Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bmac.c
Go to the documentation of this file.
1 /*
2  * Network device driver for the BMAC ethernet controller on
3  * Apple Powermacs. Assumes it's under a DBDMA controller.
4  *
5  * Copyright (C) 1998 Randy Gobbel.
6  *
7  * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8  * dynamic procfs inode.
9  */
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/proc_fs.h>
19 #include <linux/init.h>
20 #include <linux/spinlock.h>
21 #include <linux/crc32.h>
22 #include <linux/bitrev.h>
23 #include <linux/ethtool.h>
24 #include <linux/slab.h>
25 #include <asm/prom.h>
26 #include <asm/dbdma.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/machdep.h>
31 #include <asm/pmac_feature.h>
32 #include <asm/macio.h>
33 #include <asm/irq.h>
34 
35 #include "bmac.h"
36 
37 #define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
38 #define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
39 
40 /*
41  * CRC polynomial - used in working out multicast filter bits.
42  */
43 #define ENET_CRCPOLY 0x04c11db7
44 
45 /* switch to use multicast code lifted from sunhme driver */
46 #define SUNHME_MULTICAST
47 
48 #define N_RX_RING 64
49 #define N_TX_RING 32
50 #define MAX_TX_ACTIVE 1
51 #define ETHERCRC 4
52 #define ETHERMINPACKET 64
53 #define ETHERMTU 1500
54 #define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
55 #define TX_TIMEOUT HZ /* 1 second */
56 
57 /* Bits in transmit DMA status */
58 #define TX_DMA_ERR 0x80
59 
60 #define XXDEBUG(args)
61 
62 struct bmac_data {
63  /* volatile struct bmac *bmac; */
65  volatile struct dbdma_regs __iomem *tx_dma;
67  volatile struct dbdma_regs __iomem *rx_dma;
69  volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
70  volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
71  struct macio_dev *mdev;
74  int rx_fill;
75  int rx_empty;
77  int tx_fill;
78  int tx_empty;
79  unsigned char tx_fullup;
82  int sleeping;
83  int opened;
84  unsigned short hash_use_count[64];
85  unsigned short hash_table_mask[4];
87 };
88 
89 #if 0 /* Move that to ethtool */
90 
91 typedef struct bmac_reg_entry {
92  char *name;
93  unsigned short reg_offset;
94 } bmac_reg_entry_t;
95 
96 #define N_REG_ENTRIES 31
97 
98 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
99  {"MEMADD", MEMADD},
100  {"MEMDATAHI", MEMDATAHI},
101  {"MEMDATALO", MEMDATALO},
102  {"TXPNTR", TXPNTR},
103  {"RXPNTR", RXPNTR},
104  {"IPG1", IPG1},
105  {"IPG2", IPG2},
106  {"ALIMIT", ALIMIT},
107  {"SLOT", SLOT},
108  {"PALEN", PALEN},
109  {"PAPAT", PAPAT},
110  {"TXSFD", TXSFD},
111  {"JAM", JAM},
112  {"TXCFG", TXCFG},
113  {"TXMAX", TXMAX},
114  {"TXMIN", TXMIN},
115  {"PAREG", PAREG},
116  {"DCNT", DCNT},
117  {"NCCNT", NCCNT},
118  {"NTCNT", NTCNT},
119  {"EXCNT", EXCNT},
120  {"LTCNT", LTCNT},
121  {"TXSM", TXSM},
122  {"RXCFG", RXCFG},
123  {"RXMAX", RXMAX},
124  {"RXMIN", RXMIN},
125  {"FRCNT", FRCNT},
126  {"AECNT", AECNT},
127  {"FECNT", FECNT},
128  {"RXSM", RXSM},
129  {"RXCV", RXCV}
130 };
131 
132 #endif
133 
134 static unsigned char *bmac_emergency_rxbuf;
135 
136 /*
137  * Number of bytes of private data per BMAC: allow enough for
138  * the rx and tx dma commands plus a branch dma command each,
139  * and another 16 bytes to allow us to align the dma command
140  * buffers on a 16 byte boundary.
141  */
142 #define PRIV_BYTES (sizeof(struct bmac_data) \
143  + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
144  + sizeof(struct sk_buff_head))
145 
146 static int bmac_open(struct net_device *dev);
147 static int bmac_close(struct net_device *dev);
148 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
149 static void bmac_set_multicast(struct net_device *dev);
150 static void bmac_reset_and_enable(struct net_device *dev);
151 static void bmac_start_chip(struct net_device *dev);
152 static void bmac_init_chip(struct net_device *dev);
153 static void bmac_init_registers(struct net_device *dev);
154 static void bmac_enable_and_reset_chip(struct net_device *dev);
155 static int bmac_set_address(struct net_device *dev, void *addr);
156 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
157 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
158 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
159 static void bmac_set_timeout(struct net_device *dev);
160 static void bmac_tx_timeout(unsigned long data);
161 static int bmac_output(struct sk_buff *skb, struct net_device *dev);
162 static void bmac_start(struct net_device *dev);
163 
164 #define DBDMA_SET(x) ( ((x) | (x) << 16) )
165 #define DBDMA_CLEAR(x) ( (x) << 16)
166 
167 static inline void
168 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
169 {
170  __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
171 }
172 
173 static inline unsigned long
174 dbdma_ld32(volatile __u32 __iomem *a)
175 {
176  __u32 swap;
177  __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
178  return swap;
179 }
180 
181 static void
182 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
183 {
184  dbdma_st32(&dmap->control,
186  eieio();
187 }
188 
189 static void
190 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
191 {
192  dbdma_st32(&dmap->control,
194  eieio();
195  while (dbdma_ld32(&dmap->status) & RUN)
196  eieio();
197 }
198 
199 static void
200 dbdma_setcmd(volatile struct dbdma_cmd *cp,
201  unsigned short cmd, unsigned count, unsigned long addr,
202  unsigned long cmd_dep)
203 {
204  out_le16(&cp->command, cmd);
205  out_le16(&cp->req_count, count);
206  out_le32(&cp->phy_addr, addr);
207  out_le32(&cp->cmd_dep, cmd_dep);
208  out_le16(&cp->xfer_status, 0);
209  out_le16(&cp->res_count, 0);
210 }
211 
212 static inline
213 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
214 {
215  out_le16((void __iomem *)dev->base_addr + reg_offset, data);
216 }
217 
218 
219 static inline
