Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cciss.c
Go to the documentation of this file.
1 /*
2  * Disk Array driver for HP Smart Array controllers.
3  * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; version 2 of the License.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  * 02111-1307, USA.
18  *
19  * Questions/Comments/Bugfixes to [email protected]
20  *
21  */
22 
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46 
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57 
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61 
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
68 static int cciss_tape_cmds = 6;
69 module_param(cciss_tape_cmds, int, 0644);
70 MODULE_PARM_DESC(cciss_tape_cmds,
71  "number of commands to allocate for tape devices (default: 6)");
72 static int cciss_simple_mode;
73 module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
74 MODULE_PARM_DESC(cciss_simple_mode,
75  "Use 'simple mode' rather than 'performant mode'");
76 
77 static DEFINE_MUTEX(cciss_mutex);
78 static struct proc_dir_entry *proc_cciss;
79 
80 #include "cciss_cmd.h"
81 #include "cciss.h"
82 #include <linux/cciss_ioctl.h>
83 
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id cciss_pci_device_id[] = {
95  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
96  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
97  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
98  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
99  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
100  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
101  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
102  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
103  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
104  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
105  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
106  {0,}
107 };
108 
109 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110 
111 /* board_id = Subsystem Device ID & Vendor ID
112  * product = Marketing Name for the board
113  * access = Address of the struct of function pointers
114  */
115 static struct board_type products[] = {
116  {0x40700E11, "Smart Array 5300", &SA5_access},
117  {0x40800E11, "Smart Array 5i", &SA5B_access},
118  {0x40820E11, "Smart Array 532", &SA5B_access},
119  {0x40830E11, "Smart Array 5312", &SA5B_access},
120  {0x409A0E11, "Smart Array 641", &SA5_access},
121  {0x409B0E11, "Smart Array 642", &SA5_access},
122  {0x409C0E11, "Smart Array 6400", &SA5_access},
123  {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124  {0x40910E11, "Smart Array 6i", &SA5_access},
125  {0x3225103C, "Smart Array P600", &SA5_access},
126  {0x3223103C, "Smart Array P800", &SA5_access},
127  {0x3234103C, "Smart Array P400", &SA5_access},
128  {0x3235103C, "Smart Array P400i", &SA5_access},
129  {0x3211103C, "Smart Array E200i", &SA5_access},
130  {0x3212103C, "Smart Array E200", &SA5_access},
131  {0x3213103C, "Smart Array E200i", &SA5_access},
132  {0x3214103C, "Smart Array E200i", &SA5_access},
133  {0x3215103C, "Smart Array E200i", &SA5_access},
134  {0x3237103C, "Smart Array E500", &SA5_access},
135  {0x3223103C, "Smart Array P800", &SA5_access},
136  {0x3234103C, "Smart Array P400", &SA5_access},
137  {0x323D103C, "Smart Array P700m", &SA5_access},
138 };
139 
140 /* How long to wait (in milliseconds) for board to go into simple mode */
141 #define MAX_CONFIG_WAIT 30000
142 #define MAX_IOCTL_CONFIG_WAIT 1000
143 
144 /*define how many times we will try a command because of bus resets */
145 #define MAX_CMD_RETRIES 3
146 
147 #define MAX_CTLR 32
148 
149 /* Originally cciss driver only supports 8 major numbers */
150 #define MAX_CTLR_ORIG 8
151 
152 static ctlr_info_t *hba[MAX_CTLR];
153 
154 static struct task_struct *cciss_scan_thread;
155 static DEFINE_MUTEX(scan_mutex);
156 static LIST_HEAD(scan_q);
157 
158 static void do_cciss_request(struct request_queue *q);
159 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
160 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
161 static int cciss_open(struct block_device *bdev, fmode_t mode);
162 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
163 static int cciss_release(struct gendisk *disk, fmode_t mode);
164 static int do_ioctl(struct block_device *bdev, fmode_t mode,
165  unsigned int cmd, unsigned long arg);
166 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
167  unsigned int cmd, unsigned long arg);
168 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
169 
170 static int cciss_revalidate(struct gendisk *disk);
171 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
172 static int deregister_disk(ctlr_info_t *h, int drv_index,
173  int clear_all, int via_ioctl);
174 
175 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
176  sector_t *total_size, unsigned int *block_size);
177 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
178  sector_t *total_size, unsigned int *block_size);
179 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
181  unsigned int block_size, InquiryData_struct *inq_buff,
182  drive_info_struct *drv);
183 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
184 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h);
185 static void start_io(ctlr_info_t *h);
186 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
187  __u8 page_code, unsigned char scsi3addr[],
188  int cmd_type);
189 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
190  int attempt_retry);
191 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
192 
193 static int add_to_scan_list(struct ctlr_info *h);
194 static int scan_thread(void *data);
195 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
196 static void cciss_hba_release(struct device *dev);
197 static void cciss_device_release(struct device *dev);
198 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
199 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
200 static inline u32 next_command(ctlr_info_t *h);
201 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
202  void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
203  u64 *cfg_offset);
204 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
205  unsigned long *memory_bar);
206 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
207 static __devinit int write_driver_ver_to_cfgtable(
208  CfgTable_struct __iomem *cfgtable);
209 
210 /* performant mode helper functions */
211 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
212  int *bucket_map);
213 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
214 
215 #ifdef CONFIG_PROC_FS
216 static void cciss_procinit(ctlr_info_t *h);
217 #else
218 static void cciss_procinit(ctlr_info_t *h)
219 {
220 }
221 #endif /* CONFIG_PROC_FS */
222 
223 #ifdef CONFIG_COMPAT
224 static int cciss_compat_ioctl(struct block_device *, fmode_t,
225  unsigned, unsigned long);
226 #endif
227 
228 static const struct block_device_operations cciss_fops = {
229  .owner = THIS_MODULE,
230  .open = cciss_unlocked_open,
231  .release = cciss_release,
232  .ioctl = do_ioctl,
233  .getgeo = cciss_getgeo,
234 #ifdef CONFIG_COMPAT
235  .compat_ioctl = cciss_compat_ioctl,
236 #endif
237  .revalidate_disk = cciss_revalidate,
238 };
239 
240 /* set_performant_mode: Modify the tag for cciss performant
241  * set bit 0 for pull model, bits 3-1 for block fetch
242  * register number
243  */
244 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
245 {
247  c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
248 }
249 
250 /*
251  * Enqueuing and dequeuing functions for cmdlists.
252  */
253 static inline void addQ(struct list_head *list, CommandList_struct *c)
254 {
255  list_add_tail(&c->list, list);
256 }
257 
258 static inline void removeQ(CommandList_struct *c)
259 {
260  /*
261  * After kexec/dump some commands might still
262  * be in flight, which the firmware will try
263  * to complete. Resetting the firmware doesn't work
264  * with old fw revisions, so we have to mark
265  * them off as 'stale' to prevent the driver from
266  * falling over.
267  */
268  if (WARN_ON(list_empty(&c->list))) {
269  c->cmd_type = CMD_MSG_STALE;
270  return;
271  }
272 
273  list_del_init(&c->list);
274 }
275 
276 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
278 {
279  unsigned long flags;
280  set_performant_mode(h, c);
281  spin_lock_irqsave(&h->lock, flags);
282  addQ(&h->reqQ, c);
283  h->Qdepth++;
284  if (h->Qdepth > h->maxQsinceinit)
285  h->maxQsinceinit = h->Qdepth;
286  start_io(h);
287  spin_unlock_irqrestore(&h->lock, flags);
288 }
289 
290 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
291  int nr_cmds)
292 {
293  int i;
294 
295  if (!cmd_sg_list)
296  return;
297  for (i = 0; i < nr_cmds; i++) {
298  kfree(cmd_sg_list[i]);
299  cmd_sg_list[i] = NULL;
300  }
301  kfree(cmd_sg_list);
302 }
303 
304 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
305  ctlr_info_t *h, int chainsize, int nr_cmds)
306 {
307  int j;
308  SGDescriptor_struct **cmd_sg_list;
309 
310  if (chainsize <= 0)
311  return NULL;
312 
313  cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
314  if (!cmd_sg_list)
315  return NULL;
316 
317  /* Build up chain blocks for each command */
318  for (j = 0; j < nr_cmds; j++) {
319  /* Need a block of chainsized s/g elements. */
320  cmd_sg_list[j] = kmalloc((chainsize *
321  sizeof(*cmd_sg_list[j])), GFP_KERNEL);
322  if (!cmd_sg_list[j]) {
323  dev_err(&h->pdev->dev, "Cannot get memory "
324  "for s/g chains.\n");
325  goto clean;
326  }
327  }
328  return cmd_sg_list;
329 clean:
330  cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
331  return NULL;
332 }
333 
334 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
335 {
336  SGDescriptor_struct *chain_sg;
337  u64bit temp64;
338 
339  if (c->Header.SGTotal <= h->max_cmd_sgentries)
340  return;
341 
342  chain_sg = &c->SG[h->max_cmd_sgentries - 1];
343  temp64.val32.lower = chain_sg->Addr.lower;
344  temp64.val32.upper = chain_sg->Addr.upper;
345  pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
346 }
347 
348 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
349  SGDescriptor_struct *chain_block, int len)
350 {
351  SGDescriptor_struct *chain_sg;
352  u64bit temp64;
353 
354  chain_sg = &c->SG[h->max_cmd_sgentries - 1];
355  chain_sg->Ext = CCISS_SG_CHAIN;
356  chain_sg->Len = len;
357  temp64.val = pci_map_single(h->pdev, chain_block, len,
359  chain_sg->Addr.lower = temp64.val32.lower;
360  chain_sg->Addr.upper = temp64.val32.upper;
361 }
362 
363 #include "cciss_scsi.c" /* For SCSI tape support */
364 
365 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
366  "UNKNOWN"
367 };
368 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
369 
370 #ifdef CONFIG_PROC_FS
371 
372 /*
373  * Report information about this controller.
374  */
375 #define ENG_GIG 1000000000
376 #define ENG_GIG_FACTOR (ENG_GIG/512)
377 #define ENGAGE_SCSI "engage scsi"
378 
379 static void cciss_seq_show_header(struct seq_file *seq)
380 {
381  ctlr_info_t *h = seq->private;
382 
383  seq_printf(seq, "%s: HP %s Controller\n"
384  "Board ID: 0x%08lx\n"
385  "Firmware Version: %c%c%c%c\n"
386  "IRQ: %d\n"
387  "Logical drives: %d\n"
388  "Current Q depth: %d\n"
389  "Current # commands on controller: %d\n"
390  "Max Q depth since init: %d\n"
391  "Max # commands on controller since init: %d\n"
392  "Max SG entries since init: %d\n",
393  h->devname,
394  h->product_name,
395  (unsigned long)h->board_id,
396  h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
397  h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
398  h->num_luns,
400  h->maxQsinceinit, h->max_outstanding, h->maxSG);
401 
402 #ifdef CONFIG_CISS_SCSI_TAPE
403  cciss_seq_tape_report(seq, h);
404 #endif /* CONFIG_CISS_SCSI_TAPE */
405 }
406 
407 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
408 {
409  ctlr_info_t *h = seq->private;
410  unsigned long flags;
411 
412  /* prevent displaying bogus info during configuration
413  * or deconfiguration of a logical volume
414  */
415  spin_lock_irqsave(&h->lock, flags);
416  if (h->busy_configuring) {
417  spin_unlock_irqrestore(&h->lock, flags);
418  return ERR_PTR(-EBUSY);
419  }
420  h->busy_configuring = 1;
421  spin_unlock_irqrestore(&h->lock, flags);
422 
423  if (*pos == 0)
424  cciss_seq_show_header(seq);
425 
426  return pos;
427 }
428 
429 static int cciss_seq_show(struct seq_file *seq, void *v)
430 {
431  sector_t vol_sz, vol_sz_frac;
432  ctlr_info_t *h = seq->private;
433  unsigned ctlr = h->ctlr;
434  loff_t *pos = v;
435  drive_info_struct *drv = h->drv[*pos];
436 
437  if (*pos > h->highest_lun)
438  return 0;
439 
440  if (drv == NULL) /* it's possible for h->drv[] to have holes. */
441  return 0;
442 
443  if (drv->heads == 0)
444  return 0;
445 
446  vol_sz = drv->nr_blocks;
447  vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
448  vol_sz_frac *= 100;
449  sector_div(vol_sz_frac, ENG_GIG_FACTOR);
450 
451  if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
452  drv->raid_level = RAID_UNKNOWN;
453  seq_printf(seq, "cciss/c%dd%d:"
454  "\t%4u.%02uGB\tRAID %s\n",
455  ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
456  raid_label[drv->raid_level]);
457  return 0;
458 }
459 
460 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
461 {
462  ctlr_info_t *h = seq->private;
463 
464  if (*pos > h->highest_lun)
465  return NULL;
466  *pos += 1;
467 
468  return pos;
469 }
470 
471 static void cciss_seq_stop(struct seq_file *seq, void *v)
472 {
473  ctlr_info_t *h = seq->private;
474 
475  /* Only reset h->busy_configuring if we succeeded in setting
476  * it during cciss_seq_start. */
477  if (v == ERR_PTR(-EBUSY))
478  return;
479 
480  h->busy_configuring = 0;
481 }
482 
483 static const struct seq_operations cciss_seq_ops = {
484  .start = cciss_seq_start,
485  .show = cciss_seq_show,
486  .next = cciss_seq_next,
487  .stop = cciss_seq_stop,
488 };
489 
490 static int cciss_seq_open(struct inode *inode, struct file *file)
491 {
492  int ret = seq_open(file, &cciss_seq_ops);
493  struct seq_file *seq = file->private_data;
494 
495  if (!ret)
496  seq->private = PDE(inode)->data;
497 
498  return ret;
499 }
500 
501 static ssize_t
502 cciss_proc_write(struct file *file, const char __user *buf,
503  size_t length, loff_t *ppos)
504 {
505  int err;
506  char *buffer;
507 
508 #ifndef CONFIG_CISS_SCSI_TAPE
509  return -EINVAL;
510 #endif
511 
512  if (!buf || length > PAGE_SIZE - 1)
513  return -EINVAL;
514 
515  buffer = (char *)__get_free_page(GFP_KERNEL);
516  if (!buffer)
517  return -ENOMEM;
518 
519  err = -EFAULT;
520  if (copy_from_user(buffer, buf, length))
521  goto out;
522  buffer[length] = '\0';
523 
524 #ifdef CONFIG_CISS_SCSI_TAPE
525  if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
526  struct seq_file *seq = file->private_data;
527  ctlr_info_t *h = seq->private;
528 
529  err = cciss_engage_scsi(h);
530  if (err == 0)
531  err = length;
532  } else
533 #endif /* CONFIG_CISS_SCSI_TAPE */
534  err = -EINVAL;
535  /* might be nice to have "disengage" too, but it's not
536  safely possible. (only 1 module use count, lock issues.) */
537 
538 out:
539  free_page((unsigned long)buffer);
540  return err;
541 }
542 
543 static const struct file_operations cciss_proc_fops = {
544  .owner = THIS_MODULE,
545  .open = cciss_seq_open,
546  .read = seq_read,
547  .llseek = seq_lseek,
548  .release = seq_release,
549  .write = cciss_proc_write,
550 };
551 
552 static void __devinit cciss_procinit(ctlr_info_t *h)
553 {
554  struct proc_dir_entry *pde;
555 
556  if (proc_cciss == NULL)
557  proc_cciss = proc_mkdir("driver/cciss", NULL);
558  if (!proc_cciss)
559  return;
561  S_IROTH, proc_cciss,
562  &cciss_proc_fops, h);
563 }
564 #endif /* CONFIG_PROC_FS */
565 
566 #define MAX_PRODUCT_NAME_LEN 19
567 
568 #define to_hba(n) container_of(n, struct ctlr_info, dev)
