAL_TIMERS
506 int local_timer_register(struct local_timer_ops *ops)
507 {
508  if (!is_smp() || !setup_max_cpus)
509  return -ENXIO;
510 
511  if (lt_ops)
512  return -EBUSY;
513 
514  lt_ops = ops;
515  return 0;
516 }
517 #endif
518 
519 static void __cpuinit percpu_timer_setup(void)
520 {
521  unsigned int cpu = smp_processor_id();
522  struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
523 
524  evt->cpumask = cpumask_of(cpu);
525  evt->broadcast = smp_timer_broadcast;
526 
527  if (!lt_ops || lt_ops->setup(evt))
528  broadcast_timer_setup(evt);
529 }
530 
531 #ifdef CONFIG_HOTPLUG_CPU
532 /*
533  * The generic clock events code purposely does not stop the local timer
534  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
535  * manually here.
536  */
537 static void percpu_timer_stop(void)
538 {
539  unsigned int cpu = smp_processor_id();
540  struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
541 
542  if (lt_ops)
543  lt_ops->stop(evt);
544 }
545 #endif
546 
547 static DEFINE_RAW_SPINLOCK(stop_lock);
548 
549 /*
550  * ipi_cpu_stop - handle IPI from smp_send_stop()
551  */
552 static void ipi_cpu_stop(unsigned int cpu)
553 {
554  if (system_state == SYSTEM_BOOTING ||
556  raw_spin_lock(&stop_lock);
557  printk(KERN_CRIT "CPU%u: stopping\n", cpu);
558  dump_stack();
559  raw_spin_unlock(&stop_lock);
560  }
561 
562  set_cpu_online(cpu, false);
563 
564  local_fiq_disable();
566 
567  while (1)
568  cpu_relax();
569 }
570 
571 /*
572  * Main handler for inter-processor interrupts
573  */
575 {
576  handle_IPI(ipinr, regs);
577 }
578 
579 void handle_IPI(int ipinr, struct pt_regs *regs)
580 {
581  unsigned int cpu = smp_processor_id();
582  struct pt_regs *old_regs = set_irq_regs(regs);
583 
584  if (ipinr < NR_IPI)
585  __inc_irq_stat(cpu, ipi_irqs[ipinr]);
586 
587  switch (ipinr) {
588  case IPI_WAKEUP:
589  break;
590 
591  case IPI_TIMER:
592  irq_enter();
593  ipi_timer();
594  irq_exit();
595  break;
596 
597  case IPI_RESCHEDULE:
598  scheduler_ipi();
599  break;
600 
601  case IPI_CALL_FUNC:
602  irq_enter();
603  generic_smp_call_function_interrupt();
604  irq_exit();
605  break;
606 
608  irq_enter();
609  generic_smp_call_function_single_interrupt();
610  irq_exit();
611  break;
612 
613  case IPI_CPU_STOP:
614  irq_enter();
615  ipi_cpu_stop(cpu);
616  irq_exit();
617  break;
618 
619  default:
620  printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
621  cpu, ipinr);
622  break;
623  }
624  set_irq_regs(old_regs);
625 }
626 
627 void smp_send_reschedule(int cpu)
628 {
629  smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
630 }
631 
632 #ifdef CONFIG_HOTPLUG_CPU
633 static void smp_kill_cpus(cpumask_t *mask)
634 {
635  unsigned int cpu;
636  for_each_cpu(cpu, mask)
637  platform_cpu_kill(cpu);
638 }
639 #else
640 static void smp_kill_cpus(cpumask_t *mask) { }
641 #endif
642 
643 void smp_send_stop(void)
644 {
645  unsigned long timeout;
646  struct cpumask mask;
647 
648  cpumask_copy(&mask, cpu_online_mask);
649  cpumask_clear_cpu(smp_processor_id(), &mask);
650  if (!cpumask_empty(&mask))
651  smp_cross_call(&mask, IPI_CPU_STOP);
652 
653  /* Wait up to one second for other CPUs to stop */
654  timeout = USEC_PER_SEC;
655  while (num_online_cpus() > 1 && timeout--)
656  udelay(1);
657 
658  if (num_online_cpus() > 1)
659  pr_warning("SMP: failed to stop secondary CPUs\n");
660 
661  smp_kill_cpus(&mask);
662 }
663 
664 /*
665  * not supported here
666  */
667 int setup_profiling_timer(unsigned int multiplier)
668 {
669  return -EINVAL;
670 }
671 
672 #ifdef CONFIG_CPU_FREQ
673 
674 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
675 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
676 static unsigned long global_l_p_j_ref;
677 static unsigned long global_l_p_j_ref_freq;
678 
679 static int cpufreq_callback(struct notifier_block *nb,
680  unsigned long val, void *data)
681 {
682  struct cpufreq_freqs *freq = data;
683  int cpu = freq->cpu;
684 
685  if (freq->flags & CPUFREQ_CONST_LOOPS)
686  return NOTIFY_OK;
687 
688  if (!per_cpu(l_p_j_ref, cpu)) {
689  per_cpu(l_p_j_ref, cpu) =
690  per_cpu(cpu_data, cpu).loops_per_jiffy;
691  per_cpu(l_p_j_ref_freq, cpu) = freq->old;
692  if (!global_l_p_j_ref) {
693  global_l_p_j_ref = loops_per_jiffy;
694  global_l_p_j_ref_freq = freq->old;
695  }
696  }
697 
698  if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
699  (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
700  (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
701  loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
702  global_l_p_j_ref_freq,
703  freq->new);
704  per_cpu(cpu_data, cpu).loops_per_jiffy =
705  cpufreq_scale(per_cpu(l_p_j_ref, cpu),
706  per_cpu(l_p_j_ref_freq, cpu),
707  freq->new);
708  }
709  return NOTIFY_OK;
710 }
711 
712 static struct notifier_block cpufreq_notifier = {
713  .notifier_call = cpufreq_callback,
714 };
715 
716 static int __init register_cpufreq_notifier(void)
717 {
718  return cpufreq_register_notifier(&cpufreq_notifier,
720 }
721 core_initcall(register_cpufreq_notifier);
722 
723 #endif