220 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
221 {
222  return in_le16((void __iomem *)dev->base_addr + reg_offset);
223 }
224 
225 static void
226 bmac_enable_and_reset_chip(struct net_device *dev)
227 {
228  struct bmac_data *bp = netdev_priv(dev);
229  volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
230  volatile struct dbdma_regs __iomem *td = bp->tx_dma;
231 
232  if (rd)
233  dbdma_reset(rd);
234  if (td)
235  dbdma_reset(td);
236 
237  pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
238 }
239 
240 #define MIFDELAY udelay(10)
241 
242 static unsigned int
243 bmac_mif_readbits(struct net_device *dev, int nb)
244 {
245  unsigned int val = 0;
246 
247  while (--nb >= 0) {
248  bmwrite(dev, MIFCSR, 0);
249  MIFDELAY;
250  if (bmread(dev, MIFCSR) & 8)
251  val |= 1 << nb;
252  bmwrite(dev, MIFCSR, 1);
253  MIFDELAY;
254  }
255  bmwrite(dev, MIFCSR, 0);
256  MIFDELAY;
257  bmwrite(dev, MIFCSR, 1);
258  MIFDELAY;
259  return val;
260 }
261 
262 static void
263 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
264 {
265  int b;
266 
267  while (--nb >= 0) {
268  b = (val & (1 << nb))? 6: 4;
269  bmwrite(dev, MIFCSR, b);
270  MIFDELAY;
271  bmwrite(dev, MIFCSR, b|1);
272  MIFDELAY;
273  }
274 }
275 
276 static unsigned int
277 bmac_mif_read(struct net_device *dev, unsigned int addr)
278 {
279  unsigned int val;
280 
281  bmwrite(dev, MIFCSR, 4);
282  MIFDELAY;
283  bmac_mif_writebits(dev, ~0U, 32);
284  bmac_mif_writebits(dev, 6, 4);
285  bmac_mif_writebits(dev, addr, 10);
286  bmwrite(dev, MIFCSR, 2);
287  MIFDELAY;
288  bmwrite(dev, MIFCSR, 1);
289  MIFDELAY;
290  val = bmac_mif_readbits(dev, 17);
291  bmwrite(dev, MIFCSR, 4);
292  MIFDELAY;
293  return val;
294 }
295 
296 static void
297 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
298 {
299  bmwrite(dev, MIFCSR, 4);
300  MIFDELAY;
301  bmac_mif_writebits(dev, ~0U, 32);
302  bmac_mif_writebits(dev, 5, 4);
303  bmac_mif_writebits(dev, addr, 10);
304  bmac_mif_writebits(dev, 2, 2);
305  bmac_mif_writebits(dev, val, 16);
306  bmac_mif_writebits(dev, 3, 2);
307 }
308 
309 static void
310 bmac_init_registers(struct net_device *dev)
311 {
312  struct bmac_data *bp = netdev_priv(dev);
313  volatile unsigned short regValue;
314  unsigned short *pWord16;
315  int i;
316 
317  /* XXDEBUG(("bmac: enter init_registers\n")); */
318 
319  bmwrite(dev, RXRST, RxResetValue);
320  bmwrite(dev, TXRST, TxResetBit);
321 
322  i = 100;
323  do {
324  --i;
325  udelay(10000);
326  regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
327  } while ((regValue & TxResetBit) && i > 0);
328 
329  if (!bp->is_bmac_plus) {
330  regValue = bmread(dev, XCVRIF);
331  regValue |= ClkBit | SerialMode | COLActiveLow;
332  bmwrite(dev, XCVRIF, regValue);
333  udelay(10000);
334  }
335 
336  bmwrite(dev, RSEED, (unsigned short)0x1968);
337 
338  regValue = bmread(dev, XIFC);
339  regValue |= TxOutputEnable;
340  bmwrite(dev, XIFC, regValue);
341 
342  bmread(dev, PAREG);
343 
344  /* set collision counters to 0 */
345  bmwrite(dev, NCCNT, 0);
346  bmwrite(dev, NTCNT, 0);
347  bmwrite(dev, EXCNT, 0);
348  bmwrite(dev, LTCNT, 0);
349 
350  /* set rx counters to 0 */
351  bmwrite(dev, FRCNT, 0);
352  bmwrite(dev, LECNT, 0);
353  bmwrite(dev, AECNT, 0);
354  bmwrite(dev, FECNT, 0);
355  bmwrite(dev, RXCV, 0);
356 
357  /* set tx fifo information */
358  bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
359 
360  bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
361  bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
362 
363  /* set rx fifo information */
364  bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
365  bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
366 
367  //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
368  bmread(dev, STATUS); /* read it just to clear it */
369 
370  /* zero out the chip Hash Filter registers */
371  for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
372  bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
373  bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
374  bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
375  bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
376 
377  pWord16 = (unsigned short *)dev->dev_addr;
378  bmwrite(dev, MADD0, *pWord16++);
379  bmwrite(dev, MADD1, *pWord16++);
380  bmwrite(dev, MADD2, *pWord16);
381 
383 
384  bmwrite(dev, INTDISABLE, EnableNormal);
385 }
386 
387 #if 0
388 static void
389 bmac_disable_interrupts(struct net_device *dev)
390 {
391  bmwrite(dev, INTDISABLE, DisableAll);
392 }
393 
394 static void
395 bmac_enable_interrupts(struct net_device *dev)
396 {
397  bmwrite(dev, INTDISABLE, EnableNormal);
398 }
399 #endif
400 
401 
402 static void
403 bmac_start_chip(struct net_device *dev)
404 {
405  struct bmac_data *bp = netdev_priv(dev);
406  volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
407  unsigned short oldConfig;
408 
409  /* enable rx dma channel */
410  dbdma_continue(rd);
411 
412  oldConfig = bmread(dev, TXCFG);
413  bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
414 
415  /* turn on rx plus any other bits already on (promiscuous possibly) */
416  oldConfig = bmread(dev, RXCFG);
417  bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
418  udelay(20000);
419 }
420 
421 static void
422 bmac_init_phy(struct net_device *dev)
423 {
424  unsigned int addr;
425  struct bmac_data *bp = netdev_priv(dev);
426 
427  printk(KERN_DEBUG "phy registers:");
428  for (addr = 0; addr < 32; ++addr) {
429  if ((addr & 7) == 0)
431  printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
432  }
433  printk(KERN_CONT "\n");
434 
435  if (bp->is_bmac_plus) {
436  unsigned int capable, ctrl;
437 
438  ctrl = bmac_mif_read(dev, 0);
439  capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
440  if (bmac_mif_read(dev, 4) != capable ||