569 #define to_drv(n) container_of(n, drive_info_struct, dev)
570 
571 /* List of controllers which cannot be hard reset on kexec with reset_devices */
572 static u32 unresettable_controller[] = {
573  0x324a103C, /* Smart Array P712m */
574  0x324b103C, /* SmartArray P711m */
575  0x3223103C, /* Smart Array P800 */
576  0x3234103C, /* Smart Array P400 */
577  0x3235103C, /* Smart Array P400i */
578  0x3211103C, /* Smart Array E200i */
579  0x3212103C, /* Smart Array E200 */
580  0x3213103C, /* Smart Array E200i */
581  0x3214103C, /* Smart Array E200i */
582  0x3215103C, /* Smart Array E200i */
583  0x3237103C, /* Smart Array E500 */
584  0x323D103C, /* Smart Array P700m */
585  0x409C0E11, /* Smart Array 6400 */
586  0x409D0E11, /* Smart Array 6400 EM */
587 };
588 
589 /* List of controllers which cannot even be soft reset */
590 static u32 soft_unresettable_controller[] = {
591  0x409C0E11, /* Smart Array 6400 */
592  0x409D0E11, /* Smart Array 6400 EM */
593 };
594 
595 static int ctlr_is_hard_resettable(u32 board_id)
596 {
597  int i;
598 
599  for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
600  if (unresettable_controller[i] == board_id)
601  return 0;
602  return 1;
603 }
604 
605 static int ctlr_is_soft_resettable(u32 board_id)
606 {
607  int i;
608 
609  for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
610  if (soft_unresettable_controller[i] == board_id)
611  return 0;
612  return 1;
613 }
614 
615 static int ctlr_is_resettable(u32 board_id)
616 {
617  return ctlr_is_hard_resettable(board_id) ||
618  ctlr_is_soft_resettable(board_id);
619 }
620 
621 static ssize_t host_show_resettable(struct device *dev,
622  struct device_attribute *attr,
623  char *buf)
624 {
625  struct ctlr_info *h = to_hba(dev);
626 
627  return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
628 }
629 static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
630 
631 static ssize_t host_store_rescan(struct device *dev,
632  struct device_attribute *attr,
633  const char *buf, size_t count)
634 {
635  struct ctlr_info *h = to_hba(dev);
636 
637  add_to_scan_list(h);
638  wake_up_process(cciss_scan_thread);
640 
641  return count;
642 }
643 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
644 
645 static ssize_t host_show_transport_mode(struct device *dev,
646  struct device_attribute *attr,
647  char *buf)
648 {
649  struct ctlr_info *h = to_hba(dev);
650 
651  return snprintf(buf, 20, "%s\n",
653  "performant" : "simple");
654 }
655 static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
656 
657 static ssize_t dev_show_unique_id(struct device *dev,
658  struct device_attribute *attr,
659  char *buf)
660 {
661  drive_info_struct *drv = to_drv(dev);
662  struct ctlr_info *h = to_hba(drv->dev.parent);
663  __u8 sn[16];
664  unsigned long flags;
665  int ret = 0;
666 
667  spin_lock_irqsave(&h->lock, flags);
668  if (h->busy_configuring)
669  ret = -EBUSY;
670  else
671  memcpy(sn, drv->serial_no, sizeof(sn));
672  spin_unlock_irqrestore(&h->lock, flags);
673 
674  if (ret)
675  return ret;
676  else
677  return snprintf(buf, 16 * 2 + 2,
678  "%02X%02X%02X%02X%02X%02X%02X%02X"
679  "%02X%02X%02X%02X%02X%02X%02X%02X\n",
680  sn[0], sn[1], sn[2], sn[3],
681  sn[4], sn[5], sn[6], sn[7],
682  sn[8], sn[9], sn[10], sn[11],
683  sn[12], sn[13], sn[14], sn[15]);
684 }
685 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
686 
687 static ssize_t dev_show_vendor(struct device *dev,
688  struct device_attribute *attr,
689  char *buf)
690 {
691  drive_info_struct *drv = to_drv(dev);
692  struct ctlr_info *h = to_hba(drv->dev.parent);
693  char vendor[VENDOR_LEN + 1];
694  unsigned long flags;
695  int ret = 0;
696 
697  spin_lock_irqsave(&h->lock, flags);
698  if (h->busy_configuring)
699  ret = -EBUSY;
700  else
701  memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
702  spin_unlock_irqrestore(&h->lock, flags);
703 
704  if (ret)
705  return ret;
706  else
707  return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
708 }
709 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
710 
711 static ssize_t dev_show_model(struct device *dev,
712  struct device_attribute *attr,
713  char *buf)
714 {
715  drive_info_struct *drv = to_drv(dev);
716  struct ctlr_info *h = to_hba(drv->dev.parent);
717  char model[MODEL_LEN + 1];
718  unsigned long flags;
719  int ret = 0;
720 
721  spin_lock_irqsave(&h->lock, flags);
722  if (h->busy_configuring)
723  ret = -EBUSY;
724  else
725  memcpy(model, drv->model, MODEL_LEN + 1);
726  spin_unlock_irqrestore(&h->lock, flags);
727 
728  if (ret)
729  return ret;
730  else
731  return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
732 }
733 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
734 
735 static ssize_t dev_show_rev(struct device *dev,
736  struct device_attribute *attr,
737  char *buf)
738 {
739  drive_info_struct *drv = to_drv(dev);
740  struct ctlr_info *h = to_hba(drv->dev.parent);
741  char rev[REV_LEN + 1];
742  unsigned long flags;
743  int ret = 0;
744 
745  spin_lock_irqsave(&h->lock, flags);
746  if (h->busy_configuring)
747  ret = -EBUSY;
748  else
749  memcpy(rev, drv->rev, REV_LEN + 1);
750  spin_unlock_irqrestore(&h->lock, flags);
751 
752  if (ret)
753  return ret;
754  else
755  return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
756 }
757 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
758 
759 static ssize_t cciss_show_lunid(struct device *dev,
760  struct device_attribute *attr, char *buf)
761 {
762  drive_info_struct *drv = to_drv(dev);
763  struct ctlr_info *h = to_hba(drv->dev.parent);
764  unsigned long flags;
765  unsigned char lunid[8];
766 
767  spin_lock_irqsave(&h->lock, flags);
768  if (h->busy_configuring) {
769  spin_unlock_irqrestore(&h->lock, flags);
770  return -EBUSY;
771  }
772  if (!drv->heads) {
773  spin_unlock_irqrestore(&h->lock, flags);
774  return -ENOTTY;
775  }
776  memcpy(lunid, drv->LunID, sizeof(lunid));
777  spin_unlock_irqrestore(&h->lock, flags);
778  return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
779  lunid[0], lunid[1], lunid[2], lunid[3],
780  lunid[4], lunid[5], lunid[6], lunid[7]);
781 }
782 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
783 
784 static ssize_t cciss_show_raid_level(struct device *dev,
785  struct device_attribute *attr, char *buf)
786 {
787  drive_info_struct *drv = to_drv(dev);
788  struct ctlr_info *h = to_hba(drv->dev.parent);
789  int raid;
790  unsigned long flags;
791 
792  spin_lock_irqsave(&h->lock, flags);
793  if (h->busy_configuring) {
794  spin_unlock_irqrestore(&h->lock, flags);
795  return -EBUSY;
796  }
797  raid = drv->raid_level;
798  spin_unlock_irqrestore(&h->lock, flags);
799  if (raid < 0 || raid > RAID_UNKNOWN)
800  raid = RAID_UNKNOWN;
801 
802  return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
803  raid_label[raid]);
804 }
805 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
806 
807 static ssize_t cciss_show_usage_count(struct device *dev,
808  struct device_attribute *attr, char *buf)
809 {
810  drive_info_struct *drv = to_drv(dev);
811  struct ctlr_info *h = to_hba(drv->dev.parent);
812  unsigned long flags;
813  int count;
814 
815  spin_lock_irqsave(&h->lock, flags);
816  if (h->busy_configuring) {
817  spin_unlock_irqrestore(&h->lock, flags);
818  return -EBUSY;
819  }
820  count = drv->usage_count;
821  spin_unlock_irqrestore(&h->lock, flags);
822  return snprintf(buf, 20, "%d\n", count);
823 }
824 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
825 
826 static struct attribute *cciss_host_attrs[] = {
827  &dev_attr_rescan.attr,
828  &dev_attr_resettable.attr,
829  &dev_attr_transport_mode.attr,
830  NULL
831 };
832 
833 static struct attribute_group cciss_host_attr_group = {
834  .attrs = cciss_host_attrs,
835 };
836 
837 static const struct attribute_group *cciss_host_attr_groups[] = {
838  &cciss_host_attr_group,
839  NULL
840 };
841 
842 static struct device_type cciss_host_type = {
843  .name = "cciss_host",
844  .groups = cciss_host_attr_groups,
845  .release = cciss_hba_release,
846 };
847 
848 static struct attribute *cciss_dev_attrs[] = {
849  &dev_attr_unique_id.attr,
850  &dev_attr_model.attr,
851  &dev_attr_vendor.attr,
852  &dev_attr_rev.attr,
853  &dev_attr_lunid.attr,
854  &dev_attr_raid_level.attr,
855  &dev_attr_usage_count.attr,
856  NULL
857 };
858 
859 static struct attribute_group cciss_dev_attr_group = {
860  .attrs = cciss_dev_attrs,
861 };
862 
863 static const struct attribute_group *cciss_dev_attr_groups[] = {
864  &cciss_dev_attr_group,
865  NULL
866 };
867 
868 static struct device_type cciss_dev_type = {
869  .name = "cciss_device",
870  .groups = cciss_dev_attr_groups,
871  .release = cciss_device_release,
872 };
873 
874 static struct bus_type cciss_bus_type = {
875  .name = "cciss",
876 };
877 
878 /*
879  * cciss_hba_release is called when the reference count
880  * of h->dev goes to zero.
881  */
882 static void cciss_hba_release(struct device *dev)
883 {
884  /*
885  * nothing to do, but need this to avoid a warning
886  * about not having a release handler from lib/kref.c.
887  */
888 }
889 
890 /*
891  * Initialize sysfs entry for each controller. This sets up and registers
892  * the 'cciss#' directory for each individual controller under
893  * /sys/bus/pci/devices/<dev>/.
894  */
895 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
896 {
897  device_initialize(&h->dev);
898  h->dev.type = &cciss_host_type;
899  h->dev.bus = &cciss_bus_type;
900  dev_set_name(&h->dev, "%s", h->devname);
901  h->dev.parent = &h->pdev->dev;
902 
903  return device_add(&h->dev);
904 }
905 
906 /*
907  * Remove sysfs entries for an hba.
908  */
909 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
910 {
911  device_del(&h->dev);
912  put_device(&h->dev); /* final put. */
913 }
914 
915 /* cciss_device_release is called when the reference count
916  * of h->drv[x]dev goes to zero.
917  */
918 static void cciss_device_release(struct device *dev)
919 {
920  drive_info_struct *drv = to_drv(dev);
921  kfree(drv);
922 }
923 
924 /*
925  * Initialize sysfs for each logical drive. This sets up and registers
926  * the 'c#d#' directory for each individual logical drive under
927  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
928  * /sys/block/cciss!c#d# to this entry.
929  */
930 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
931  int drv_index)
932 {
933  struct device *dev;
934 
935  if (h->drv[drv_index]->device_initialized)
936  return 0;
937 
938  dev = &h->drv[drv_index]->dev;
939  device_initialize(dev);
940  dev->type = &cciss_dev_type;
941  dev->bus = &cciss_bus_type;
942  dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
943  dev->parent = &h->dev;
944  h->drv[drv_index]->device_initialized = 1;
945  return device_add(dev);
946 }
947 
948 /*
949  * Remove sysfs entries for a logical drive.
950  */
951 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
952  int ctlr_exiting)
953 {
954  struct device *dev = &h->drv[drv_index]->dev;
955 
956  /* special case for c*d0, we only destroy it on controller exit */
957  if (drv_index == 0 && !ctlr_exiting)
958  return;
959 
960  device_del(dev);
961  put_device(dev); /* the "final" put. */
962  h->drv[drv_index] = NULL;
963 }
964 
965 /*
966  * For operations that cannot sleep, a command block is allocated at init,
967  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
968  * which ones are free or in use.
969  */
970 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
971 {
973  int i;
974  u64bit temp64;
975  dma_addr_t cmd_dma_handle, err_dma_handle;
976 
977  do {
979  if (i == h->nr_cmds)
980  return NULL;
981  } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
982  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
983  c = h->cmd_pool + i;
984  memset(c, 0, sizeof(CommandList_struct));
985  cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
986  c->err_info = h->errinfo_pool + i;
987  memset(c->err_info, 0, sizeof(ErrorInfo_struct));
988  err_dma_handle = h->errinfo_pool_dhandle
989  + i * sizeof(ErrorInfo_struct);
990  h->nr_allocs++;
991 
992  c->cmdindex = i;
993 
994  INIT_LIST_HEAD(&c->list);
995  c->busaddr = (__u32) cmd_dma_handle;
996  temp64.val = (__u64) err_dma_handle;
997  c->ErrDesc.Addr.lower = temp64.val32.lower;
998  c->ErrDesc.Addr.upper = temp64.val32.upper;
999  c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1000 
1001  c->ctlr = h->ctlr;
1002  return c;
1003 }
1004 
1005 /* allocate a command using pci_alloc_consistent, used for ioctls,
1006  * etc., not for the main i/o path.
1007  */
1008 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1009 {
1011  u64bit temp64;
1012  dma_addr_t cmd_dma_handle, err_dma_handle;
1013 
1015  sizeof(CommandList_struct), &cmd_dma_handle);
1016  if (c == NULL)
1017  return NULL;
1018  memset(c, 0, sizeof(CommandList_struct));
1019 
1020  c->cmdindex = -1;
1021 
1022  c->err_info = (ErrorInfo_struct *)
1024  &err_dma_handle);
1025 
1026  if (c->err_info == NULL) {
1028  sizeof(CommandList_struct), c, cmd_dma_handle);
1029  return NULL;
1030  }
1031  memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1032 
1033  INIT_LIST_HEAD(&c->list);
1034  c->busaddr = (__u32) cmd_dma_handle;
1035  temp64.val = (__u64) err_dma_handle;
1036  c->ErrDesc.Addr.lower = temp64.val32.lower;
1037  c->ErrDesc.Addr.upper = temp64.val32.upper;
1038  c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1039 
1040  c->ctlr = h->ctlr;
1041  return c;
1042 }
1043 
1044 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1045 {
1046  int i;
1047 
1048  i = c - h->cmd_pool;
1049  clear_bit(i & (BITS_PER_LONG - 1),
1050  h->cmd_pool_bits + (i / BITS_PER_LONG));
1051  h->nr_frees++;
1052 }
1053 
1054 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1055 {
1056  u64bit temp64;
1057 
1058  temp64.val32.lower = c->ErrDesc.Addr.lower;
1059  temp64.val32.upper = c->ErrDesc.Addr.upper;
1061  c->err_info, (dma_addr_t) temp64.val);
1063  (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1064 }
1065 
1066 static inline ctlr_info_t *get_host(struct gendisk *disk)
1067 {
1068  return disk->queue->queuedata;
1069 }
1070 
1071 static inline drive_info_struct *get_drv(struct gendisk *disk)
1072 {
1073  return disk->private_data;
1074 }
1075 
1076 /*
1077  * Open. Make sure the device is really there.
1078  */
1079 static int cciss_open(struct block_device *bdev, fmode_t mode)
1080 {
1081  ctlr_info_t *h = get_host(bdev->bd_disk);
1082  drive_info_struct *drv = get_drv(bdev->bd_disk);
1083 
1084  dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1085  if (drv->busy_configuring)
1086  return -EBUSY;
1087  /*
1088  * Root is allowed to open raw volume zero even if it's not configured
1089  * so array config can still work. Root is also allowed to open any
1090  * volume that has a LUN ID, so it can issue IOCTL to reread the
1091  * disk information. I don't think I really like this
1092  * but I'm already using way to many device nodes to claim another one
1093  * for "raw controller".
1094  */
1095  if (drv->heads == 0) {
1096  if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1097  /* if not node 0 make sure it is a partition = 0 */
1098  if (MINOR(bdev->bd_dev) & 0x0f) {
1099  return -ENXIO;
1100  /* if it is, make sure we have a LUN ID */
1101  } else if (memcmp(drv->LunID, CTLR_LUNID,
1102  sizeof(drv->LunID))) {
1103  return -ENXIO;
1104  }
1105  }
1106  if (!capable(CAP_SYS_ADMIN))
1107  return -EPERM;
1108  }
1109  drv->usage_count++;
1110  h->usage_count++;
1111  return 0;
1112 }
1113 
1114 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1115 {
1116  int ret;
1117 
1118  mutex_lock(&cciss_mutex);
1119  ret = cciss_open(bdev, mode);
1120  mutex_unlock(&cciss_mutex);
1121 
1122  return ret;
1123 }
1124 
1125 /*
1126  * Close. Sync first.