441  (ctrl & 0x1000) == 0) {
442  bmac_mif_write(dev, 4, capable);
443  bmac_mif_write(dev, 0, 0x1200);
444  } else
445  bmac_mif_write(dev, 0, 0x1000);
446  }
447 }
448 
449 static void bmac_init_chip(struct net_device *dev)
450 {
451  bmac_init_phy(dev);
452  bmac_init_registers(dev);
453 }
454 
455 #ifdef CONFIG_PM
456 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
457 {
458  struct net_device* dev = macio_get_drvdata(mdev);
459  struct bmac_data *bp = netdev_priv(dev);
460  unsigned long flags;
461  unsigned short config;
462  int i;
463 
464  netif_device_detach(dev);
465  /* prolly should wait for dma to finish & turn off the chip */
466  spin_lock_irqsave(&bp->lock, flags);
467  if (bp->timeout_active) {
468  del_timer(&bp->tx_timeout);
469  bp->timeout_active = 0;
470  }
471  disable_irq(dev->irq);
474  bp->sleeping = 1;
475  spin_unlock_irqrestore(&bp->lock, flags);
476  if (bp->opened) {
477  volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
478  volatile struct dbdma_regs __iomem *td = bp->tx_dma;
479 
480  config = bmread(dev, RXCFG);
481  bmwrite(dev, RXCFG, (config & ~RxMACEnable));
482  config = bmread(dev, TXCFG);
483  bmwrite(dev, TXCFG, (config & ~TxMACEnable));
484  bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
485  /* disable rx and tx dma */
486  st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
487  st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
488  /* free some skb's */
489  for (i=0; i<N_RX_RING; i++) {
490  if (bp->rx_bufs[i] != NULL) {
491  dev_kfree_skb(bp->rx_bufs[i]);
492  bp->rx_bufs[i] = NULL;
493  }
494  }
495  for (i = 0; i<N_TX_RING; i++) {
496  if (bp->tx_bufs[i] != NULL) {
497  dev_kfree_skb(bp->tx_bufs[i]);
498  bp->tx_bufs[i] = NULL;
499  }
500  }
501  }
502  pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
503  return 0;
504 }
505 
506 static int bmac_resume(struct macio_dev *mdev)
507 {
508  struct net_device* dev = macio_get_drvdata(mdev);
509  struct bmac_data *bp = netdev_priv(dev);
510 
511  /* see if this is enough */
512  if (bp->opened)
513  bmac_reset_and_enable(dev);
514 
515  enable_irq(dev->irq);
516  enable_irq(bp->tx_dma_intr);
517  enable_irq(bp->rx_dma_intr);
518  netif_device_attach(dev);
519 
520  return 0;
521 }
522 #endif /* CONFIG_PM */
523 
524 static int bmac_set_address(struct net_device *dev, void *addr)
525 {
526  struct bmac_data *bp = netdev_priv(dev);
527  unsigned char *p = addr;
528  unsigned short *pWord16;
529  unsigned long flags;
530  int i;
531 
532  XXDEBUG(("bmac: enter set_address\n"));
533  spin_lock_irqsave(&bp->lock, flags);
534 
535  for (i = 0; i < 6; ++i) {
536  dev->dev_addr[i] = p[i];
537  }
538  /* load up the hardware address */
539  pWord16 = (unsigned short *)dev->dev_addr;
540  bmwrite(dev, MADD0, *pWord16++);
541  bmwrite(dev, MADD1, *pWord16++);
542  bmwrite(dev, MADD2, *pWord16);
543 
544  spin_unlock_irqrestore(&bp->lock, flags);
545  XXDEBUG(("bmac: exit set_address\n"));
546  return 0;
547 }
548 
549 static inline void bmac_set_timeout(struct net_device *dev)
550 {
551  struct bmac_data *bp = netdev_priv(dev);
552  unsigned long flags;
553 
554  spin_lock_irqsave(&bp->lock, flags);
555  if (bp->timeout_active)
556  del_timer(&bp->tx_timeout);
557  bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
558  bp->tx_timeout.function = bmac_tx_timeout;
559  bp->tx_timeout.data = (unsigned long) dev;
560  add_timer(&bp->tx_timeout);
561  bp->timeout_active = 1;
562  spin_unlock_irqrestore(&bp->lock, flags);
563 }
564 
565 static void
566 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
567 {
568  void *vaddr;
569  unsigned long baddr;
570  unsigned long len;
571 
572  len = skb->len;
573  vaddr = skb->data;
574  baddr = virt_to_bus(vaddr);
575 
576  dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
577 }
578 
579 static void
580 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
581 {
582  unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
583 
584  dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
585  virt_to_bus(addr), 0);
586 }
587 
588 static void
589 bmac_init_tx_ring(struct bmac_data *bp)
590 {
591  volatile struct dbdma_regs __iomem *td = bp->tx_dma;
592 
593  memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
594 
595  bp->tx_empty = 0;
596  bp->tx_fill = 0;
597  bp->tx_fullup = 0;
598 
599  /* put a branch at the end of the tx command list */
600  dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
601  (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
602 
603  /* reset tx dma */
604  dbdma_reset(td);
605  out_le32(&td->wait_sel, 0x00200020);
606  out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
607 }
608 
609 static int
610 bmac_init_rx_ring(struct net_device *dev)
611 {
612  struct bmac_data *bp = netdev_priv(dev);
613  volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
614  int i;
615  struct sk_buff *skb;
616 
617  /* initialize list of sk_buffs for receiving and set up recv dma */
618  memset((char *)bp->rx_cmds, 0,
619  (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
620  for (i = 0; i < N_RX_RING; i++) {
621  if ((skb = bp->rx_bufs[i]) == NULL) {
622  bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
623  if (skb != NULL)
624  skb_reserve(skb, 2);
625  }
626  bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
627  }
628 
629  bp->rx_empty = 0;
630  bp->rx_fill = i;
631 
632  /* Put a branch back to the beginning of the receive command list */
633  dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
634  (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
635 
636  /* start rx dma */
637  dbdma_reset(rd);
638  out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
639 
640  return 1;
641 }
642 
643 
644 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
645 {
646  struct bmac_data *bp = netdev_priv(dev);