1127  */
1128 static int cciss_release(struct gendisk *disk, fmode_t mode)
1129 {
1130  ctlr_info_t *h;
1131  drive_info_struct *drv;
1132 
1133  mutex_lock(&cciss_mutex);
1134  h = get_host(disk);
1135  drv = get_drv(disk);
1136  dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1137  drv->usage_count--;
1138  h->usage_count--;
1139  mutex_unlock(&cciss_mutex);
1140  return 0;
1141 }
1142 
1143 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1144  unsigned cmd, unsigned long arg)
1145 {
1146  int ret;
1147  mutex_lock(&cciss_mutex);
1148  ret = cciss_ioctl(bdev, mode, cmd, arg);
1149  mutex_unlock(&cciss_mutex);
1150  return ret;
1151 }
1152 
1153 #ifdef CONFIG_COMPAT
1154 
1155 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1156  unsigned cmd, unsigned long arg);
1157 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1158  unsigned cmd, unsigned long arg);
1159 
1160 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1161  unsigned cmd, unsigned long arg)
1162 {
1163  switch (cmd) {
1164  case CCISS_GETPCIINFO:
1165  case CCISS_GETINTINFO:
1166  case CCISS_SETINTINFO:
1167  case CCISS_GETNODENAME:
1168  case CCISS_SETNODENAME:
1169  case CCISS_GETHEARTBEAT:
1170  case CCISS_GETBUSTYPES:
1171  case CCISS_GETFIRMVER:
1172  case CCISS_GETDRIVVER:
1173  case CCISS_REVALIDVOLS:
1174  case CCISS_DEREGDISK:
1175  case CCISS_REGNEWDISK:
1176  case CCISS_REGNEWD:
1177  case CCISS_RESCANDISK:
1178  case CCISS_GETLUNINFO:
1179  return do_ioctl(bdev, mode, cmd, arg);
1180 
1181  case CCISS_PASSTHRU32:
1182  return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1183  case CCISS_BIG_PASSTHRU32:
1184  return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1185 
1186  default:
1187  return -ENOIOCTLCMD;
1188  }
1189 }
1190 
1191 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1192  unsigned cmd, unsigned long arg)
1193 {
1194  IOCTL32_Command_struct __user *arg32 =
1195  (IOCTL32_Command_struct __user *) arg;
1196  IOCTL_Command_struct arg64;
1198  int err;
1199  u32 cp;
1200 
1201  err = 0;
1202  err |=
1203  copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1204  sizeof(arg64.LUN_info));
1205  err |=
1206  copy_from_user(&arg64.Request, &arg32->Request,
1207  sizeof(arg64.Request));
1208  err |=
1209  copy_from_user(&arg64.error_info, &arg32->error_info,
1210  sizeof(arg64.error_info));
1211  err |= get_user(arg64.buf_size, &arg32->buf_size);
1212  err |= get_user(cp, &arg32->buf);
1213  arg64.buf = compat_ptr(cp);
1214  err |= copy_to_user(p, &arg64, sizeof(arg64));
1215 
1216  if (err)
1217  return -EFAULT;
1218 
1219  err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1220  if (err)
1221  return err;
1222  err |=
1223  copy_in_user(&arg32->error_info, &p->error_info,
1224  sizeof(arg32->error_info));
1225  if (err)
1226  return -EFAULT;
1227  return err;
1228 }
1229 
1230 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1231  unsigned cmd, unsigned long arg)
1232 {
1233  BIG_IOCTL32_Command_struct __user *arg32 =
1234  (BIG_IOCTL32_Command_struct __user *) arg;
1237  compat_alloc_user_space(sizeof(arg64));
1238  int err;
1239  u32 cp;
1240 
1241  memset(&arg64, 0, sizeof(arg64));
1242  err = 0;
1243  err |=
1244  copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1245  sizeof(arg64.LUN_info));
1246  err |=
1247  copy_from_user(&arg64.Request, &arg32->Request,
1248  sizeof(arg64.Request));
1249  err |=
1250  copy_from_user(&arg64.error_info, &arg32->error_info,
1251  sizeof(arg64.error_info));
1252  err |= get_user(arg64.buf_size, &arg32->buf_size);
1253  err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1254  err |= get_user(cp, &arg32->buf);
1255  arg64.buf = compat_ptr(cp);
1256  err |= copy_to_user(p, &arg64, sizeof(arg64));
1257 
1258  if (err)
1259  return -EFAULT;
1260 
1261  err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1262  if (err)
1263  return err;
1264  err |=
1265  copy_in_user(&arg32->error_info, &p->error_info,
1266  sizeof(arg32->error_info));
1267  if (err)
1268  return -EFAULT;
1269  return err;
1270 }
1271 #endif
1272 
1273 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1274 {
1275  drive_info_struct *drv = get_drv(bdev->bd_disk);
1276 
1277  if (!drv->cylinders)
1278  return -ENXIO;
1279 
1280  geo->heads = drv->heads;
1281  geo->sectors = drv->sectors;
1282  geo->cylinders = drv->cylinders;
1283  return 0;
1284 }
1285 
1286 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1287 {
1290  (void)check_for_unit_attention(h, c);
1291 }
1292 
1293 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1294 {
1295  cciss_pci_info_struct pciinfo;
1296 
1297  if (!argp)
1298  return -EINVAL;
1299  pciinfo.domain = pci_domain_nr(h->pdev->bus);
1300  pciinfo.bus = h->pdev->bus->number;
1301  pciinfo.dev_fn = h->pdev->devfn;
1302  pciinfo.board_id = h->board_id;
1303  if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1304  return -EFAULT;
1305  return 0;
1306 }
1307 
1308 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1309 {
1310  cciss_coalint_struct intinfo;
1311 
1312  if (!argp)
1313  return -EINVAL;
1314  intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1315  intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1316  if (copy_to_user
1317  (argp, &intinfo, sizeof(cciss_coalint_struct)))
1318  return -EFAULT;
1319  return 0;
1320 }
1321 
1322 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1323 {
1324  cciss_coalint_struct intinfo;
1325  unsigned long flags;
1326  int i;
1327 
1328  if (!argp)
1329  return -EINVAL;
1330  if (!capable(CAP_SYS_ADMIN))
1331  return -EPERM;
1332  if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1333  return -EFAULT;
1334  if ((intinfo.delay == 0) && (intinfo.count == 0))
1335  return -EINVAL;
1336  spin_lock_irqsave(&h->lock, flags);
1337  /* Update the field, and then ring the doorbell */
1338  writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1339  writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1341 
1342  for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1343  if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1344  break;
1345  udelay(1000); /* delay and try again */
1346  }
1347  spin_unlock_irqrestore(&h->lock, flags);
1348  if (i >= MAX_IOCTL_CONFIG_WAIT)
1349  return -EAGAIN;
1350  return 0;
1351 }
1352 
1353 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1354 {
1355  NodeName_type NodeName;
1356  int i;
1357 
1358  if (!argp)
1359  return -EINVAL;
1360  for (i = 0; i < 16; i++)
1361  NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1362  if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1363  return -EFAULT;
1364  return 0;
1365 }
1366 
1367 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1368 {
1369  NodeName_type NodeName;
1370  unsigned long flags;
1371  int i;
1372 
1373  if (!argp)
1374  return -EINVAL;
1375  if (!capable(CAP_SYS_ADMIN))
1376  return -EPERM;
1377  if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1378  return -EFAULT;
1379  spin_lock_irqsave(&h->lock, flags);
1380  /* Update the field, and then ring the doorbell */
1381  for (i = 0; i < 16; i++)
1382  writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1384  for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1385  if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1386  break;
1387  udelay(1000); /* delay and try again */
1388  }
1389  spin_unlock_irqrestore(&h->lock, flags);
1390  if (i >= MAX_IOCTL_CONFIG_WAIT)
1391  return -EAGAIN;
1392  return 0;
1393 }
1394 
1395 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1396 {
1398 
1399  if (!argp)
1400  return -EINVAL;
1401  heartbeat = readl(&h->cfgtable->HeartBeat);
1402  if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1403  return -EFAULT;
1404  return 0;
1405 }
1406 
1407 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1408 {
1409  BusTypes_type BusTypes;
1410 
1411  if (!argp)
1412  return -EINVAL;
1413  BusTypes = readl(&h->cfgtable->BusTypes);
1414  if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1415  return -EFAULT;
1416  return 0;
1417 }
1418 
1419 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1420 {
1422 
1423  if (!argp)
1424  return -EINVAL;
1425  memcpy(firmware, h->firm_ver, 4);
1426 
1427  if (copy_to_user
1428  (argp, firmware, sizeof(FirmwareVer_type)))
1429  return -EFAULT;
1430  return 0;
1431 }
1432 
1433 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1434 {
1435  DriverVer_type DriverVer = DRIVER_VERSION;
1436 
1437  if (!argp)
1438  return -EINVAL;
1439  if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1440  return -EFAULT;
1441  return 0;
1442 }
1443 
1444 static int cciss_getluninfo(ctlr_info_t *h,
1445  struct gendisk *disk, void __user *argp)
1446 {
1447  LogvolInfo_struct luninfo;
1448  drive_info_struct *drv = get_drv(disk);
1449 
1450  if (!argp)
1451  return -EINVAL;
1452  memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1453  luninfo.num_opens = drv->usage_count;
1454  luninfo.num_parts = 0;
1455  if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1456  return -EFAULT;
1457  return 0;
1458 }
1459 
1460 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1461 {
1462  IOCTL_Command_struct iocommand;
1464  char *buff = NULL;
1465  u64bit temp64;
1467 
1468  if (!argp)
1469  return -EINVAL;
1470 
1471  if (!capable(CAP_SYS_RAWIO))
1472  return -EPERM;
1473 
1474  if (copy_from_user
1475  (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1476  return -EFAULT;
1477  if ((iocommand.buf_size < 1) &&
1478  (iocommand.Request.Type.Direction != XFER_NONE)) {
1479  return -EINVAL;
1480  }
1481  if (iocommand.buf_size > 0) {
1482  buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1483  if (buff == NULL)
1484  return -EFAULT;
1485  }
1486  if (iocommand.Request.Type.Direction == XFER_WRITE) {
1487  /* Copy the data into the buffer we created */
1488  if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1489  kfree(buff);
1490  return -EFAULT;
1491  }
1492  } else {
1493  memset(buff, 0, iocommand.buf_size);
1494  }
1495  c = cmd_special_alloc(h);
1496  if (!c) {
1497  kfree(buff);
1498  return -ENOMEM;
1499  }
1500  /* Fill in the command type */
1501  c->cmd_type = CMD_IOCTL_PEND;
1502  /* Fill in Command Header */
1503  c->Header.ReplyQueue = 0; /* unused in simple mode */
1504  if (iocommand.buf_size > 0) { /* buffer to fill */
1505  c->Header.SGList = 1;
1506  c->Header.SGTotal = 1;
1507  } else { /* no buffers to fill */
1508  c->Header.SGList = 0;
1509  c->Header.SGTotal = 0;
1510  }
1511  c->Header.LUN = iocommand.LUN_info;
1512  /* use the kernel address the cmd block for tag */
1513  c->Header.Tag.lower = c->busaddr;
1514 
1515  /* Fill in Request block */
1516  c->Request = iocommand.Request;
1517 
1518  /* Fill in the scatter gather information */
1519  if (iocommand.buf_size > 0) {
1520  temp64.val = pci_map_single(h->pdev, buff,
1521  iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1522  c->SG[0].Addr.lower = temp64.val32.lower;
1523  c->SG[0].Addr.upper = temp64.val32.upper;
1524  c->SG[0].Len = iocommand.buf_size;
1525  c->SG[0].Ext = 0; /* we are not chaining */
1526  }
1527  c->waiting = &wait;
1528 
1529  enqueue_cmd_and_start_io(h, c);
1531 
1532  /* unlock the buffers from DMA */
1533  temp64.val32.lower = c->SG[0].Addr.lower;
1534  temp64.val32.upper = c->SG[0].Addr.upper;
1535  pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1537  check_ioctl_unit_attention(h, c);
1538 
1539  /* Copy the error information out */
1540  iocommand.error_info = *(c->err_info);
1541  if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1542  kfree(buff);
1543  cmd_special_free(h, c);
1544  return -EFAULT;
1545  }
1546 
1547  if (iocommand.Request.Type.Direction == XFER_READ) {
1548  /* Copy the data out of the buffer we created */
1549  if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1550  kfree(buff);
1551  cmd_special_free(h, c);
1552  return -EFAULT;
1553  }
1554  }
1555  kfree(buff);
1556  cmd_special_free(h, c);
1557  return 0;
1558 }
1559 
1560 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1561 {
1564  unsigned char **buff = NULL;
1565  int *buff_size = NULL;
1566  u64bit temp64;
1567  BYTE sg_used = 0;
1568  int status = 0;
1569  int i;
1571  __u32 left;
1572  __u32 sz;
1573  BYTE __user *data_ptr;
1574 
1575  if (!argp)
1576  return -EINVAL;
1577  if (!capable(CAP_SYS_RAWIO))
1578  return -EPERM;
1579  ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1580  if (!ioc) {
1581  status = -ENOMEM;
1582  goto cleanup1;
1583  }
1584  if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1585  status = -EFAULT;
1586  goto cleanup1;
1587  }
1588  if ((ioc->buf_size < 1) &&
1589  (ioc->Request.Type.Direction != XFER_NONE)) {
1590  status = -EINVAL;
1591  goto cleanup1;
1592  }
1593  /* Check kmalloc limits using all SGs */
1594  if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1595  status = -EINVAL;
1596  goto cleanup1;
1597  }
1598  if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1599  status = -EINVAL;
1600  goto cleanup1;
1601  }
1602  buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1603  if (!buff) {
1604  status = -ENOMEM;
1605  goto cleanup1;
1606  }
1607  buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1608  if (!buff_size) {
1609  status = -ENOMEM;
1610  goto cleanup1;
1611  }
1612  left = ioc->buf_size;
1613  data_ptr = ioc->buf;
1614  while (left) {
1615  sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1616  buff_size[sg_used] = sz;
1617  buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1618  if (buff[sg_used] == NULL) {
1619  status = -ENOMEM;
1620  goto cleanup1;
1621  }
1622  if (ioc->Request.Type.Direction == XFER_WRITE) {
1623  if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1624  status = -EFAULT;
1625  goto cleanup1;
1626  }
1627  } else {
1628  memset(buff[sg_used], 0, sz);
1629  }
1630  left -= sz;
1631  data_ptr += sz;
1632  sg_used++;
1633  }
1634  c = cmd_special_alloc(h);
1635  if (!c) {
1636  status = -ENOMEM;
1637  goto cleanup1;
1638  }
1639  c->cmd_type = CMD_IOCTL_PEND;
1640  c->Header.ReplyQueue = 0;
1641  c->Header.SGList = sg_used;
1642  c->Header.SGTotal = sg_used;
1643  c->Header.LUN = ioc->LUN_info;
1644  c->Header.Tag.lower = c->busaddr;
1645 
1646  c->Request = ioc->Request;
1647  for (i = 0; i < sg_used; i++) {
1648  temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1650  c->SG[i].Addr.lower = temp64.val32.lower;
1651  c->SG[i].Addr.upper = temp64.val32.upper;
1652  c->SG[i].Len = buff_size[i];
1653  c->SG[i].Ext = 0; /* we are not chaining */
1654  }
1655  c->waiting = &wait;
1656  enqueue_cmd_and_start_io(h, c);
1658  /* unlock the buffers from DMA */
1659  for (i = 0; i < sg_used; i++) {
1660  temp64.val32.lower = c->SG[i].Addr.lower;
1661  temp64.val32.upper = c->SG[i].Addr.upper;
1662  pci_unmap_single(h->pdev,
1663  (dma_addr_t) temp64.val, buff_size[i],
1665  }
1666  check_ioctl_unit_attention(h, c);
1667  /* Copy the error information out */
1668  ioc->error_info = *(c->err_info);
1669  if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1670  cmd_special_free(h, c);
1671  status = -EFAULT;
1672  goto cleanup1;
1673  }
1674  if (ioc->Request.Type.Direction == XFER_READ) {
1675  /* Copy the data out of the buffer we created */
1676  BYTE __user *ptr = ioc->buf;
1677  for (i = 0; i < sg_used; i++) {
1678  if (copy_to_user(ptr, buff[i], buff_size[i])) {
1679  cmd_special_free(h, c);
1680  status = -EFAULT;
1681  goto cleanup1;
1682  }
1683  ptr += buff_size[i];
1684  }
1685  }
1686  cmd_special_free(h, c);
1687  status = 0;
1688 cleanup1:
1689  if (buff) {
1690  for (i = 0; i < sg_used; i++)
1691  kfree(buff[i]);
1692  kfree(buff);
1693  }
1694  kfree(buff_size);
1695  kfree(ioc);
1696  return status;
1697 }
1698 
1699 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1700  unsigned int cmd, unsigned long arg)
1701 {
1702  struct gendisk *disk = bdev->bd_disk;
1703  ctlr_info_t *h = get_host(disk);
1704  void __user *argp = (void __user *)arg;
1705 
1706  dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1707  cmd, arg);
1708  switch (cmd) {
1709  case CCISS_GETPCIINFO:
1710  return cciss_getpciinfo(h, argp);
1711  case CCISS_GETINTINFO:
1712  return cciss_getintinfo(h, argp);
1713  case CCISS_SETINTINFO:
1714  return cciss_setintinfo(h, argp);
1715  case CCISS_GETNODENAME:
1716  return cciss_getnodename(h, argp);
1717  case CCISS_SETNODENAME:
1718  return cciss_setnodename(h, argp);
1719  case CCISS_GETHEARTBEAT:
1720  return cciss_getheartbeat(h, argp);
1721  case CCISS_GETBUSTYPES:
1722  return cciss_getbustypes(h, argp);
1723  case CCISS_GETFIRMVER:
1724  return cciss_getfirmver(h, argp);
1725  case CCISS_GETDRIVVER:
1726  return cciss_getdrivver(h, argp);
1727  case CCISS_DEREGDISK:
1728  case CCISS_REGNEWD:
1729  case CCISS_REVALIDVOLS:
1730  return rebuild_lun_table(h, 0, 1);
1731  case CCISS_GETLUNINFO:
1732  return cciss_getluninfo(h, disk, argp);
1733  case CCISS_PASSTHRU:
1734  return cciss_passthru(h, argp);
1735  case CCISS_BIG_PASSTHRU:
1736  return cciss_bigpassthru(h, argp);
1737 
1738  /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1739  /* very meaningful for cciss. SG_IO is the main one people want. */
1740 
1741  case SG_GET_VERSION_NUM:
1742  case SG_SET_TIMEOUT:
1743  case SG_GET_TIMEOUT:
1744  case SG_GET_RESERVED_SIZE:
1745  case SG_SET_RESERVED_SIZE:
1746  case SG_EMULATED_HOST:
1747  case SG_IO:
1749  return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1750 
1751  /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1752  /* they aren't a good fit for cciss, as CD-ROMs are */
1753  /* not supported, and we don't have any bus/target/lun */
1754  /* which we present to the kernel. */
1755 
1756  case CDROM_SEND_PACKET:
1757  case CDROMCLOSETRAY:
1758  case CDROMEJECT:
1759  case SCSI_IOCTL_GET_IDLUN:
1761  default:
1762  return -ENOTTY;
1763  }
1764 }
1765 
1766 static void cciss_check_queues(ctlr_info_t *h)
1767 {
1768  int start_queue = h->next_to_run;
1769  int i;
1770 
1771  /* check to see if we have maxed out the number of commands that can
1772  * be placed on the queue. If so then exit. We do this check here
1773  * in case the interrupt we serviced was from an ioctl and did not
1774  * free any new commands.
1775  */
1776  if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1777  return;
1778 
1779  /* We have room on the queue for more commands. Now we need to queue
1780  * them up. We will also keep track of the next queue to run so
1781  * that every queue gets a chance to be started first.
1782  */
1783  for (i = 0; i < h->highest_lun + 1; i++) {
1784  int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1785  /* make sure the disk has been added and the drive is real
1786  * because this can be called from the middle of init_one.
1787  */
1788  if (!h->drv[curr_queue])
1789  continue;
1790  if (!(h->drv[curr_queue]->queue) ||
1791  !(h->drv[curr_queue]->heads))
1792  continue;
1793  blk_start_queue(h->gendisk[curr_queue]->queue);
1794 
1795  /* check to see if we have maxed out the number of commands
1796  * that can be placed on the queue.
1797  */
1798  if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1799  if (curr_queue == start_queue) {
1800  h->next_to_run =
1801  (start_queue + 1) % (h->highest_lun + 1);
1802  break;
1803  } else {
1804  h->next_to_run = curr_queue;
1805  break;
1806  }
1807  }
1808  }
1809 }
1810 
1811 static void cciss_softirq_done(struct request *rq)
1812 {
1813  CommandList_struct *c = rq->completion_data;
1814  ctlr_info_t *h = hba[c->ctlr];
1815  SGDescriptor_struct *curr_sg = c->SG;
1816  u64bit temp64;
1817  unsigned long flags;
1818  int i, ddir;
1819  int sg_index = 0;
1820 
1821  if (c->Request.Type.Direction == XFER_READ)
1822  ddir = PCI_DMA_FROMDEVICE;
1823  else
1824  ddir = PCI_DMA_TODEVICE;
1825 
1826  /* command did not need to be retried */
1827  /* unmap the DMA mapping for all the scatter gather elements */
1828  for (i = 0; i < c->Header.SGList; i++) {
1829  if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1830  cciss_unmap_sg_chain_block(h, c);
1831  /* Point to the next block */
1832  curr_sg = h->cmd_sg_list[c->cmdindex];
1833  sg_index = 0;
1834  }
1835  temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1836  temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1837  pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1838  ddir);
1839  ++sg_index;
1840  }
1841 
1842  dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1843 
1844  /* set the residual count for pc requests */
1845  if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1846  rq->resid_len = c->err_info->ResidualCnt;
1847 
1848  blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1849 
1850  spin_lock_irqsave(&h->lock, flags);
1851  cmd_free(h, c);
1852  cciss_check_queues(h);
1853  spin_unlock_irqrestore(&h->lock, flags);
1854 }
1855 
1856 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1857  unsigned char scsi3addr[], uint32_t log_unit)
1858 {
1859  memcpy(scsi3addr, h->drv[log_unit]->LunID,
1860  sizeof(h->drv[log_unit]->LunID));
1861 }
1862 
1863 /* This function gets the SCSI vendor, model, and revision of a logical drive
1864  * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1865  * they cannot be read.
1866  */
1867 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1868  char *vendor, char *model, char *rev)
1869 {
1870  int rc;
1871  InquiryData_struct *inq_buf;
1872  unsigned char scsi3addr[8];
1873 
1874  *vendor = '\0';
1875  *model = '\0';
1876  *rev = '\0';
1877 
1878  inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1879  if (!inq_buf)
1880  return;
1881 
1882  log_unit_to_scsi3addr(h, scsi3addr, logvol);
1883  rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1884  scsi3addr, TYPE_CMD);
1885  if (rc == IO_OK) {
1886  memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1887  vendor[VENDOR_LEN] = '\0';
1888  memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1889  model[MODEL_LEN] = '\0';
1890  memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1891  rev[REV_LEN] = '\0';
1892  }
1893 
1894  kfree(inq_buf);
1895  return;
1896 }
1897 
1898 /* This function gets the serial number of a logical drive via
1899  * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1900  * number cannot be had, for whatever reason, 16 bytes of 0xff
1901  * are returned instead.
1902  */
1903 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1904  unsigned char *serial_no, int buflen)
1905 {
1906 #define PAGE_83_INQ_BYTES 64
1907  int rc;
1908  unsigned char *buf;
1909  unsigned char scsi3addr[8];
1910 
1911  if (buflen > 16)
1912  buflen = 16;
1913  memset(serial_no, 0xff, buflen);
1914  buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1915  if (!buf)
1916  return;
1917  memset(serial_no, 0, buflen);
1918  log_unit_to_scsi3addr(h, scsi3addr, logvol);
1919  rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1920  PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1921  if (rc == IO_OK)
1922  memcpy(serial_no, &buf[8], buflen);
1923  kfree(buf);
1924  return;
1925 }
1926 
1927 /*
1928  * cciss_add_disk sets up the block device queue for a logical drive
1929  */
1930 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1931  int drv_index)
1932 {
1933  disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1934  if (!disk->queue)
1935  goto init_queue_failure;
1936  sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1937  disk->major = h->major;
1938  disk->first_minor = drv_index << NWD_SHIFT;
1939  disk->fops = &cciss_fops;
1940  if (cciss_create_ld_sysfs_entry(h, drv_index))
1941  goto cleanup_queue;
1942  disk->private_data = h->drv[drv_index];
1943  disk->driverfs_dev = &h->drv[drv_index]->dev;
1944 
1945  /* Set up queue information */
1946  blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1947 
1948  /* This is a hardware imposed limit. */
1949  blk_queue_max_segments(disk->queue, h->maxsgentries);
1950 
1952 
1953  blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1954 
1955  disk->queue->queuedata = h;
1956 
1957  blk_queue_logical_block_size(disk->queue,
1958  h->drv[drv_index]->block_size);
1959 
1960  /* Make sure all queue data is written out before */
1961  /* setting h->drv[drv_index]->queue, as setting this */
1962  /* allows the interrupt handler to start the queue */
1963  wmb();
1964  h->drv[drv_index]->queue = disk->queue;
1965  add_disk(disk);
1966  return 0;
1967 
1968 cleanup_queue:
1969  blk_cleanup_queue(disk->queue);
1970  disk->queue = NULL;
1971 init_queue_failure:
1972  return -1;
1973 }
1974 
1975 /* This function will check the usage_count of the drive to be updated/added.
1976  * If the usage_count is zero and it is a heretofore unknown drive, or,
1977  * the drive's capacity, geometry, or serial number has changed,
1978  * then the drive information will be updated and the disk will be
1979  * re-registered with the kernel. If these conditions don't hold,
1980  * then it will be left alone for the next reboot. The exception to this
1981  * is disk 0 which will always be left registered with the kernel since it
1982  * is also the controller node. Any changes to disk 0 will show up on
1983  * the next reboot.
1984  */
1985 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1986  int first_time, int via_ioctl)
1987 {
1988  struct gendisk *disk;
1989  InquiryData_struct *inq_buff = NULL;
1990  unsigned int block_size;
1992  unsigned long flags = 0;
1993  int ret = 0;
1994  drive_info_struct *drvinfo;
1995 
1996  /* Get information about the disk and modify the driver structure */
1997  inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1998  drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1999  if (inq_buff == NULL || drvinfo == NULL)
2000  goto mem_msg;
2001 
2002  /* testing to see if 16-byte CDBs are already being used */
2003  if (h->cciss_read == CCISS_READ_16) {
2004  cciss_read_capacity_16(h, drv_index,
2005  &total_size, &block_size);
2006 
2007  } else {
2008  cciss_read_capacity(h, drv_index, &total_size, &block_size);
2009  /* if read_capacity returns all F's this volume is >2TB */
2010  /* in size so we switch to 16-byte CDB's for all */
2011  /* read/write ops */
2012  if (total_size == 0xFFFFFFFFULL) {
2013  cciss_read_capacity_16(h, drv_index,
2014  &total_size, &block_size);
2017  } else {
2020  }
2021  }
2022 
2023  cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2024  inq_buff, drvinfo);
2025  drvinfo->block_size = block_size;
2026  drvinfo->nr_blocks = total_size + 1;
2027 
2028  cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2029  drvinfo->model, drvinfo->rev);
2030  cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2031  sizeof(drvinfo->serial_no));
2032  /* Save the lunid in case we deregister the disk, below. */
2033  memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2034  sizeof(drvinfo->LunID));
2035 
2036  /* Is it the same disk we already know, and nothing's changed? */
2037  if (h->drv[drv_index]->raid_level != -1 &&
2038  ((memcmp(drvinfo->serial_no,
2039  h->drv[drv_index]->serial_no, 16) == 0) &&
2040  drvinfo->block_size == h->drv[drv_index]->block_size &&
2041  drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2042  drvinfo->heads == h->drv[drv_index]->heads &&
2043  drvinfo->sectors == h->drv[drv_index]->sectors &&
2044  drvinfo->cylinders == h->drv[drv_index]->cylinders))
2045  /* The disk is unchanged, nothing to update */
2046  goto freeret;
2047 
2048  /* If we get here it's not the same disk, or something's changed,
2049  * so we need to * deregister it, and re-register it, if it's not
2050  * in use.
2051  * If the disk already exists then deregister it before proceeding
2052  * (unless it's the first disk (for the controller node).
2053  */
2054  if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2055  dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2056  spin_lock_irqsave(&h->lock, flags);
2057  h->drv[drv_index]->busy_configuring = 1;
2058  spin_unlock_irqrestore(&h->lock, flags);
2059 
2060  /* deregister_disk sets h->drv[drv_index]->queue = NULL
2061  * which keeps the interrupt handler from starting
2062  * the queue.
2063  */
2064  ret = deregister_disk(h, drv_index, 0, via_ioctl);
2065  }
2066 
2067  /* If the disk is in use return */
2068  if (ret)
2069  goto freeret;
2070 
2071  /* Save the new information from cciss_geometry_inquiry
2072  * and serial number inquiry. If the disk was deregistered
2073  * above, then h->drv[drv_index] will be NULL.
2074  */
2075  if (h->drv[drv_index] == NULL) {
2076  drvinfo->device_initialized = 0;
2077  h->drv[drv_index] = drvinfo;
2078  drvinfo = NULL; /* so it won't be freed below. */
2079  } else {
2080  /* special case for cxd0 */
2081  h->drv[drv_index]->block_size = drvinfo->block_size;
2082  h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2083  h->drv[drv_index]->heads = drvinfo->heads;
2084  h->drv[drv_index]->sectors = drvinfo->sectors;
2085  h->drv[drv_index]->cylinders = drvinfo->cylinders;
2086  h->drv[drv_index]->raid_level = drvinfo->raid_level;
2087  memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2088  memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2089  VENDOR_LEN + 1);
2090  memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2091  memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2092  }
2093 
2094  ++h->num_luns;
2095  disk = h->gendisk[drv_index];
2096  set_capacity(disk, h->drv[drv_index]->nr_blocks);
2097 
2098  /* If it's not disk 0 (drv_index != 0)
2099  * or if it was disk 0, but there was previously
2100  * no actual corresponding configured logical drive
2101  * (raid_leve == -1) then we want to update the
2102  * logical drive's information.
2103  */
2104  if (drv_index || first_time) {
2105  if (cciss_add_disk(h, disk, drv_index) != 0) {
2106  cciss_free_gendisk(h, drv_index);
2107  cciss_free_drive_info(h, drv_index);
2108  dev_warn(&h->pdev->dev, "could not update disk %d\n",
2109  drv_index);
2110  --h->num_luns;
2111  }
2112  }
2113 
2114 freeret:
2115  kfree(inq_buff);
2116  kfree(drvinfo);
2117  return;
2118 mem_msg:
2119  dev_err(&h->pdev->dev, "out of memory\n");
2120  goto freeret;
2121 }
2122 
2123 /* This function will find the first index of the controllers drive array
2124  * that has a null drv pointer and allocate the drive info struct and
2125  * will return that index This is where new drives will be added.
2126  * If the index to be returned is greater than the highest_lun index for
2127  * the controller then highest_lun is set * to this new index.
2128  * If there are no available indexes or if tha allocation fails, then -1
2129  * is returned. * "controller_node" is used to know if this is a real
2130  * logical drive, or just the controller node, which determines if this
2131  * counts towards highest_lun.
2132  */
2133 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2134 {
2135  int i;
2136  drive_info_struct *drv;
2137 
2138  /* Search for an empty slot for our drive info */
2139  for (i = 0; i < CISS_MAX_LUN; i++) {
2140 
2141  /* if not cxd0 case, and it's occupied, skip it. */
2142  if (h->drv[i] && i != 0)
2143  continue;
2144  /*
2145  * If it's cxd0 case, and drv is alloc'ed already, and a
2146  * disk is configured there, skip it.
2147  */
2148  if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2149  continue;
2150 
2151  /*
2152  * We've found an empty slot. Update highest_lun
2153  * provided this isn't just the fake cxd0 controller node.
2154  */
2155  if (i > h->highest_lun && !controller_node)
2156  h->highest_lun = i;
2157 
2158  /* If adding a real disk at cxd0, and it's already alloc'ed */
2159  if (i == 0 && h->drv[i] != NULL)
2160  return i;
2161 
2162  /*
2163  * Found an empty slot, not already alloc'ed. Allocate it.
2164  * Mark it with raid_level == -1, so we know it's new later on.
2165  */
2166  drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2167  if (!drv)
2168  return -1;
2169  drv->raid_level = -1; /* so we know it's new */
2170  h->drv[i] = drv;
2171  return i;
2172  }
2173  return -1;
2174 }
2175 
2176 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2177 {
2178  kfree(h->drv[drv_index]);
2179  h->drv[drv_index] = NULL;
2180 }
2181 
2182 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2183 {
2184  put_disk(h->gendisk[drv_index]);
2185  h->gendisk[drv_index] = NULL;
2186 }
2187 
2188 /* cciss_add_gendisk finds a free hba[]->drv structure
2189  * and allocates a gendisk if needed, and sets the lunid
2190  * in the drvinfo structure. It returns the index into
2191  * the ->drv[] array, or -1 if none are free.
2192  * is_controller_node indicates whether highest_lun should
2193  * count this disk, or if it's only being added to provide
2194  * a means to talk to the controller in case no logical
2195  * drives have yet been configured.
2196  */
2197 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2198  int controller_node)
2199 {
2200  int drv_index;
2201 
2202  drv_index = cciss_alloc_drive_info(h, controller_node);
2203  if (drv_index == -1)
2204  return -1;
2205 
2206  /*Check if the gendisk needs to be allocated */
2207  if (!h->gendisk[drv_index]) {
2208  h->gendisk[drv_index] =
2209  alloc_disk(1 << NWD_SHIFT);
2210  if (!h->gendisk[drv_index]) {
2211  dev_err(&h->pdev->dev,
2212  "could not allocate a new disk %d\n",
2213  drv_index);
2214  goto err_free_drive_info;
2215  }
2216  }
2217  memcpy(h->drv[drv_index]->LunID, lunid,
2218  sizeof(h->drv[drv_index]->LunID));
2219  if (cciss_create_ld_sysfs_entry(h, drv_index))
2220  goto err_free_disk;
2221  /* Don't need to mark this busy because nobody */
2222  /* else knows about this disk yet to contend */
2223  /* for access to it. */
2224  h->drv[drv_index]->busy_configuring = 0;
2225  wmb();
2226  return drv_index;
2227 
2228 err_free_disk:
2229  cciss_free_gendisk(h, drv_index);
2230 err_free_drive_info:
2231  cciss_free_drive_info(h, drv_index);
2232  return -1;
2233 }
2234 
2235 /* This is for the special case of a controller which
2236  * has no logical drives. In this case, we still need
2237  * to register a disk so the controller can be accessed
2238  * by the Array Config Utility.
2239  */
2240 static void cciss_add_controller_node(ctlr_info_t *h)
2241 {
2242  struct gendisk *disk;
2243  int drv_index;
2244 
2245  if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2246  return;
2247 
2248  drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2249  if (drv_index == -1)
2250  goto error;
2251  h->drv[drv_index]->block_size = 512;
2252  h->drv[drv_index]->nr_blocks = 0;
2253  h->drv[drv_index]->heads = 0;
2254  h->drv[drv_index]->sectors = 0;
2255  h->drv[drv_index]->cylinders = 0;
2256  h->drv[drv_index]->raid_level = -1;
2257  memset(h->drv[drv_index]->serial_no, 0, 16);
2258  disk = h->gendisk[drv_index];
2259  if (cciss_add_disk(h, disk, drv_index) == 0)
2260  return;
2261  cciss_free_gendisk(h, drv_index);
2262  cciss_free_drive_info(h, drv_index);
2263 error:
2264  dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2265  return;
2266 }
2267 
2268 /* This function will add and remove logical drives from the Logical
2269  * drive array of the controller and maintain persistency of ordering
2270  * so that mount points are preserved until the next reboot. This allows
2271  * for the removal of logical drives in the middle of the drive array
2272  * without a re-ordering of those drives.