647  volatile struct dbdma_regs __iomem *td = bp->tx_dma;
648  int i;
649 
650  /* see if there's a free slot in the tx ring */
651  /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
652  /* bp->tx_empty, bp->tx_fill)); */
653  i = bp->tx_fill + 1;
654  if (i >= N_TX_RING)
655  i = 0;
656  if (i == bp->tx_empty) {
657  netif_stop_queue(dev);
658  bp->tx_fullup = 1;
659  XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
660  return -1; /* can't take it at the moment */
661  }
662 
663  dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
664 
665  bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
666 
667  bp->tx_bufs[bp->tx_fill] = skb;
668  bp->tx_fill = i;
669 
670  dev->stats.tx_bytes += skb->len;
671 
672  dbdma_continue(td);
673 
674  return 0;
675 }
676 
677 static int rxintcount;
678 
679 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
680 {
681  struct net_device *dev = (struct net_device *) dev_id;
682  struct bmac_data *bp = netdev_priv(dev);
683  volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
684  volatile struct dbdma_cmd *cp;
685  int i, nb, stat;
686  struct sk_buff *skb;
687  unsigned int residual;
688  int last;
689  unsigned long flags;
690 
691  spin_lock_irqsave(&bp->lock, flags);
692 
693  if (++rxintcount < 10) {
694  XXDEBUG(("bmac_rxdma_intr\n"));
695  }
696 
697  last = -1;
698  i = bp->rx_empty;
699 
700  while (1) {
701  cp = &bp->rx_cmds[i];
702  stat = ld_le16(&cp->xfer_status);
703  residual = ld_le16(&cp->res_count);
704  if ((stat & ACTIVE) == 0)
705  break;
706  nb = RX_BUFLEN - residual - 2;
707  if (nb < (ETHERMINPACKET - ETHERCRC)) {
708  skb = NULL;
709  dev->stats.rx_length_errors++;
710  dev->stats.rx_errors++;
711  } else {
712  skb = bp->rx_bufs[i];
713  bp->rx_bufs[i] = NULL;
714  }
715  if (skb != NULL) {
716  nb -= ETHERCRC;
717  skb_put(skb, nb);
718  skb->protocol = eth_type_trans(skb, dev);
719  netif_rx(skb);
720  ++dev->stats.rx_packets;
721  dev->stats.rx_bytes += nb;
722  } else {
723  ++dev->stats.rx_dropped;
724  }
725  if ((skb = bp->rx_bufs[i]) == NULL) {
726  bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
727  if (skb != NULL)
728  skb_reserve(bp->rx_bufs[i], 2);
729  }
730  bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
731  st_le16(&cp->res_count, 0);
732  st_le16(&cp->xfer_status, 0);
733  last = i;
734  if (++i >= N_RX_RING) i = 0;
735  }
736 
737  if (last != -1) {
738  bp->rx_fill = last;
739  bp->rx_empty = i;
740  }
741 
742  dbdma_continue(rd);
743  spin_unlock_irqrestore(&bp->lock, flags);
744 
745  if (rxintcount < 10) {
746  XXDEBUG(("bmac_rxdma_intr done\n"));
747  }
748  return IRQ_HANDLED;
749 }
750 
751 static int txintcount;
752 
753 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
754 {
755  struct net_device *dev = (struct net_device *) dev_id;
756  struct bmac_data *bp = netdev_priv(dev);
757  volatile struct dbdma_cmd *cp;
758  int stat;
759  unsigned long flags;
760 
761  spin_lock_irqsave(&bp->lock, flags);
762 
763  if (txintcount++ < 10) {
764  XXDEBUG(("bmac_txdma_intr\n"));
765  }
766 
767  /* del_timer(&bp->tx_timeout); */
768  /* bp->timeout_active = 0; */
769 
770  while (1) {
771  cp = &bp->tx_cmds[bp->tx_empty];
772  stat = ld_le16(&cp->xfer_status);
773  if (txintcount < 10) {
774  XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
775  }
776  if (!(stat & ACTIVE)) {
777  /*
778  * status field might not have been filled by DBDMA
779  */
780  if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
781  break;
782  }
783 
784  if (bp->tx_bufs[bp->tx_empty]) {
785  ++dev->stats.tx_packets;
787  }
788  bp->tx_bufs[bp->tx_empty] = NULL;
789  bp->tx_fullup = 0;
790  netif_wake_queue(dev);
791  if (++bp->tx_empty >= N_TX_RING)
792  bp->tx_empty = 0;
793  if (bp->tx_empty == bp->tx_fill)
794  break;
795  }
796 
797  spin_unlock_irqrestore(&bp->lock, flags);
798 
799  if (txintcount < 10) {
800  XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
801  }
802 
803  bmac_start(dev);
804  return IRQ_HANDLED;
805 }
806 
807 #ifndef SUNHME_MULTICAST
808 /* Real fast bit-reversal algorithm, 6-bit values */
809 static int reverse6[64] = {
810  0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
811  0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
812  0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
813  0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
814  0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
815  0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
816  0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
817  0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
818 };
819 
820 static unsigned int
821 crc416(unsigned int curval, unsigned short nxtval)
822 {
823  register unsigned int counter, cur = curval, next = nxtval;
824  register int high_crc_set, low_data_set;
825 
826  /* Swap bytes */
827  next = ((next & 0x00FF) << 8) | (next >> 8);
828 
829  /* Compute bit-by-bit */
830  for (counter = 0; counter < 16; ++counter) {
831  /* is high CRC bit set? */
832  if ((cur & 0x80000000) == 0) high_crc_set = 0;
833  else high_crc_set = 1;
834 
835  cur = cur << 1;
836 
837  if ((next & 0x0001) == 0) low_data_set = 0;
838  else low_data_set = 1;
839 
840  next = next >> 1;
841 
842  /* do the XOR */
843  if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
844  }
845  return cur;
846 }
847 
848 static unsigned int
849 bmac_crc(unsigned short *address)
850 {
851  unsigned int newcrc;
852 
853  XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
854  newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
855  newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
856  newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
857 
858  return(newcrc);
859 }
860 
861 /*
862  * Add requested mcast addr to BMac's hash table filter.