2273  * INPUT
2274  * h = The controller to perform the operations on
2275  */
2276 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2277  int via_ioctl)
2278 {
2279  int num_luns;
2280  ReportLunData_struct *ld_buff = NULL;
2281  int return_code;
2282  int listlength = 0;
2283  int i;
2284  int drv_found;
2285  int drv_index = 0;
2286  unsigned char lunid[8] = CTLR_LUNID;
2287  unsigned long flags;
2288 
2289  if (!capable(CAP_SYS_RAWIO))
2290  return -EPERM;
2291 
2292  /* Set busy_configuring flag for this operation */
2293  spin_lock_irqsave(&h->lock, flags);
2294  if (h->busy_configuring) {
2295  spin_unlock_irqrestore(&h->lock, flags);
2296  return -EBUSY;
2297  }
2298  h->busy_configuring = 1;
2299  spin_unlock_irqrestore(&h->lock, flags);
2300 
2301  ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2302  if (ld_buff == NULL)
2303  goto mem_msg;
2304 
2305  return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2306  sizeof(ReportLunData_struct),
2307  0, CTLR_LUNID, TYPE_CMD);
2308 
2309  if (return_code == IO_OK)
2310  listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2311  else { /* reading number of logical volumes failed */
2312  dev_warn(&h->pdev->dev,
2313  "report logical volume command failed\n");
2314  listlength = 0;
2315  goto freeret;
2316  }
2317 
2318  num_luns = listlength / 8; /* 8 bytes per entry */
2319  if (num_luns > CISS_MAX_LUN) {
2320  num_luns = CISS_MAX_LUN;
2321  dev_warn(&h->pdev->dev, "more luns configured"
2322  " on controller than can be handled by"
2323  " this driver.\n");
2324  }
2325 
2326  if (num_luns == 0)
2327  cciss_add_controller_node(h);
2328 
2329  /* Compare controller drive array to driver's drive array
2330  * to see if any drives are missing on the controller due
2331  * to action of Array Config Utility (user deletes drive)
2332  * and deregister logical drives which have disappeared.
2333  */
2334  for (i = 0; i <= h->highest_lun; i++) {
2335  int j;
2336  drv_found = 0;
2337 
2338  /* skip holes in the array from already deleted drives */
2339  if (h->drv[i] == NULL)
2340  continue;
2341 
2342  for (j = 0; j < num_luns; j++) {
2343  memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2344  if (memcmp(h->drv[i]->LunID, lunid,
2345  sizeof(lunid)) == 0) {
2346  drv_found = 1;
2347  break;
2348  }
2349  }
2350  if (!drv_found) {
2351  /* Deregister it from the OS, it's gone. */
2352  spin_lock_irqsave(&h->lock, flags);
2353  h->drv[i]->busy_configuring = 1;
2354  spin_unlock_irqrestore(&h->lock, flags);
2355  return_code = deregister_disk(h, i, 1, via_ioctl);
2356  if (h->drv[i] != NULL)
2357  h->drv[i]->busy_configuring = 0;
2358  }
2359  }
2360 
2361  /* Compare controller drive array to driver's drive array.
2362  * Check for updates in the drive information and any new drives
2363  * on the controller due to ACU adding logical drives, or changing
2364  * a logical drive's size, etc. Reregister any new/changed drives
2365  */
2366  for (i = 0; i < num_luns; i++) {
2367  int j;
2368 
2369  drv_found = 0;
2370 
2371  memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2372  /* Find if the LUN is already in the drive array
2373  * of the driver. If so then update its info
2374  * if not in use. If it does not exist then find
2375  * the first free index and add it.
2376  */
2377  for (j = 0; j <= h->highest_lun; j++) {
2378  if (h->drv[j] != NULL &&
2379  memcmp(h->drv[j]->LunID, lunid,
2380  sizeof(h->drv[j]->LunID)) == 0) {
2381  drv_index = j;
2382  drv_found = 1;
2383  break;
2384  }
2385  }
2386 
2387  /* check if the drive was found already in the array */
2388  if (!drv_found) {
2389  drv_index = cciss_add_gendisk(h, lunid, 0);
2390  if (drv_index == -1)
2391  goto freeret;
2392  }
2393  cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2394  } /* end for */
2395 
2396 freeret:
2397  kfree(ld_buff);
2398  h->busy_configuring = 0;
2399  /* We return -1 here to tell the ACU that we have registered/updated
2400  * all of the drives that we can and to keep it from calling us
2401  * additional times.
2402  */
2403  return -1;
2404 mem_msg:
2405  dev_err(&h->pdev->dev, "out of memory\n");
2406  h->busy_configuring = 0;
2407  goto freeret;
2408 }
2409 
2410 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2411 {
2412  /* zero out the disk size info */
2413  drive_info->nr_blocks = 0;
2414  drive_info->block_size = 0;
2415  drive_info->heads = 0;
2416  drive_info->sectors = 0;
2417  drive_info->cylinders = 0;
2418  drive_info->raid_level = -1;
2419  memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2420  memset(drive_info->model, 0, sizeof(drive_info->model));
2421  memset(drive_info->rev, 0, sizeof(drive_info->rev));
2422  memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2423  /*
2424  * don't clear the LUNID though, we need to remember which
2425  * one this one is.
2426  */
2427 }
2428 
2429 /* This function will deregister the disk and it's queue from the
2430  * kernel. It must be called with the controller lock held and the
2431  * drv structures busy_configuring flag set. It's parameters are:
2432  *
2433  * disk = This is the disk to be deregistered
2434  * drv = This is the drive_info_struct associated with the disk to be
2435  * deregistered. It contains information about the disk used
2436  * by the driver.
2437  * clear_all = This flag determines whether or not the disk information
2438  * is going to be completely cleared out and the highest_lun
2439  * reset. Sometimes we want to clear out information about
2440  * the disk in preparation for re-adding it. In this case
2441  * the highest_lun should be left unchanged and the LunID
2442  * should not be cleared.
2443  * via_ioctl
2444  * This indicates whether we've reached this path via ioctl.
2445  * This affects the maximum usage count allowed for c0d0 to be messed with.
2446  * If this path is reached via ioctl(), then the max_usage_count will
2447  * be 1, as the process calling ioctl() has got to have the device open.
2448  * If we get here via sysfs, then the max usage count will be zero.
2449 */
2450 static int deregister_disk(ctlr_info_t *h, int drv_index,
2451  int clear_all, int via_ioctl)
2452 {
2453  int i;
2454  struct gendisk *disk;
2455  drive_info_struct *drv;
2456  int recalculate_highest_lun;
2457 
2458  if (!capable(CAP_SYS_RAWIO))
2459  return -EPERM;
2460 
2461  drv = h->drv[drv_index];
2462  disk = h->gendisk[drv_index];
2463 
2464  /* make sure logical volume is NOT is use */
2465  if (clear_all || (h->gendisk[0] == disk)) {
2466  if (drv->usage_count > via_ioctl)
2467  return -EBUSY;
2468  } else if (drv->usage_count > 0)
2469  return -EBUSY;
2470 
2471  recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2472 
2473  /* invalidate the devices and deregister the disk. If it is disk
2474  * zero do not deregister it but just zero out it's values. This
2475  * allows us to delete disk zero but keep the controller registered.
2476  */
2477  if (h->gendisk[0] != disk) {
2478  struct request_queue *q = disk->queue;
2479  if (disk->flags & GENHD_FL_UP) {
2480  cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2481  del_gendisk(disk);
2482  }
2483  if (q)
2484  blk_cleanup_queue(q);
2485  /* If clear_all is set then we are deleting the logical
2486  * drive, not just refreshing its info. For drives
2487  * other than disk 0 we will call put_disk. We do not
2488  * do this for disk 0 as we need it to be able to
2489  * configure the controller.
2490  */
2491  if (clear_all){
2492  /* This isn't pretty, but we need to find the
2493  * disk in our array and NULL our the pointer.
2494  * This is so that we will call alloc_disk if
2495  * this index is used again later.
2496  */
2497  for (i=0; i < CISS_MAX_LUN; i++){
2498  if (h->gendisk[i] == disk) {
2499  h->gendisk[i] = NULL;
2500  break;
2501  }
2502  }
2503  put_disk(disk);
2504  }
2505  } else {
2506  set_capacity(disk, 0);
2507  cciss_clear_drive_info(drv);
2508  }
2509 
2510  --h->num_luns;
2511 
2512  /* if it was the last disk, find the new hightest lun */
2513  if (clear_all && recalculate_highest_lun) {
2514  int newhighest = -1;
2515  for (i = 0; i <= h->highest_lun; i++) {
2516  /* if the disk has size > 0, it is available */
2517  if (h->drv[i] && h->drv[i]->heads)
2518  newhighest = i;
2519  }
2520  h->highest_lun = newhighest;
2521  }
2522  return 0;
2523 }
2524 
2525 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2526  size_t size, __u8 page_code, unsigned char *scsi3addr,
2527  int cmd_type)
2528 {
2529  u64bit buff_dma_handle;
2530  int status = IO_OK;
2531 
2532  c->cmd_type = CMD_IOCTL_PEND;
2533  c->Header.ReplyQueue = 0;
2534  if (buff != NULL) {
2535  c->Header.SGList = 1;
2536  c->Header.SGTotal = 1;
2537  } else {
2538  c->Header.SGList = 0;
2539  c->Header.SGTotal = 0;
2540  }
2541  c->Header.Tag.lower = c->busaddr;
2542  memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2543 
2544  c->Request.Type.Type = cmd_type;
2545  if (cmd_type == TYPE_CMD) {
2546  switch (cmd) {
2547  case CISS_INQUIRY:
2548  /* are we trying to read a vital product page */
2549  if (page_code != 0) {
2550  c->Request.CDB[1] = 0x01;
2551  c->Request.CDB[2] = page_code;
2552  }
2553  c->Request.CDBLen = 6;
2554  c->Request.Type.Attribute = ATTR_SIMPLE;
2555  c->Request.Type.Direction = XFER_READ;
2556  c->Request.Timeout = 0;
2557  c->Request.CDB[0] = CISS_INQUIRY;
2558  c->Request.CDB[4] = size & 0xFF;
2559  break;
2560  case CISS_REPORT_LOG:
2561  case CISS_REPORT_PHYS:
2562  /* Talking to controller so It's a physical command
2563  mode = 00 target = 0. Nothing to write.
2564  */
2565  c->Request.CDBLen = 12;
2566  c->Request.Type.Attribute = ATTR_SIMPLE;
2567  c->Request.Type.Direction = XFER_READ;
2568  c->Request.Timeout = 0;
2569  c->Request.CDB[0] = cmd;
2570  c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2571  c->Request.CDB[7] = (size >> 16) & 0xFF;
2572  c->Request.CDB[8] = (size >> 8) & 0xFF;
2573  c->Request.CDB[9] = size & 0xFF;
2574  break;
2575 
2576  case CCISS_READ_CAPACITY:
2577  c->Request.CDBLen = 10;
2578  c->Request.Type.Attribute = ATTR_SIMPLE;
2579  c->Request.Type.Direction = XFER_READ;
2580  c->Request.Timeout = 0;
2581  c->Request.CDB[0] = cmd;
2582  break;
2584  c->Request.CDBLen = 16;
2585  c->Request.Type.Attribute = ATTR_SIMPLE;
2586  c->Request.Type.Direction = XFER_READ;
2587  c->Request.Timeout = 0;
2588  c->Request.CDB[0] = cmd;
2589  c->Request.CDB[1] = 0x10;
2590  c->Request.CDB[10] = (size >> 24) & 0xFF;
2591  c->Request.CDB[11] = (size >> 16) & 0xFF;
2592  c->Request.CDB[12] = (size >> 8) & 0xFF;
2593  c->Request.CDB[13] = size & 0xFF;
2594  c->Request.Timeout = 0;
2595  c->Request.CDB[0] = cmd;
2596  break;
2597  case CCISS_CACHE_FLUSH:
2598  c->Request.CDBLen = 12;
2599  c->Request.Type.Attribute = ATTR_SIMPLE;
2600  c->Request.Type.Direction = XFER_WRITE;
2601  c->Request.Timeout = 0;
2602  c->Request.CDB[0] = BMIC_WRITE;
2603  c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2604  c->Request.CDB[7] = (size >> 8) & 0xFF;
2605  c->Request.CDB[8] = size & 0xFF;
2606  break;
2607  case TEST_UNIT_READY:
2608  c->Request.CDBLen = 6;
2609  c->Request.Type.Attribute = ATTR_SIMPLE;
2610  c->Request.Type.Direction = XFER_NONE;
2611  c->Request.Timeout = 0;
2612  break;
2613  default:
2614  dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2615  return IO_ERROR;
2616  }
2617  } else if (cmd_type == TYPE_MSG) {
2618  switch (cmd) {
2619  case CCISS_ABORT_MSG:
2620  c->Request.CDBLen = 12;
2621  c->Request.Type.Attribute = ATTR_SIMPLE;
2622  c->Request.Type.Direction = XFER_WRITE;
2623  c->Request.Timeout = 0;
2624  c->Request.CDB[0] = cmd; /* abort */
2625  c->Request.CDB[1] = 0; /* abort a command */
2626  /* buff contains the tag of the command to abort */
2627  memcpy(&c->Request.CDB[4], buff, 8);
2628  break;
2629  case CCISS_RESET_MSG:
2630  c->Request.CDBLen = 16;
2631  c->Request.Type.Attribute = ATTR_SIMPLE;
2632  c->Request.Type.Direction = XFER_NONE;
2633  c->Request.Timeout = 0;
2634  memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2635  c->Request.CDB[0] = cmd; /* reset */
2637  break;
2638  case CCISS_NOOP_MSG:
2639  c->Request.CDBLen = 1;
2640  c->Request.Type.Attribute = ATTR_SIMPLE;
2641  c->Request.Type.Direction = XFER_WRITE;
2642  c->Request.Timeout = 0;
2643  c->Request.CDB[0] = cmd;
2644  break;
2645  default:
2646  dev_warn(&h->pdev->dev,
2647  "unknown message type %d\n", cmd);
2648  return IO_ERROR;
2649  }
2650  } else {
2651  dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2652  return IO_ERROR;
2653  }
2654  /* Fill in the scatter gather information */
2655  if (size > 0) {
2656  buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2657  buff, size,
2659  c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2660  c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2661  c->SG[0].Len = size;
2662  c->SG[0].Ext = 0; /* we are not chaining */
2663  }
2664  return status;
2665 }
2666 
2667 static int __devinit cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2668  u8 reset_type)
2669 {
2671  int return_status;
2672 
2673  c = cmd_alloc(h);
2674  if (!c)
2675  return -ENOMEM;
2676  return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2677  CTLR_LUNID, TYPE_MSG);
2678  c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2679  if (return_status != IO_OK) {
2680  cmd_special_free(h, c);
2681  return return_status;
2682  }
2683  c->waiting = NULL;
2684  enqueue_cmd_and_start_io(h, c);
2685  /* Don't wait for completion, the reset won't complete. Don't free
2686  * the command either. This is the last command we will send before
2687  * re-initializing everything, so it doesn't matter and won't leak.