863  *
864  */
865 
866 static void
867 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
868 {
869  unsigned int crc;
870  unsigned short mask;
871 
872  if (!(*addr)) return;
873  crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
874  crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
875  if (bp->hash_use_count[crc]++) return; /* This bit is already set */
876  mask = crc % 16;
877  mask = (unsigned char)1 << mask;
878  bp->hash_use_count[crc/16] |= mask;
879 }
880 
881 static void
882 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
883 {
884  unsigned int crc;
885  unsigned char mask;
886 
887  /* Now, delete the address from the filter copy, as indicated */
888  crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
889  crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
890  if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
891  if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
892  mask = crc % 16;
893  mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
894  bp->hash_table_mask[crc/16] &= mask;
895 }
896 
897 /*
898  * Sync the adapter with the software copy of the multicast mask
899  * (logical address filter).
900  */
901 
902 static void
903 bmac_rx_off(struct net_device *dev)
904 {
905  unsigned short rx_cfg;
906 
907  rx_cfg = bmread(dev, RXCFG);
908  rx_cfg &= ~RxMACEnable;
909  bmwrite(dev, RXCFG, rx_cfg);
910  do {
911  rx_cfg = bmread(dev, RXCFG);
912  } while (rx_cfg & RxMACEnable);
913 }
914 
915 unsigned short
916 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
917 {
918  unsigned short rx_cfg;
919 
920  rx_cfg = bmread(dev, RXCFG);
921  rx_cfg |= RxMACEnable;
922  if (hash_enable) rx_cfg |= RxHashFilterEnable;
923  else rx_cfg &= ~RxHashFilterEnable;
924  if (promisc_enable) rx_cfg |= RxPromiscEnable;
925  else rx_cfg &= ~RxPromiscEnable;
926  bmwrite(dev, RXRST, RxResetValue);
927  bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
928  bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
929  bmwrite(dev, RXCFG, rx_cfg );
930  return rx_cfg;
931 }
932 
933 static void
934 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
935 {
936  bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
937  bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
938  bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
939  bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
940 }
941 
942 #if 0
943 static void
944 bmac_add_multi(struct net_device *dev,
945  struct bmac_data *bp, unsigned char *addr)
946 {
947  /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
948  bmac_addhash(bp, addr);
949  bmac_rx_off(dev);
950  bmac_update_hash_table_mask(dev, bp);
951  bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
952  /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
953 }
954 
955 static void
956 bmac_remove_multi(struct net_device *dev,
957  struct bmac_data *bp, unsigned char *addr)
958 {
959  bmac_removehash(bp, addr);
960  bmac_rx_off(dev);
961  bmac_update_hash_table_mask(dev, bp);
962  bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
963 }
964 #endif
965 
966 /* Set or clear the multicast filter for this adaptor.
967  num_addrs == -1 Promiscuous mode, receive all packets
968  num_addrs == 0 Normal mode, clear multicast list
969  num_addrs > 0 Multicast mode, receive normal and MC packets, and do
970  best-effort filtering.
971  */
972 static void bmac_set_multicast(struct net_device *dev)
973 {
974  struct netdev_hw_addr *ha;
975  struct bmac_data *bp = netdev_priv(dev);
976  int num_addrs = netdev_mc_count(dev);
977  unsigned short rx_cfg;
978  int i;
979 
980  if (bp->sleeping)
981  return;
982 
983  XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
984 
985  if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
986  for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
987  bmac_update_hash_table_mask(dev, bp);
988  rx_cfg = bmac_rx_on(dev, 1, 0);
989  XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
990  } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
991  rx_cfg = bmread(dev, RXCFG);
992  rx_cfg |= RxPromiscEnable;
993  bmwrite(dev, RXCFG, rx_cfg);
994  rx_cfg = bmac_rx_on(dev, 0, 1);
995  XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
996  } else {
997  for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
998  for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
999  if (num_addrs == 0) {
1000  rx_cfg = bmac_rx_on(dev, 0, 0);
1001  XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1002  } else {
1003  netdev_for_each_mc_addr(ha, dev)
1004  bmac_addhash(bp, ha->addr);
1005  bmac_update_hash_table_mask(dev, bp);
1006  rx_cfg = bmac_rx_on(dev, 1, 0);
1007  XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1008  }
1009  }
1010  /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1011 }
1012 #else /* ifdef SUNHME_MULTICAST */
1013 
1014 /* The version of set_multicast below was lifted from sunhme.c */
1015 
1016 static void bmac_set_multicast(struct net_device *dev)
1017 {
1018  struct netdev_hw_addr *ha;
1019  int i;
1020  unsigned short rx_cfg;
1021  u32 crc;
1022 
1023  if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1024  bmwrite(dev, BHASH0, 0xffff);
1025  bmwrite(dev, BHASH1, 0xffff);
1026  bmwrite(dev, BHASH2, 0xffff);
1027  bmwrite(dev, BHASH3, 0xffff);
1028  } else if(dev->flags & IFF_PROMISC) {
1029  rx_cfg = bmread(dev, RXCFG);
1030  rx_cfg |= RxPromiscEnable;
1031  bmwrite(dev, RXCFG, rx_cfg);
1032  } else {
1033  u16 hash_table[4];
1034 
1035  rx_cfg = bmread(dev, RXCFG);
1036  rx_cfg &= ~RxPromiscEnable;
1037  bmwrite(dev, RXCFG, rx_cfg);
1038 
1039  for(i = 0; i < 4; i++) hash_table[i] = 0;
1040 
1041  netdev_for_each_mc_addr(ha, dev) {
1042  crc = ether_crc_le(6, ha->addr);
1043  crc >>= 26;
1044  hash_table[crc >> 4] |= 1 << (crc & 0xf);
1045  }
1046  bmwrite(dev, BHASH0, hash_table[0]);
1047  bmwrite(dev, BHASH1, hash_table[1]);
1048  bmwrite(dev, BHASH2, hash_table[2]);
1049  bmwrite(dev, BHASH3, hash_table[3]);
1050  }
1051 }
1052 #endif /* SUNHME_MULTICAST */
1053 
1054 static int miscintcount;
1055 
1056 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1057 {
1058  struct net_device *dev = (struct net_device *) dev_id;
1059  unsigned int status = bmread(dev, STATUS);
1060  if (miscintcount++ < 10) {
1061  XXDEBUG(("bmac_misc_intr\n"));
1062  }
1063  /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1064  /* bmac_txdma_intr_inner(irq, dev_id); */
1065  /* if (status & FrameReceived) dev->stats.rx_dropped++; */
1066  if (status & RxErrorMask) dev->stats.rx_errors++;
1067  if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1068  if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1069  if (status & RxOverFlow) dev->stats.rx_over_errors++;
1070  if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1071 
1072  /* if (status & FrameSent) dev->stats.tx_dropped++; */
1073  if (status & TxErrorMask) dev->stats.tx_errors++;
1074  if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1075  if (status & TxNormalCollExp) dev->stats.collisions++;
1076  return IRQ_HANDLED;
1077 }
1078 
1079 /*
1080  * Procedure for reading EEPROM
1081  */
1082 #define SROMAddressLength 5
1083 #define DataInOn 0x0008
1084 #define DataInOff 0x0000
1085 #define Clk 0x0002
1086 #define ChipSelect 0x0001
1087 #define SDIShiftCount 3
1088 #define SD0ShiftCount 2
1089 #define DelayValue 1000 /* number of microseconds */
1090 #define SROMStartOffset 10 /* this is in words */
1091 #define SROMReadCount 3 /* number of words to read from SROM */
1092 #define SROMAddressBits 6
1093 #define EnetAddressOffset 20
1094 
1095 static unsigned char
1096 bmac_clock_out_bit(struct net_device *dev)
1097 {
1098  unsigned short data;
1099  unsigned short val;
1100 
1101  bmwrite(dev, SROMCSR, ChipSelect | Clk);
1102  udelay(DelayValue);
1103 
1104  data = bmread(dev, SROMCSR);
1105  udelay(DelayValue);
1106  val = (data >> SD0ShiftCount) & 1;
1107 
1108  bmwrite(dev, SROMCSR, ChipSelect);
1109  udelay(DelayValue);
1110 
1111  return val;
1112 }
1113 
1114 static void
1115 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1116 {
1117  unsigned short data;
1118 
1119  if (val != 0 && val != 1) return;
1120 
1121  data = (val << SDIShiftCount);
1122  bmwrite(dev, SROMCSR, data | ChipSelect );
1123  udelay(DelayValue);
1124 
1125  bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1126  udelay(DelayValue);
1127 
1128  bmwrite(dev, SROMCSR, data | ChipSelect);
1129  udelay(DelayValue);
1130 }
1131 
1132 static void
1133 reset_and_select_srom(struct net_device *dev)
1134 {
1135  /* first reset */
1136  bmwrite(dev, SROMCSR, 0);
1137  udelay(DelayValue);
1138 
1139  /* send it the read command (110) */
1140  bmac_clock_in_bit(dev, 1);
1141  bmac_clock_in_bit(dev, 1);
1142  bmac_clock_in_bit(dev, 0);
1143 }
1144 
1145 static unsigned short
1146 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1147 {
1148  unsigned short data, val;
1149  int i;
1150 
1151  /* send out the address we want to read from */
1152  for (i = 0; i < addr_len; i++) {
1153  val = addr >> (addr_len-i-1);
1154  bmac_clock_in_bit(dev, val & 1);
1155  }
1156 
1157  /* Now read in the 16-bit data */
1158  data = 0;
1159  for (i = 0; i < 16; i++) {
1160  val = bmac_clock_out_bit(dev);
1161  data <<= 1;
1162  data |= val;
1163  }
1164  bmwrite(dev, SROMCSR, 0);
1165 
1166  return data;
1167 }
1168 
1169 /*
1170  * It looks like Cogent and SMC use different methods for calculating
1171  * checksums. What a pain..
1172  */
1173 
1174 static int
1175 bmac_verify_checksum(struct net_device *dev)
1176 {
1177  unsigned short data, storedCS;
1178 
1179  reset_and_select_srom(dev);
1180  data = read_srom(dev, 3, SROMAddressBits);
1181  storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1182 
1183  return 0;
1184 }
1185 
1186 
1187 static void
1188 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1189 {
1190  int i;
1191  unsigned short data;
1192 
1193  for (i = 0; i < 6; i++)
1194  {
1195  reset_and_select_srom(dev);
1196  data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1197  ea[2*i] = bitrev8(data & 0x0ff);
1198  ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1199  }
1200 }
1201 
1202 static void bmac_reset_and_enable(struct net_device *dev)
1203 {
1204  struct bmac_data *bp = netdev_priv(dev);
1205  unsigned long flags;
1206  struct sk_buff *skb;
1207  unsigned char *data;
1208 
1209  spin_lock_irqsave(&bp->lock, flags);
1210  bmac_enable_and_reset_chip(dev);
1211  bmac_init_tx_ring(bp);
1212  bmac_init_rx_ring(dev);
1213  bmac_init_chip(dev);
1214  bmac_start_chip(dev);
1215  bmwrite(dev, INTDISABLE, EnableNormal);
1216  bp->sleeping = 0;
1217 
1218  /*
1219  * It seems that the bmac can't receive until it's transmitted
1220  * a packet. So we give it a dummy packet to transmit.