2688  */
2689  return 0;
2690 }
2691 
2692 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2693 {
2694  switch (c->err_info->ScsiStatus) {
2695  case SAM_STAT_GOOD:
2696  return IO_OK;
2698  switch (0xf & c->err_info->SenseInfo[2]) {
2699  case 0: return IO_OK; /* no sense */
2700  case 1: return IO_OK; /* recovered error */
2701  default:
2702  if (check_for_unit_attention(h, c))
2703  return IO_NEEDS_RETRY;
2704  dev_warn(&h->pdev->dev, "cmd 0x%02x "
2705  "check condition, sense key = 0x%02x\n",
2706  c->Request.CDB[0], c->err_info->SenseInfo[2]);
2707  }
2708  break;
2709  default:
2710  dev_warn(&h->pdev->dev, "cmd 0x%02x"
2711  "scsi status = 0x%02x\n",
2712  c->Request.CDB[0], c->err_info->ScsiStatus);
2713  break;
2714  }
2715  return IO_ERROR;
2716 }
2717 
2718 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2719 {
2720  int return_status = IO_OK;
2721 
2722  if (c->err_info->CommandStatus == CMD_SUCCESS)
2723  return IO_OK;
2724 
2725  switch (c->err_info->CommandStatus) {
2726  case CMD_TARGET_STATUS:
2727  return_status = check_target_status(h, c);
2728  break;
2729  case CMD_DATA_UNDERRUN:
2730  case CMD_DATA_OVERRUN:
2731  /* expected for inquiry and report lun commands */
2732  break;
2733  case CMD_INVALID:
2734  dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2735  "reported invalid\n", c->Request.CDB[0]);
2736  return_status = IO_ERROR;
2737  break;
2738  case CMD_PROTOCOL_ERR:
2739  dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2740  "protocol error\n", c->Request.CDB[0]);
2741  return_status = IO_ERROR;
2742  break;
2743  case CMD_HARDWARE_ERR:
2744  dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2745  " hardware error\n", c->Request.CDB[0]);
2746  return_status = IO_ERROR;
2747  break;
2748  case CMD_CONNECTION_LOST:
2749  dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2750  "connection lost\n", c->Request.CDB[0]);
2751  return_status = IO_ERROR;
2752  break;
2753  case CMD_ABORTED:
2754  dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2755  "aborted\n", c->Request.CDB[0]);
2756  return_status = IO_ERROR;
2757  break;
2758  case CMD_ABORT_FAILED:
2759  dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2760  "abort failed\n", c->Request.CDB[0]);
2761  return_status = IO_ERROR;
2762  break;
2763  case CMD_UNSOLICITED_ABORT:
2764  dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2765  c->Request.CDB[0]);
2766  return_status = IO_NEEDS_RETRY;
2767  break;
2768  case CMD_UNABORTABLE:
2769  dev_warn(&h->pdev->dev, "cmd unabortable\n");
2770  return_status = IO_ERROR;
2771  break;
2772  default:
2773  dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2774  "unknown status %x\n", c->Request.CDB[0],
2775  c->err_info->CommandStatus);
2776  return_status = IO_ERROR;
2777  }
2778  return return_status;
2779 }
2780 
2781 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2782  int attempt_retry)
2783 {
2785  u64bit buff_dma_handle;
2786  int return_status = IO_OK;
2787 
2788 resend_cmd2:
2789  c->waiting = &wait;
2790  enqueue_cmd_and_start_io(h, c);
2791 
2793 
2794  if (c->err_info->CommandStatus == 0 || !attempt_retry)
2795  goto command_done;
2796 
2797  return_status = process_sendcmd_error(h, c);
2798 
2799  if (return_status == IO_NEEDS_RETRY &&
2801  dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2802  c->Request.CDB[0]);
2803  c->retry_count++;
2804  /* erase the old error information */
2805  memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2806  return_status = IO_OK;
2808  goto resend_cmd2;
2809  }
2810 
2811 command_done:
2812  /* unlock the buffers from DMA */
2813  buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2814  buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2815  pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2816  c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2817  return return_status;
2818 }
2819 
2820 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2821  __u8 page_code, unsigned char scsi3addr[],
2822  int cmd_type)
2823 {
2825  int return_status;
2826 
2827  c = cmd_special_alloc(h);
2828  if (!c)
2829  return -ENOMEM;
2830  return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2831  scsi3addr, cmd_type);
2832  if (return_status == IO_OK)
2833  return_status = sendcmd_withirq_core(h, c, 1);
2834 
2835  cmd_special_free(h, c);
2836  return return_status;
2837 }
2838 
2839 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2840  sector_t total_size,
2841  unsigned int block_size,
2842  InquiryData_struct *inq_buff,
2843  drive_info_struct *drv)
2844 {
2845  int return_code;
2846  unsigned long t;
2847  unsigned char scsi3addr[8];
2848 
2849  memset(inq_buff, 0, sizeof(InquiryData_struct));
2850  log_unit_to_scsi3addr(h, scsi3addr, logvol);
2851  return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2852  sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2853  if (return_code == IO_OK) {
2854  if (inq_buff->data_byte[8] == 0xFF) {
2855  dev_warn(&h->pdev->dev,
2856  "reading geometry failed, volume "
2857  "does not support reading geometry\n");
2858  drv->heads = 255;
2859  drv->sectors = 32; /* Sectors per track */
2860  drv->cylinders = total_size + 1;
2861  drv->raid_level = RAID_UNKNOWN;
2862  } else {
2863  drv->heads = inq_buff->data_byte[6];
2864  drv->sectors = inq_buff->data_byte[7];
2865  drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2866  drv->cylinders += inq_buff->data_byte[5];
2867  drv->raid_level = inq_buff->data_byte[8];
2868  }
2869  drv->block_size = block_size;
2870  drv->nr_blocks = total_size + 1;
2871  t = drv->heads * drv->sectors;
2872  if (t > 1) {
2873  sector_t real_size = total_size + 1;
2874  unsigned long rem = sector_div(real_size, t);
2875  if (rem)
2876  real_size++;
2877  drv->cylinders = real_size;
2878  }
2879  } else { /* Get geometry failed */
2880  dev_warn(&h->pdev->dev, "reading geometry failed\n");
2881  }
2882 }
2883 
2884 static void
2885 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2886  unsigned int *block_size)
2887 {
2889  int return_code;
2890  unsigned char scsi3addr[8];
2891 
2892  buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2893  if (!buf) {
2894  dev_warn(&h->pdev->dev, "out of memory\n");
2895  return;
2896  }
2897 
2898  log_unit_to_scsi3addr(h, scsi3addr, logvol);
2899  return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2900  sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2901  if (return_code == IO_OK) {
2902  *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2903  *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2904  } else { /* read capacity command failed */
2905  dev_warn(&h->pdev->dev, "read capacity failed\n");
2906  *total_size = 0;
2907  *block_size = BLOCK_SIZE;
2908  }
2909  kfree(buf);
2910 }
2911 
2912 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2913  sector_t *total_size, unsigned int *block_size)
2914 {
2916  int return_code;
2917  unsigned char scsi3addr[8];
2918 
2919  buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2920  if (!buf) {
2921  dev_warn(&h->pdev->dev, "out of memory\n");
2922  return;
2923  }
2924 
2925  log_unit_to_scsi3addr(h, scsi3addr, logvol);
2926  return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2927  buf, sizeof(ReadCapdata_struct_16),
2928  0, scsi3addr, TYPE_CMD);
2929  if (return_code == IO_OK) {
2930  *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2931  *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2932  } else { /* read capacity command failed */
2933  dev_warn(&h->pdev->dev, "read capacity failed\n");
2934  *total_size = 0;
2935  *block_size = BLOCK_SIZE;
2936  }
2937  dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2938  (unsigned long long)*total_size+1, *block_size);
2939  kfree(buf);
2940 }
2941 
2942 static int cciss_revalidate(struct gendisk *disk)
2943 {
2944  ctlr_info_t *h = get_host(disk);
2945  drive_info_struct *drv = get_drv(disk);
2946  int logvol;
2947  int FOUND = 0;
2948  unsigned int block_size;
2950  InquiryData_struct *inq_buff = NULL;
2951 
2952  for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2953  if (!h->drv[logvol])
2954  continue;
2955  if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2956  sizeof(drv->LunID)) == 0) {
2957  FOUND = 1;
2958  break;
2959  }
2960  }
2961 
2962  if (!FOUND)
2963  return 1;
2964 
2965  inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2966  if (inq_buff == NULL) {
2967  dev_warn(&h->pdev->dev, "out of memory\n");
2968  return 1;
2969  }
2970  if (h->cciss_read == CCISS_READ_10) {
2971  cciss_read_capacity(h, logvol,
2972  &total_size, &block_size);
2973  } else {
2974  cciss_read_capacity_16(h, logvol,
2975  &total_size, &block_size);
2976  }
2977  cciss_geometry_inquiry(h, logvol, total_size, block_size,
2978  inq_buff, drv);
2979 
2981  set_capacity(disk, drv->nr_blocks);
2982 
2983  kfree(inq_buff);
2984  return 0;
2985 }
2986 
2987 /*
2988  * Map (physical) PCI mem into (virtual) kernel space
2989  */
2990 static void __iomem *remap_pci_mem(ulong base, ulong size)
2991 {
2992  ulong page_base = ((ulong) base) & PAGE_MASK;
2993  ulong page_offs = ((ulong) base) - page_base;
2994  void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2995 
2996  return page_remapped ? (page_remapped + page_offs) : NULL;
2997 }
2998 
2999 /*
3000  * Takes jobs of the Q and sends them to the hardware, then puts it on
3001  * the Q to wait for completion.
3002  */
3003 static void start_io(ctlr_info_t *h)
3004 {
3006 
3007  while (!list_empty(&h->reqQ)) {
3008  c = list_entry(h->reqQ.next, CommandList_struct, list);
3009  /* can't do anything if fifo is full */
3010  if ((h->access.fifo_full(h))) {
3011  dev_warn(&h->pdev->dev, "fifo full\n");
3012  break;
3013  }
3014 
3015  /* Get the first entry from the Request Q */
3016  removeQ(c);
3017  h->Qdepth--;
3018 
3019  /* Tell the controller execute command */
3020  h->access.submit_command(h, c);
3021 
3022  /* Put job onto the completed Q */
3023  addQ(&h->cmpQ, c);
3024  }
3025 }
3026 
3027 /* Assumes that h->lock is held. */
3028 /* Zeros out the error record and then resends the command back */
3029 /* to the controller */
3030 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3031 {
3032  /* erase the old error information */
3033  memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3034 
3035  /* add it to software queue and then send it to the controller */
3036  addQ(&h->reqQ, c);
3037  h->Qdepth++;
3038  if (h->Qdepth > h->maxQsinceinit)
3039  h->maxQsinceinit = h->Qdepth;
3040 
3041  start_io(h);
3042 }
3043 
3044 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3045  unsigned int msg_byte, unsigned int host_byte,
3046  unsigned int driver_byte)
3047 {
3048  /* inverse of macros in scsi.h */
3049  return (scsi_status_byte & 0xff) |
3050  ((msg_byte & 0xff) << 8) |
3051  ((host_byte & 0xff) << 16) |
3052  ((driver_byte & 0xff) << 24);
3053 }
3054 
3055 static inline int evaluate_target_status(ctlr_info_t *h,
3056  CommandList_struct *cmd, int *retry_cmd)
3057 {
3058  unsigned char sense_key;
3059  unsigned char status_byte, msg_byte, host_byte, driver_byte;
3060  int error_value;
3061 
3062  *retry_cmd = 0;
3063  /* If we get in here, it means we got "target status", that is, scsi status */
3064  status_byte = cmd->err_info->ScsiStatus;
3065  driver_byte = DRIVER_OK;
3066  msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
3067 
3068  if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3069  host_byte = DID_PASSTHROUGH;
3070  else
3071  host_byte = DID_OK;
3072 
3073  error_value = make_status_bytes(status_byte, msg_byte,
3074  host_byte, driver_byte);
3075 
3077  if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3078  dev_warn(&h->pdev->dev, "cmd %p "
3079  "has SCSI Status 0x%x\n",
3080  cmd, cmd->err_info->ScsiStatus);
3081  return error_value;
3082  }
3083 
3084  /* check the sense key */
3085  sense_key = 0xf & cmd->err_info->SenseInfo[2];
3086  /* no status or recovered error */
3087  if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3088  (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3089  error_value = 0;
3090 
3091  if (check_for_unit_attention(h, cmd)) {
3092  *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3093  return 0;
3094  }
3095 
3096  /* Not SG_IO or similar? */
3097  if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3098  if (error_value != 0)
3099  dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3100  " sense key = 0x%x\n", cmd, sense_key);
3101  return error_value;
3102  }
3103 
3104  /* SG_IO or similar, copy sense data back */
3105  if (cmd->rq->sense) {
3106  if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3107  cmd->rq->sense_len = cmd->err_info->SenseLen;
3108  memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3109  cmd->rq->sense_len);
3110  } else
3111  cmd->rq->sense_len = 0;
3112 
3113  return error_value;
3114 }
3115 
3116 /* checks the status of the job and calls complete buffers to mark all
3117  * buffers for the completed job. Note that this function does not need
3118  * to hold the hba/queue lock.
3119  */
3120 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3121  int timeout)
3122 {
3123  int retry_cmd = 0;
3124  struct request *rq = cmd->rq;
3125 
3126  rq->errors = 0;
3127 
3128  if (timeout)
3129  rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3130 
3131  if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3132  goto after_error_processing;
3133 
3134  switch (cmd->err_info->CommandStatus) {
3135  case CMD_TARGET_STATUS:
3136  rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3137  break;
3138  case CMD_DATA_UNDERRUN:
3139  if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3140  dev_warn(&h->pdev->dev, "cmd %p has"
3141  " completed with data underrun "
3142  "reported\n", cmd);
3143  cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3144  }
3145  break;
3146  case CMD_DATA_OVERRUN:
3147  if (cmd->rq->cmd_type == REQ_TYPE_FS)
3148  dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3149  " completed with data overrun "
3150  "reported\n", cmd);
3151  break;
3152  case CMD_INVALID:
3153  dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3154  "reported invalid\n", cmd);
3155  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3157  (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3159  break;
3160  case CMD_PROTOCOL_ERR:
3161  dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3162  "protocol error\n", cmd);
3163  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3165  (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3167  break;
3168  case CMD_HARDWARE_ERR:
3169  dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3170  " hardware error\n", cmd);
3171  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3173  (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3175  break;
3176  case CMD_CONNECTION_LOST:
3177  dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3178  "connection lost\n", cmd);
3179  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3181  (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3183  break;
3184  case CMD_ABORTED:
3185  dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3186  "aborted\n", cmd);
3187  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3189  (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3191  break;
3192  case CMD_ABORT_FAILED:
3193  dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3194  "abort failed\n", cmd);
3195  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197  (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3199  break;
3200  case CMD_UNSOLICITED_ABORT:
3201  dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3202  "abort %p\n", h->ctlr, cmd);
3203  if (cmd->retry_count < MAX_CMD_RETRIES) {
3204  retry_cmd = 1;
3205  dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3206  cmd->retry_count++;
3207  } else
3208  dev_warn(&h->pdev->dev,
3209  "%p retried too many times\n", cmd);
3210  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3212  (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3214  break;
3215  case CMD_TIMEOUT:
3216  dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3217  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3219  (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3221  break;
3222  case CMD_UNABORTABLE:
3223  dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3224  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3226  cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3228  break;
3229  default:
3230  dev_warn(&h->pdev->dev, "cmd %p returned "
3231  "unknown status %x\n", cmd,
3232  cmd->err_info->CommandStatus);
3233  rq->errors = make_status_bytes(SAM_STAT_GOOD,
3235  (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3237  }
3238 
3239 after_error_processing:
3240 
3241  /* We need to return this command */
3242  if (retry_cmd) {
3243  resend_cciss_cmd(h, cmd);
3244  return;
3245  }
3246  cmd->rq->completion_data = cmd;
3247  blk_complete_request(cmd->rq);
3248 }
3249 
3250 static inline u32 cciss_tag_contains_index(u32 tag)
3251 {
3252 #define DIRECT_LOOKUP_BIT 0x10
3253  return tag & DIRECT_LOOKUP_BIT;
3254 }
3255 
3256 static inline u32 cciss_tag_to_index(u32 tag)
3257 {
3258 #define DIRECT_LOOKUP_SHIFT 5
3259  return tag >> DIRECT_LOOKUP_SHIFT;
3260 }
3261 
3262 static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3263 {
3264 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3265 #define CCISS_SIMPLE_ERROR_BITS 0x03
3267  return tag & ~CCISS_PERF_ERROR_BITS;
3268  return tag & ~CCISS_SIMPLE_ERROR_BITS;
3269 }
3270 
3271 static inline void cciss_mark_tag_indexed(u32 *tag)
3272 {
3273  *tag |= DIRECT_LOOKUP_BIT;
3274 }
3275 
3276 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3277 {
3278  *tag |= (index << DIRECT_LOOKUP_SHIFT);
3279 }
3280 
3281 /*
3282  * Get a request and submit it to the controller.
3283  */
3284 static void do_cciss_request(struct request_queue *q)
3285 {
3286  ctlr_info_t *h = q->queuedata;
3288  sector_t start_blk;
3289  int seg;
3290  struct request *creq;
3291  u64bit temp64;
3292  struct scatterlist *tmp_sg;
3293  SGDescriptor_struct *curr_sg;
3294  drive_info_struct *drv;
3295  int i, dir;
3296  int sg_index = 0;
3297  int chained = 0;
3298 
3299  queue:
3300  creq = blk_peek_request(q);
3301  if (!creq)
3302  goto startio;
3303 
3304  BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3305 
3306  c = cmd_alloc(h);
3307  if (!c)
3308  goto full;
3309 
3310  blk_start_request(creq);
3311 
3312  tmp_sg = h->scatter_list[c->cmdindex];
3313  spin_unlock_irq(q->queue_lock);
3314 
3315  c->cmd_type = CMD_RWREQ;
3316  c->rq = creq;
3317 
3318  /* fill in the request */
3319  drv = creq->rq_disk->private_data;
3320  c->Header.ReplyQueue = 0; /* unused in simple mode */
3321  /* got command from pool, so use the command block index instead */
3322  /* for direct lookups. */
3323  /* The first 2 bits are reserved for controller error reporting. */
3324  cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3325  cciss_mark_tag_indexed(&c->Header.Tag.lower);
3326  memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3327  c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3328  c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3329  c->Request.Type.Attribute = ATTR_SIMPLE;
3330  c->Request.Type.Direction =
3331  (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3332  c->Request.Timeout = 0; /* Don't time out */
3333  c->Request.CDB[0] =
3334  (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3335  start_blk = blk_rq_pos(creq);
3336  dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3337  (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3338  sg_init_table(tmp_sg, h->maxsgentries);
3339  seg = blk_rq_map_sg(q, creq, tmp_sg);
3340 
3341  /* get the DMA records for the setup */
3342  if (c->Request.Type.Direction == XFER_READ)
3343  dir = PCI_DMA_FROMDEVICE;
3344  else
3345  dir = PCI_DMA_TODEVICE;
3346 
3347  curr_sg = c->SG;
3348  sg_index = 0;
3349  chained = 0;
3350 
3351  for (i = 0; i < seg; i++) {
3352  if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3353  !chained && ((seg - i) > 1)) {
3354  /* Point to next chain block. */
3355  curr_sg = h->cmd_sg_list[c->cmdindex];
3356  sg_index = 0;
3357  chained = 1;
3358  }
3359  curr_sg[sg_index].Len = tmp_sg[i].length;
3360  temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3361  tmp_sg[i].offset,
3362  tmp_sg[i].length, dir);
3363  curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3364  curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3365  curr_sg[sg_index].Ext = 0; /* we are not chaining */
3366  ++sg_index;
3367  }
3368  if (chained)
3369  cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3370  (seg - (h->max_cmd_sgentries - 1)) *
3371  sizeof(SGDescriptor_struct));
3372 
3373  /* track how many SG entries we are using */
3374  if (seg > h->maxSG)
3375  h->maxSG = seg;
3376 
3377  dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3378  "chained[%d]\n",
3379  blk_rq_sectors(creq), seg, chained);
3380 
3381  c->Header.SGTotal = seg + chained;
3382  if (seg <= h->max_cmd_sgentries)
3383  c->Header.SGList = c->Header.SGTotal;
3384  else
3386  set_performant_mode(h, c);
3387 
3388  if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3389  if(h->cciss_read == CCISS_READ_10) {
3390  c->Request.CDB[1] = 0;
3391  c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3392  c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3393  c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3394  c->Request.CDB[5] = start_blk & 0xff;
3395  c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3396  c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3397  c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3398  c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3399  } else {
3400  u32 upper32 = upper_32_bits(start_blk);
3401 
3402  c->Request.CDBLen = 16;
3403  c->Request.CDB[1]= 0;
3404  c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3405  c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3406  c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3407  c->Request.CDB[5]= upper32 & 0xff;
3408  c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3409  c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3410  c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3411  c->Request.CDB[9]= start_blk & 0xff;
3412  c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3413  c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3414  c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3415  c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3416  c->Request.CDB[14] = c->Request.CDB[15] = 0;
3417  }
3418  } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3419  c->Request.CDBLen = creq->cmd_len;
3420  memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3421  } else {
3422  dev_warn(&h->pdev->dev, "bad request type %d\n",
3423  creq->cmd_type);
3424  BUG();
3425  }
3426 
3427  spin_lock_irq(q->queue_lock);
3428 
3429  addQ(&h->reqQ, c);
3430  h->Qdepth++;
3431  if (h->Qdepth > h->maxQsinceinit)
3432  h->maxQsinceinit = h->Qdepth;
3433 
3434  goto queue;
3435 full:
3436  blk_stop_queue(q);
3437 startio:
3438  /* We will already have the driver lock here so not need
3439  * to lock it.
3440  */
3441  start_io(h);
3442 }
3443 
3444 static inline unsigned long get_next_completion(ctlr_info_t *h)
3445 {
3446  return h->access.command_completed(h);
3447 }
3448 
3449 static inline int interrupt_pending(ctlr_info_t *h)
3450 {
3451  return h->access.intr_pending(h);
3452 }
3453 
3454 static inline long interrupt_not_for_us(ctlr_info_t *h)
3455 {
3456  return ((h->access.intr_pending(h) == 0) ||
3457  (h->interrupts_enabled == 0));
3458 }
3459 
3460 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3461  u32 raw_tag)
3462 {
3463  if (unlikely(tag_index >= h->nr_cmds)) {
3464  dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3465  return 1;
3466  }
3467  return 0;
3468 }
3469 
3470 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3471  u32 raw_tag)
3472 {
3473  removeQ(c);
3474  if (likely(c->cmd_type == CMD_RWREQ))
3475  complete_command(h, c, 0);
3476  else if (c->cmd_type == CMD_IOCTL_PEND)
3477  complete(c->waiting);
3478 #ifdef CONFIG_CISS_SCSI_TAPE
3479  else if (c->cmd_type == CMD_SCSI)
3480  complete_scsi_command(c, 0, raw_tag);
3481 #endif
3482 }
3483 
3484 static inline u32 next_command(ctlr_info_t *h)
3485 {
3486  u32 a;
3487 
3489  return h->access.command_completed(h);
3490 
3491  if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3492  a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3493  (h->reply_pool_head)++;
3494  h->commands_outstanding--;
3495  } else {
3496  a = FIFO_EMPTY;
3497  }
3498  /* Check for wraparound */
3499  if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3500  h->reply_pool_head = h->reply_pool;
3501  h->reply_pool_wraparound ^= 1;
3502  }
3503  return a;
3504 }
3505 
3506 /* process completion of an indexed ("direct lookup") command */
3507 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3508 {
3509  u32 tag_index;
3511 
3512  tag_index = cciss_tag_to_index(raw_tag);
3513  if (bad_tag(h, tag_index, raw_tag))
3514  return next_command(h);
3515  c = h->cmd_pool + tag_index;
3516  finish_cmd(h, c, raw_tag);
3517  return next_command(h);
3518 }
3519 
3520 /* process completion of a non-indexed command */
3521 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3522 {
3523  CommandList_struct *c = NULL;
3524  __u32 busaddr_masked, tag_masked;
3525 
3526  tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3527  list_for_each_entry(c, &h->cmpQ, list) {
3528  busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3529  if (busaddr_masked == tag_masked) {
3530  finish_cmd(h, c, raw_tag);
3531  return next_command(h);
3532  }
3533  }
3534  bad_tag(h, h->nr_cmds + 1, raw_tag);
3535  return next_command(h);
3536 }
3537 
3538 /* Some controllers, like p400, will give us one interrupt
3539  * after a soft reset, even if we turned interrupts off.
3540  * Only need to check for this in the cciss_xxx_discard_completions
3541  * functions.
3542  */
3543 static int ignore_bogus_interrupt(ctlr_info_t *h)
3544 {
3545  if (likely(!reset_devices))
3546  return 0;
3547 
3548  if (likely(h->interrupts_enabled))
3549  return 0;
3550 
3551  dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3552  "(known firmware bug.) Ignoring.\n");
3553 
3554  return 1;
3555 }
3556 
3557 static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3558 {
3559  ctlr_info_t *h = dev_id;
3560  unsigned long flags;
3561  u32 raw_tag;
3562 
3563  if (ignore_bogus_interrupt(h))
3564  return IRQ_NONE;
3565 
3566  if (interrupt_not_for_us(h))
3567  return IRQ_NONE;
3568  spin_lock_irqsave(&h->lock, flags);
3569  while (interrupt_pending(h)) {
3570  raw_tag = get_next_completion(h);
3571  while (raw_tag != FIFO_EMPTY)
3572  raw_tag = next_command(h);
3573  }
3574  spin_unlock_irqrestore(&h->lock, flags);
3575  return IRQ_HANDLED;
3576 }
3577 
3578 static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3579 {
3580  ctlr_info_t *h = dev_id;
3581  unsigned long flags;
3582  u32 raw_tag;
3583 
3584  if (ignore_bogus_interrupt(h))
3585  return IRQ_NONE;
3586 
3587  spin_lock_irqsave(&h->lock, flags);
3588  raw_tag = get_next_completion(h);
3589  while (raw_tag != FIFO_EMPTY)
3590  raw_tag = next_command(h);
3591  spin_unlock_irqrestore(&h->lock, flags);
3592  return IRQ_HANDLED;
3593 }
3594 
3595 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3596 {
3597  ctlr_info_t *h = dev_id;
3598  unsigned long flags;
3599  u32 raw_tag;
3600 
3601  if (interrupt_not_for_us(h))
3602  return IRQ_NONE;
3603  spin_lock_irqsave(&h->lock, flags);
3604  while (interrupt_pending(h)) {
3605  raw_tag = get_next_completion(h);
3606  while (raw_tag != FIFO_EMPTY) {
3607  if (cciss_tag_contains_index(raw_tag))
3608  raw_tag = process_indexed_cmd(h, raw_tag);
3609  else
3610  raw_tag = process_nonindexed_cmd(h, raw_tag);
3611  }
3612  }
3613  spin_unlock_irqrestore(&h->lock, flags);
3614  return IRQ_HANDLED;
3615 }
3616 
3617 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3618  * check the interrupt pending register because it is not set.
3619  */
3620 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3621 {
3622  ctlr_info_t *h = dev_id;
3623  unsigned long flags;
3624  u32 raw_tag;
3625 
3626  spin_lock_irqsave(&h->lock, flags);
3627  raw_tag = get_next_completion(h);
3628  while (raw_tag != FIFO_EMPTY) {
3629  if (cciss_tag_contains_index(raw_tag))
3630  raw_tag = process_indexed_cmd(h, raw_tag);
3631  else
3632  raw_tag = process_nonindexed_cmd(h, raw_tag);
3633  }
3634  spin_unlock_irqrestore(&h->lock, flags);
3635  return IRQ_HANDLED;
3636 }
3637 
3648 static int add_to_scan_list(struct ctlr_info *h)
3649 {
3650  struct ctlr_info *test_h;
3651  int found = 0;
3652  int ret = 0;
3653 
3654  if (h->busy_initializing)
3655  return 0;
3656 
3658  return 0;
3659 
3660  mutex_lock(&scan_mutex);
3661  list_for_each_entry(test_h, &scan_q, scan_list) {
3662  if (test_h == h) {
3663  found = 1;
3664  break;
3665  }
3666  }
3667  if (!found && !h->busy_scanning) {
3669  list_add_tail(&h->scan_list, &scan_q);
3670  ret = 1;
3671  }
3672  mutex_unlock(&scan_mutex);
3674 
3675  return ret;
3676 }
3677 
3691 static void remove_from_scan_list(struct ctlr_info *h)
3692 {
3693  struct ctlr_info *test_h, *tmp_h;
3694 
3695  mutex_lock(&scan_mutex);
3696  list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3697  if (test_h == h) { /* state 2. */
3698  list_del(&h->scan_list);
3699  complete_all(&h->scan_wait);
3700  mutex_unlock(&scan_mutex);
3701  return;
3702  }
3703  }
3704  if (h->busy_scanning) { /* state 3. */
3705  mutex_unlock(&scan_mutex);
3707  } else { /* state 1, nothing to do. */
3708  mutex_unlock(&scan_mutex);
3709  }
3710 }
3711 
3724 static int scan_thread(void *data)
3725 {
3726  struct ctlr_info *h;
3727 
3728  while (1) {
3730  schedule();
3731  if (kthread_should_stop())
3732  break;
3733 
3734  while (1) {
3735  mutex_lock(&scan_mutex);
3736  if (list_empty(&scan_q)) {
3737  mutex_unlock(&scan_mutex);
3738  break;
3739  }
3740 
3741  h = list_entry(scan_q.next,
3742  struct ctlr_info,
3743  scan_list);
3744  list_del(&h->scan_list);
3745  h->busy_scanning = 1;
3746  mutex_unlock(&scan_mutex);
3747 
3748  rebuild_lun_table(h, 0, 0);
3749  complete_all(&h->scan_wait);
3750  mutex_lock(&scan_mutex);
3751  h->busy_scanning = 0;
3752  mutex_unlock(&scan_mutex);
3753  }
3754  }
3755 
3756  return 0;
3757 }
3758 
3759 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3760 {
3761  if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3762  return 0;
3763 
3764  switch (c->err_info->SenseInfo[12]) {
3765  case STATE_CHANGED:
3766  dev_warn(&h->pdev->dev, "a state change "
3767  "detected, command retried\n");
3768  return 1;
3769  break;
3770  case LUN_FAILED:
3771  dev_warn(&h->pdev->dev, "LUN failure "
3772  "detected, action required\n");
3773  return 1;
3774  break;
3775  case REPORT_LUNS_CHANGED:
3776  dev_warn(&h->pdev->dev, "report LUN data changed\n");
3777  /*
3778  * Here, we could call add_to_scan_list and wake up the scan thread,
3779  * except that it's quite likely that we will get more than one
3780  * REPORT_LUNS_CHANGED condition in quick succession, which means
3781  * that those which occur after the first one will likely happen
3782  * *during* the scan_thread's rescan. And the rescan code is not
3783  * robust enough to restart in the middle, undoing what it has already
3784  * done, and it's not clear that it's even possible to do this, since
3785  * part of what it does is notify the block layer, which starts
3786  * doing it's own i/o to read partition tables and so on, and the
3787  * driver doesn't have visibility to know what might need undoing.
3788  * In any event, if possible, it is horribly complicated to get right
3789  * so we just don't do it for now.
3790  *
3791  * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3792  */
3793  return 1;
3794  break;
3795  case POWER_OR_RESET:
3796  dev_warn(&h->pdev->dev,
3797  "a power on or device reset detected\n");
3798  return 1;
3799  break;
3801  dev_warn(&h->pdev->dev,
3802  "unit attention cleared by another initiator\n");
3803  return 1;
3804  break;
3805  default:
3806  dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3807  return 1;
3808  }
3809 }
3810 
3811 /*
3812  * We cannot read the structure directly, for portability we must use
3813  * the io functions.
3814  * This is for debug only.
3815  */
3816 static void print_cfg_table(ctlr_info_t *h)
3817 {
3818  int i;
3819  char temp_name[17];
3820  CfgTable_struct *tb = h->cfgtable;
3821 
3822  dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3823  dev_dbg(&h->pdev->dev, "------------------------------------\n");
3824  for (i = 0; i < 4; i++)
3825  temp_name[i] = readb(&(tb->Signature[i]));
3826  temp_name[4] = '\0';
3827  dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3828  dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3829  readl(&(tb->SpecValence)));
3830  dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3831  readl(&(tb->TransportSupport)));
3832  dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3833  readl(&(tb->TransportActive)));
3834  dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3835  readl(&(tb->HostWrite.TransportRequest)));
3836  dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3837  readl(&(tb->HostWrite.CoalIntDelay)));
3838  dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3839  readl(&(tb->HostWrite.CoalIntCount)));
3840  dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3841  readl(&(tb->CmdsOutMax)));
3842  dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3843  readl(&(tb->BusTypes)));
3844  for (i = 0; i < 16; i++)
3845  temp_name[i] = readb(&(tb->ServerName[i]));
3846  temp_name[16] = '\0';
3847  dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3848  dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3849  readl(&(tb->HeartBeat)));
3850 }
3851 
3852 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3853 {
3854  int i, offset, mem_type, bar_type;
3855  if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3856  return 0;
3857  offset = 0;
3858  for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3859  bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3860  if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3861  offset += 4;
3862  else {
3863  mem_type = pci_resource_flags(pdev, i) &
3865  switch (mem_type) {
3868  offset += 4; /* 32 bit */
3869  break;
3871  offset += 8;
3872  break;
3873  default: /* reserved in PCI 2.2 */
3874  dev_warn(&pdev->dev,
3875  "Base address is invalid\n");
3876  return -1;
3877  break;
3878  }
3879  }
3880  if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3881  return i + 1;
3882  }
3883  return -1;
3884 }
3885 
3886 /* Fill in bucket_map[], given nsgs (the max number of
3887  * scatter gather elements supported) and bucket[],
3888  * which is an array of 8 integers. The bucket[] array
3889  * contains 8 different DMA transfer sizes (in 16
3890  * byte increments) which the controller uses to fetch
3891  * commands. This function fills in bucket_map[], which
3892  * maps a given number of scatter gather elements to one of
3893  * the 8 DMA transfer sizes. The point of it is to allow the
3894  * controller to only do as much DMA as needed to fetch the
3895  * command, with the DMA transfer size encoded in the lower
3896  * bits of the command address.
3897  */
3898 static void calc_bucket_map(int bucket[], int num_buckets,
3899  int nsgs, int *bucket_map)
3900 {
3901  int i, j, b, size;
3902 
3903  /* even a command with 0 SGs requires 4 blocks */
3904 #define MINIMUM_TRANSFER_BLOCKS 4
3905 #define NUM_BUCKETS 8
3906  /* Note, bucket_map must have nsgs+1 entries. */
3907  for (i = 0; i <= nsgs; i++) {
3908  /* Compute size of a command with i SG entries */
3909  size = i + MINIMUM_TRANSFER_BLOCKS;
3910  b = num_buckets; /* Assume the biggest bucket */
3911  /* Find the bucket that is just big enough */
3912  for (j = 0; j < 8; j++) {
3913  if (bucket[j] >= size) {
3914  b = j;
3915  break;
3916  }
3917  }
3918  /* for a command with i SG entries, use bucket b. */
3919  bucket_map[i] = b;
3920  }
3921 }
3922 
3923 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3924 {
3925  int i;
3926 
3927  /* under certain very rare conditions, this can take awhile.