1221  */
1222  skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1223  if (skb != NULL) {
1224  data = skb_put(skb, ETHERMINPACKET);
1225  memset(data, 0, ETHERMINPACKET);
1226  memcpy(data, dev->dev_addr, 6);
1227  memcpy(data+6, dev->dev_addr, 6);
1228  bmac_transmit_packet(skb, dev);
1229  }
1230  spin_unlock_irqrestore(&bp->lock, flags);
1231 }
1232 
1233 static const struct ethtool_ops bmac_ethtool_ops = {
1234  .get_link = ethtool_op_get_link,
1235 };
1236 
1237 static const struct net_device_ops bmac_netdev_ops = {
1238  .ndo_open = bmac_open,
1239  .ndo_stop = bmac_close,
1240  .ndo_start_xmit = bmac_output,
1241  .ndo_set_rx_mode = bmac_set_multicast,
1242  .ndo_set_mac_address = bmac_set_address,
1243  .ndo_change_mtu = eth_change_mtu,
1244  .ndo_validate_addr = eth_validate_addr,
1245 };
1246 
1247 static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1248 {
1249  int j, rev, ret;
1250  struct bmac_data *bp;
1251  const unsigned char *prop_addr;
1252  unsigned char addr[6];
1253  struct net_device *dev;
1254  int is_bmac_plus = ((int)match->data) != 0;
1255 
1256  if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1257  printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1258  return -ENODEV;
1259  }
1260  prop_addr = of_get_property(macio_get_of_node(mdev),
1261  "mac-address", NULL);
1262  if (prop_addr == NULL) {
1263  prop_addr = of_get_property(macio_get_of_node(mdev),
1264  "local-mac-address", NULL);
1265  if (prop_addr == NULL) {
1266  printk(KERN_ERR "BMAC: Can't get mac-address\n");
1267  return -ENODEV;
1268  }
1269  }
1270  memcpy(addr, prop_addr, sizeof(addr));
1271 
1272  dev = alloc_etherdev(PRIV_BYTES);
1273  if (!dev)
1274  return -ENOMEM;
1275 
1276  bp = netdev_priv(dev);
1277  SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1278  macio_set_drvdata(mdev, dev);
1279 
1280  bp->mdev = mdev;
1281  spin_lock_init(&bp->lock);
1282 
1283  if (macio_request_resources(mdev, "bmac")) {
1284  printk(KERN_ERR "BMAC: can't request IO resource !\n");
1285  goto out_free;
1286  }
1287 
1288  dev->base_addr = (unsigned long)
1289  ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1290  if (dev->base_addr == 0)
1291  goto out_release;
1292 
1293  dev->irq = macio_irq(mdev, 0);
1294 
1295  bmac_enable_and_reset_chip(dev);
1296  bmwrite(dev, INTDISABLE, DisableAll);
1297 
1298  rev = addr[0] == 0 && addr[1] == 0xA0;
1299  for (j = 0; j < 6; ++j)
1300  dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1301 
1302  /* Enable chip without interrupts for now */
1303  bmac_enable_and_reset_chip(dev);
1304  bmwrite(dev, INTDISABLE, DisableAll);
1305 
1306  dev->netdev_ops = &bmac_netdev_ops;
1307  dev->ethtool_ops = &bmac_ethtool_ops;
1308 
1309  bmac_get_station_address(dev, addr);
1310  if (bmac_verify_checksum(dev) != 0)
1311  goto err_out_iounmap;
1312 
1313  bp->is_bmac_plus = is_bmac_plus;
1314  bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1315  if (!bp->tx_dma)
1316  goto err_out_iounmap;
1317  bp->tx_dma_intr = macio_irq(mdev, 1);
1318  bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1319  if (!bp->rx_dma)
1320  goto err_out_iounmap_tx;
1321  bp->rx_dma_intr = macio_irq(mdev, 2);
1322 
1323  bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1324  bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1325 
1326  bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1327  skb_queue_head_init(bp->queue);
1328 
1329  init_timer(&bp->tx_timeout);
1330 
1331  ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1332  if (ret) {
1333  printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1334  goto err_out_iounmap_rx;
1335  }
1336  ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1337  if (ret) {
1338  printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1339  goto err_out_irq0;
1340  }
1341  ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1342  if (ret) {
1343  printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1344  goto err_out_irq1;
1345  }
1346 
1347  /* Mask chip interrupts and disable chip, will be
1348  * re-enabled on open()
1349  */
1350  disable_irq(dev->irq);
1351  pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1352 
1353  if (register_netdev(dev) != 0) {
1354  printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1355  goto err_out_irq2;
1356  }
1357 
1358  printk(KERN_INFO "%s: BMAC%s at %pM",
1359  dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1360  XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1361  printk("\n");
1362 
1363  return 0;
1364 
1365 err_out_irq2:
1366  free_irq(bp->rx_dma_intr, dev);
1367 err_out_irq1:
1368  free_irq(bp->tx_dma_intr, dev);
1369 err_out_irq0:
1370  free_irq(dev->irq, dev);
1371 err_out_iounmap_rx:
1372  iounmap(bp->rx_dma);
1373 err_out_iounmap_tx:
1374  iounmap(bp->tx_dma);
1375 err_out_iounmap:
1376  iounmap((void __iomem *)dev->base_addr);
1377 out_release:
1379 out_free:
1380  pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1381  free_netdev(dev);
1382 
1383  return -ENODEV;
1384 }
1385 
1386 static int bmac_open(struct net_device *dev)
1387 {
1388  struct bmac_data *bp = netdev_priv(dev);
1389  /* XXDEBUG(("bmac: enter open\n")); */
1390  /* reset the chip */
1391  bp->opened = 1;
1392  bmac_reset_and_enable(dev);
1393  enable_irq(dev->irq);
1394  return 0;
1395 }
1396 
1397 static int bmac_close(struct net_device *dev)
1398 {
1399  struct bmac_data *bp = netdev_priv(dev);
1400  volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1401  volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1402  unsigned short config;
1403  int i;
1404 
1405  bp->sleeping = 1;
1406 
1407  /* disable rx and tx */
1408  config = bmread(dev, RXCFG);
1409  bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1410 
1411  config = bmread(dev, TXCFG);
1412  bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1413 
1414  bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1415 
1416  /* disable rx and tx dma */
1417  st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1418  st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1419 
1420  /* free some skb's */
1421  XXDEBUG(("bmac: free rx bufs\n"));
1422  for (i=0; i<N_RX_RING; i++) {
1423  if (bp->rx_bufs[i] != NULL) {
1424  dev_kfree_skb(bp->rx_bufs[i]);
1425  bp->rx_bufs[i] = NULL;
1426  }
1427  }
1428  XXDEBUG(("bmac: free tx bufs\n"));
1429  for (i = 0; i<N_TX_RING; i++) {
1430  if (bp->tx_bufs[i] != NULL) {
1431  dev_kfree_skb(bp->tx_bufs[i]);
1432  bp->tx_bufs[i] = NULL;
1433  }
1434  }
1435  XXDEBUG(("bmac: all bufs freed\n"));
1436 
1437  bp->opened = 0;
1438  disable_irq(dev->irq);
1439  pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1440 
1441  return 0;
1442 }
1443 
1444 static void
1445 bmac_start(struct net_device *dev)
1446 {
1447  struct bmac_data *bp = netdev_priv(dev);
1448  int i;
1449  struct sk_buff *skb;
1450  unsigned long flags;
1451 
1452  if (bp->sleeping)
1453  return;
1454 
1455  spin_lock_irqsave(&bp->lock, flags);
1456  while (1) {
1457  i = bp->tx_fill + 1;
1458  if (i >= N_TX_RING)
1459  i = 0;
1460  if (i == bp->tx_empty)
1461  break;
1462  skb = skb_dequeue(bp->queue);
1463  if (skb == NULL)
1464  break;
1465  bmac_transmit_packet(skb, dev);
1466  }
1467  spin_unlock_irqrestore(&bp->lock, flags);
1468 }
1469 
1470 static int
1471 bmac_output(struct sk_buff *skb, struct net_device *dev)
1472 {
1473  struct bmac_data *bp = netdev_priv(dev);
1474  skb_queue_tail(bp->queue, skb);
1475  bmac_start(dev);
1476  return NETDEV_TX_OK;
1477 }
1478 
1479 static void bmac_tx_timeout(unsigned long data)
1480 {
1481  struct net_device *dev = (struct net_device *) data;
1482  struct bmac_data *bp = netdev_priv(dev);
1483  volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1484  volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1485  volatile struct dbdma_cmd *cp;
1486  unsigned long flags;
1487  unsigned short config, oldConfig;
1488  int i;
1489 
1490  XXDEBUG(("bmac: tx_timeout called\n"));
1491  spin_lock_irqsave(&bp->lock, flags);
1492  bp->timeout_active = 0;
1493 
1494  /* update various counters */
1495 /* bmac_handle_misc_intrs(bp, 0); */
1496 
1497  cp = &bp->tx_cmds[bp->tx_empty];
1498 /* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1499 /* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1500 /* mb->pr, mb->xmtfs, mb->fifofc)); */
1501 
1502  /* turn off both tx and rx and reset the chip */
1503  config = bmread(dev, RXCFG);
1504  bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1505  config = bmread(dev, TXCFG);
1506  bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1507  out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1508  printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1509  bmac_enable_and_reset_chip(dev);
1510 
1511  /* restart rx dma */
1512  cp = bus_to_virt(ld_le32(&rd->cmdptr));
1513  out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1514  out_le16(&cp->xfer_status, 0);
1515  out_le32(&rd->cmdptr, virt_to_bus(cp));
1516  out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1517 
1518  /* fix up the transmit side */
1519  XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1520  bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1521  i = bp->tx_empty;
1522  ++dev->stats.tx_errors;
1523  if (i != bp->tx_fill) {
1524  dev_kfree_skb(bp->tx_bufs[i]);
1525  bp->tx_bufs[i] = NULL;
1526  if (++i >= N_TX_RING) i = 0;
1527  bp->tx_empty = i;
1528  }
1529  bp->tx_fullup = 0;
1530  netif_wake_queue(dev);
1531  if (i != bp->tx_fill) {
1532  cp = &bp->tx_cmds[i];
1533  out_le16(&cp->xfer_status, 0);
1534  out_le16(&cp->command, OUTPUT_LAST);
1535  out_le32(&td->cmdptr, virt_to_bus(cp));
1536  out_le32(&td->control, DBDMA_SET(RUN));
1537  /* bmac_set_timeout(dev); */
1538  XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1539  }
1540 
1541  /* turn it back on */
1542  oldConfig = bmread(dev, RXCFG);
1543  bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1544  oldConfig = bmread(dev, TXCFG);
1545  bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1546 
1547  spin_unlock_irqrestore(&bp->lock, flags);
1548 }
1549 
1550 #if 0
1551 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1552 {
1553  int i,*ip;
1554 
1555  for (i=0;i< count;i++) {
1556  ip = (int*)(cp+i);
1557 
1558  printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1559  ld_le32(ip+0),
1560  ld_le32(ip+1),
1561  ld_le32(ip+2),
1562  ld_le32(ip+3));
1563  }
1564 
1565 }
1566 #endif
1567 
1568 #if 0
1569 static int
1570 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1571 {
1572  int len = 0;
1573  off_t pos = 0;
1574  off_t begin = 0;
1575  int i;
1576 
1577  if (bmac_devs == NULL)
1578  return -ENOSYS;
1579 
1580  len += sprintf(buffer, "BMAC counters & registers\n");
1581 
1582  for (i = 0; i<N_REG_ENTRIES; i++) {
1583  len += sprintf(buffer + len, "%s: %#08x\n",
1584  reg_entries[i].name,
1585  bmread(bmac_devs, reg_entries[i].reg_offset));
1586  pos = begin + len;
1587 
1588  if (pos < offset) {
1589  len = 0;
1590  begin = pos;
1591  }
1592 
1593  if (pos > offset+length) break;
1594  }
1595 
1596  *start = buffer + (offset - begin);
1597  len -= (offset - begin);
1598 
1599  if (len > length) len = length;
1600 
1601  return len;
1602 }
1603 #endif
1604 
1605 static int __devexit bmac_remove(struct macio_dev *mdev)
1606 {
1607  struct net_device *dev = macio_get_drvdata(mdev);
1608  struct bmac_data *bp = netdev_priv(dev);
1609 
1610  unregister_netdev(dev);
1611 
1612  free_irq(dev->irq, dev);
1613  free_irq(bp->tx_dma_intr, dev);
1614  free_irq(bp->rx_dma_intr, dev);
1615 
1616  iounmap((void __iomem *)dev->base_addr);
1617  iounmap(bp->tx_dma);
1618  iounmap(bp->rx_dma);
1619 
1621 
1622  free_netdev(dev);
1623 
1624  return 0;
1625 }
1626 
1627 static struct of_device_id bmac_match[] =
1628 {
1629  {
1630  .name = "bmac",
1631  .data = (void *)0,
1632  },
1633  {
1634  .type = "network",
1635  .compatible = "bmac+",
1636  .data = (void *)1,
1637  },
1638  {},
1639 };
1640 MODULE_DEVICE_TABLE (of, bmac_match);
1641 
1642 static struct macio_driver bmac_driver =
1643 {
1644  .driver = {
1645  .name = "bmac",
1646  .owner = THIS_MODULE,
1647  .of_match_table = bmac_match,
1648  },
1649  .probe = bmac_probe,
1650  .remove = bmac_remove,
1651 #ifdef CONFIG_PM
1652  .suspend = bmac_suspend,
1653  .resume = bmac_resume,
1654 #endif
1655 };
1656 
1657 
1658 static int __init bmac_init(void)
1659 {
1660  if (bmac_emergency_rxbuf == NULL) {
1661  bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1662  if (bmac_emergency_rxbuf == NULL)
1663  return -ENOMEM;
1664  }
1665 
1666  return macio_register_driver(&bmac_driver);
1667 }
1668 
1669 static void __exit bmac_exit(void)
1670 {
1671  macio_unregister_driver(&bmac_driver);
1672 
1673  kfree(bmac_emergency_rxbuf);
1674  bmac_emergency_rxbuf = NULL;
1675 }
1676 
1677 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1678 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1679 MODULE_LICENSE("GPL");
1680 
1681 module_init(bmac_init);
1682 module_exit(bmac_exit);