3928  * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3929  * as we enter this code.) */
3930  for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3931  if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3932  break;
3933  usleep_range(10000, 20000);
3934  }
3935 }
3936 
3937 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h,
3938  u32 use_short_tags)
3939 {
3940  /* This is a bit complicated. There are 8 registers on
3941  * the controller which we write to to tell it 8 different
3942  * sizes of commands which there may be. It's a way of
3943  * reducing the DMA done to fetch each command. Encoded into
3944  * each command's tag are 3 bits which communicate to the controller
3945  * which of the eight sizes that command fits within. The size of
3946  * each command depends on how many scatter gather entries there are.
3947  * Each SG entry requires 16 bytes. The eight registers are programmed
3948  * with the number of 16-byte blocks a command of that size requires.
3949  * The smallest command possible requires 5 such 16 byte blocks.
3950  * the largest command possible requires MAXSGENTRIES + 4 16-byte
3951  * blocks. Note, this only extends to the SG entries contained
3952  * within the command block, and does not extend to chained blocks
3953  * of SG elements. bft[] contains the eight values we write to
3954  * the registers. They are not evenly distributed, but have more
3955  * sizes for small commands, and fewer sizes for larger commands.
3956  */
3958  int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3959  /*
3960  * 5 = 1 s/g entry or 4k
3961  * 6 = 2 s/g entry or 8k
3962  * 8 = 4 s/g entry or 16k
3963  * 10 = 6 s/g entry or 24k
3964  */
3965  unsigned long register_value;
3966  BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3967 
3968  h->reply_pool_wraparound = 1; /* spec: init to 1 */
3969 
3970  /* Controller spec: zero out this buffer. */
3971  memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3972  h->reply_pool_head = h->reply_pool;
3973 
3974  trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3975  calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3976  h->blockFetchTable);
3977  writel(bft[0], &h->transtable->BlockFetch0);
3978  writel(bft[1], &h->transtable->BlockFetch1);
3979  writel(bft[2], &h->transtable->BlockFetch2);
3980  writel(bft[3], &h->transtable->BlockFetch3);
3981  writel(bft[4], &h->transtable->BlockFetch4);
3982  writel(bft[5], &h->transtable->BlockFetch5);
3983  writel(bft[6], &h->transtable->BlockFetch6);
3984  writel(bft[7], &h->transtable->BlockFetch7);
3985 
3986  /* size of controller ring buffer */
3987  writel(h->max_commands, &h->transtable->RepQSize);
3988  writel(1, &h->transtable->RepQCount);
3989  writel(0, &h->transtable->RepQCtrAddrLow32);
3990  writel(0, &h->transtable->RepQCtrAddrHigh32);
3991  writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3992  writel(0, &h->transtable->RepQAddr0High32);
3993  writel(CFGTBL_Trans_Performant | use_short_tags,
3995 
3997  cciss_wait_for_mode_change_ack(h);
3998  register_value = readl(&(h->cfgtable->TransportActive));
3999  if (!(register_value & CFGTBL_Trans_Performant))
4000  dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4001  " performant mode\n");
4002 }
4003 
4004 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4005 {
4007 
4008  if (cciss_simple_mode)
4009  return;
4010 
4011  dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4012  /* Attempt to put controller into performant mode if supported */
4013  /* Does board support performant mode? */
4014  trans_support = readl(&(h->cfgtable->TransportSupport));
4015  if (!(trans_support & PERFORMANT_MODE))
4016  return;
4017 
4018  dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4019  /* Performant mode demands commands on a 32 byte boundary
4020  * pci_alloc_consistent aligns on page boundarys already.
4021  * Just need to check if divisible by 32
4022  */
4023  if ((sizeof(CommandList_struct) % 32) != 0) {
4024  dev_warn(&h->pdev->dev, "%s %d %s\n",
4025  "cciss info: command size[",
4026  (int)sizeof(CommandList_struct),
4027  "] not divisible by 32, no performant mode..\n");
4028  return;
4029  }
4030 
4031  /* Performant mode ring buffer and supporting data structures */
4033  h->pdev, h->max_commands * sizeof(__u64),
4034  &(h->reply_pool_dhandle));
4035 
4036  /* Need a block fetch table for performant mode */
4037  h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4038  sizeof(__u32)), GFP_KERNEL);
4039 
4040  if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4041  goto clean_up;
4042 
4043  cciss_enter_performant_mode(h,
4044  trans_support & CFGTBL_Trans_use_short_tags);
4045 
4046  /* Change the access methods to the performant access methods */
4047  h->access = SA5_performant_access;
4049 
4050  return;
4051 clean_up:
4052  kfree(h->blockFetchTable);
4053  if (h->reply_pool)
4055  h->max_commands * sizeof(__u64),
4056  h->reply_pool,
4057  h->reply_pool_dhandle);
4058  return;
4059 
4060 } /* cciss_put_controller_into_performant_mode */
4061 
4062 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4063  * controllers that are capable. If not, we use IO-APIC mode.
4064  */
4065 
4066 static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
4067 {
4068 #ifdef CONFIG_PCI_MSI
4069  int err;
4070  struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4071  {0, 2}, {0, 3}
4072  };
4073 
4074  /* Some boards advertise MSI but don't really support it */
4075  if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4076  (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4077  goto default_int_mode;
4078 
4080  err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4081  if (!err) {
4082  h->intr[0] = cciss_msix_entries[0].vector;
4083  h->intr[1] = cciss_msix_entries[1].vector;
4084  h->intr[2] = cciss_msix_entries[2].vector;
4085  h->intr[3] = cciss_msix_entries[3].vector;
4086  h->msix_vector = 1;
4087  return;
4088  }
4089  if (err > 0) {
4090  dev_warn(&h->pdev->dev,
4091  "only %d MSI-X vectors available\n", err);
4092  goto default_int_mode;
4093  } else {
4094  dev_warn(&h->pdev->dev,
4095  "MSI-X init failed %d\n", err);
4096  goto default_int_mode;
4097  }
4098  }
4100  if (!pci_enable_msi(h->pdev))
4101  h->msi_vector = 1;
4102  else
4103  dev_warn(&h->pdev->dev, "MSI init failed\n");
4104  }
4105 default_int_mode:
4106 #endif /* CONFIG_PCI_MSI */
4107  /* if we get here we're going to use the default interrupt mode */
4108  h->intr[h->intr_mode] = h->pdev->irq;
4109  return;
4110 }
4111 
4112 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4113 {
4114  int i;
4115  u32 subsystem_vendor_id, subsystem_device_id;
4116 
4117  subsystem_vendor_id = pdev->subsystem_vendor;
4118  subsystem_device_id = pdev->subsystem_device;
4119  *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4120  subsystem_vendor_id;
4121 
4122  for (i = 0; i < ARRAY_SIZE(products); i++)
4123  if (*board_id == products[i].board_id)
4124  return i;
4125  dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4126  *board_id);
4127  return -ENODEV;
4128 }
4129 
4130 static inline bool cciss_board_disabled(ctlr_info_t *h)
4131 {
4132  u16 command;
4133 
4134  (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4135  return ((command & PCI_COMMAND_MEMORY) == 0);
4136 }
4137 
4138 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4139  unsigned long *memory_bar)
4140 {
4141  int i;
4142 
4143  for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4144  if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4145  /* addressing mode bits already removed */
4146  *memory_bar = pci_resource_start(pdev, i);
4147  dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4148  *memory_bar);
4149  return 0;
4150  }
4151  dev_warn(&pdev->dev, "no memory BAR found\n");
4152  return -ENODEV;
4153 }
4154 
4155 static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4156  void __iomem *vaddr, int wait_for_ready)
4157 #define BOARD_READY 1
4158 #define BOARD_NOT_READY 0
4159 {
4160  int i, iterations;
4161  u32 scratchpad;
4162 
4163  if (wait_for_ready)
4164  iterations = CCISS_BOARD_READY_ITERATIONS;
4165  else
4166  iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4167 
4168  for (i = 0; i < iterations; i++) {
4169  scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4170  if (wait_for_ready) {
4171  if (scratchpad == CCISS_FIRMWARE_READY)
4172  return 0;
4173  } else {
4174  if (scratchpad != CCISS_FIRMWARE_READY)
4175  return 0;
4176  }
4178  }
4179  dev_warn(&pdev->dev, "board not ready, timed out.\n");
4180  return -ENODEV;
4181 }
4182 
4183 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4184  void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4185  u64 *cfg_offset)
4186 {
4187  *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4188  *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4189  *cfg_base_addr &= (u32) 0x0000ffff;
4190  *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4191  if (*cfg_base_addr_index == -1) {
4192  dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4193  "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4194  return -ENODEV;
4195  }
4196  return 0;
4197 }
4198 
4199 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4200 {
4201  u64 cfg_offset;
4202  u32 cfg_base_addr;
4203  u64 cfg_base_addr_index;
4204  u32 trans_offset;
4205  int rc;
4206 
4207  rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4208  &cfg_base_addr_index, &cfg_offset);
4209  if (rc)
4210  return rc;
4211  h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4212  cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4213  if (!h->cfgtable)
4214  return -ENOMEM;
4215  rc = write_driver_ver_to_cfgtable(h->cfgtable);
4216  if (rc)
4217  return rc;
4218  /* Find performant mode table. */
4219  trans_offset = readl(&h->cfgtable->TransMethodOffset);
4220  h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4221  cfg_base_addr_index)+cfg_offset+trans_offset,
4222  sizeof(*h->transtable));
4223  if (!h->transtable)
4224  return -ENOMEM;
4225  return 0;
4226 }
4227 
4228 static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4229 {
4231 
4232  /* Limit commands in memory limited kdump scenario. */
4233  if (reset_devices && h->max_commands > 32)
4234  h->max_commands = 32;
4235 
4236  if (h->max_commands < 16) {
4237  dev_warn(&h->pdev->dev, "Controller reports "
4238  "max supported commands of %d, an obvious lie. "
4239  "Using 16. Ensure that firmware is up to date.\n",
4240  h->max_commands);
4241  h->max_commands = 16;
4242  }
4243 }
4244 
4245 /* Interrogate the hardware for some limits:
4246  * max commands, max SG elements without chaining, and with chaining,
4247  * SG chain block size, etc.
4248  */
4249 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4250 {
4251  cciss_get_max_perf_mode_cmds(h);
4252  h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4254  /*
4255  * Limit in-command s/g elements to 32 save dma'able memory.
4256  * Howvever spec says if 0, use 31
4257  */
4258  h->max_cmd_sgentries = 31;
4259  if (h->maxsgentries > 512) {
4260  h->max_cmd_sgentries = 32;
4261  h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4262  h->maxsgentries--; /* save one for chain pointer */
4263  } else {
4264  h->maxsgentries = 31; /* default to traditional values */
4265  h->chainsize = 0;
4266  }
4267 }
4268 
4269 static inline bool CISS_signature_present(ctlr_info_t *h)
4270 {
4271  if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4272  (readb(&h->cfgtable->Signature[1]) != 'I') ||
4273  (readb(&h->cfgtable->Signature[2]) != 'S') ||
4274  (readb(&h->cfgtable->Signature[3]) != 'S')) {
4275  dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4276  return false;
4277  }
4278  return true;
4279 }
4280 
4281 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4282 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4283 {
4284 #ifdef CONFIG_X86
4285  u32 prefetch;
4286 
4287  prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4288  prefetch |= 0x100;
4289  writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4290 #endif
4291 }
4292 
4293 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4294  * in a prefetch beyond physical memory.
4295  */
4296 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4297 {
4298  u32 dma_prefetch;
4299  __u32 dma_refetch;
4300 
4301  if (h->board_id != 0x3225103C)
4302  return;
4303  dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4304  dma_prefetch |= 0x8000;
4305  writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4306  pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4307  dma_refetch |= 0x1;
4308  pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4309 }
4310 
4311 static int __devinit cciss_pci_init(ctlr_info_t *h)
4312 {
4313  int prod_index, err;
4314 
4315  prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4316  if (prod_index < 0)
4317  return -ENODEV;
4318  h->product_name = products[prod_index].product_name;
4319  h->access = *(products[prod_index].access);
4320 
4321  if (cciss_board_disabled(h)) {
4322  dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4323  return -ENODEV;
4324  }
4325 
4328 
4329  err = pci_enable_device(h->pdev);
4330  if (err) {
4331  dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4332  return err;
4333  }
4334 
4335  err = pci_request_regions(h->pdev, "cciss");
4336  if (err) {
4337  dev_warn(&h->pdev->dev,
4338  "Cannot obtain PCI resources, aborting\n");
4339  return err;
4340  }
4341 
4342  dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4343  dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4344 
4345 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4346  * else we use the IO-APIC interrupt assigned to us by system ROM.
4347  */
4348  cciss_interrupt_mode(h);
4349  err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4350  if (err)
4351  goto err_out_free_res;
4352  h->vaddr = remap_pci_mem(h->paddr, 0x250);
4353  if (!h->vaddr) {
4354  err = -ENOMEM;
4355  goto err_out_free_res;
4356  }
4357  err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4358  if (err)
4359  goto err_out_free_res;
4360  err = cciss_find_cfgtables(h);
4361  if (err)
4362  goto err_out_free_res;
4363  print_cfg_table(h);
4364  cciss_find_board_params(h);
4365 
4366  if (!CISS_signature_present(h)) {
4367  err = -ENODEV;
4368  goto err_out_free_res;
4369  }
4370  cciss_enable_scsi_prefetch(h);
4371  cciss_p600_dma_prefetch_quirk(h);
4372  err = cciss_enter_simple_mode(h);
4373  if (err)
4374  goto err_out_free_res;
4375  cciss_put_controller_into_performant_mode(h);
4376  return 0;
4377 
4378 err_out_free_res:
4379  /*
4380  * Deliberately omit pci_disable_device(): it does something nasty to
4381  * Smart Array controllers that pci_enable_device does not undo
4382  */
4383  if (h->transtable)
4384  iounmap(h->transtable);
4385  if (h->cfgtable)
4386  iounmap(h->cfgtable);
4387  if (h->vaddr)
4388  iounmap(h->vaddr);
4390  return err;
4391 }
4392 
4393 /* Function to find the first free pointer into our hba[] array
4394  * Returns -1 if no free entries are left.
4395  */
4396 static int alloc_cciss_hba(struct pci_dev *pdev)
4397 {
4398  int i;
4399 
4400  for (i = 0; i < MAX_CTLR; i++) {
4401  if (!hba[i]) {
4402  ctlr_info_t *h;
4403 
4404  h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4405  if (!h)
4406  goto Enomem;
4407  hba[i] = h;
4408  return i;
4409  }
4410  }
4411  dev_warn(&pdev->dev, "This driver supports a maximum"
4412  " of %d controllers.\n", MAX_CTLR);
4413  return -1;
4414 Enomem:
4415  dev_warn(&pdev->dev, "out of memory.\n");
4416  return -1;
4417 }
4418 
4419 static void free_hba(ctlr_info_t *h)
4420 {
4421  int i;
4422 
4423  hba[h->ctlr] = NULL;
4424  for (i = 0; i < h->highest_lun + 1; i++)
4425  if (h->gendisk[i] != NULL)
4426  put_disk(h->gendisk[i]);
4427  kfree(h);
4428 }
4429 
4430 /* Send a message CDB to the firmware. */
4431 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4432 {
4433  typedef struct {
4434  CommandListHeader_struct CommandHeader;
4436  ErrDescriptor_struct ErrorDescriptor;
4437  } Command;
4438  static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4439  Command *cmd;
4440  dma_addr_t paddr64;
4441  uint32_t paddr32, tag;
4442  void __iomem *vaddr;
4443  int i, err;
4444 
4445  vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4446  if (vaddr == NULL)
4447  return -ENOMEM;
4448 
4449  /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4450  CCISS commands, so they must be allocated from the lower 4GiB of
4451  memory. */
4452  err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4453  if (err) {
4454  iounmap(vaddr);
4455  return -ENOMEM;
4456  }
4457 
4458  cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4459  if (cmd == NULL) {
4460  iounmap(vaddr);
4461  return -ENOMEM;
4462  }
4463 
4464  /* This must fit, because of the 32-bit consistent DMA mask. Also,
4465  although there's no guarantee, we assume that the address is at
4466  least 4-byte aligned (most likely, it's page-aligned). */
4467  paddr32 = paddr64;
4468 
4469  cmd->CommandHeader.ReplyQueue = 0;
4470  cmd->CommandHeader.SGList = 0;
4471  cmd->CommandHeader.SGTotal = 0;
4472  cmd->CommandHeader.Tag.lower = paddr32;
4473  cmd->CommandHeader.Tag.upper = 0;
4474  memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4475 
4476  cmd->Request.CDBLen = 16;
4477  cmd->Request.Type.Type = TYPE_MSG;
4478  cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4479  cmd->Request.Type.Direction = XFER_NONE;
4480  cmd->Request.Timeout = 0; /* Don't time out */
4481  cmd->Request.CDB[0] = opcode;
4482  cmd->Request.CDB[1] = type;
4483  memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4484 
4485  cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4486  cmd->ErrorDescriptor.Addr.upper = 0;
4487  cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4488 
4489  writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4490 
4491  for (i = 0; i < 10; i++) {
4492  tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4493  if ((tag & ~3) == paddr32)
4494  break;
4496  }
4497 
4498  iounmap(vaddr);
4499 
4500  /* we leak the DMA buffer here ... no choice since the controller could
4501  still complete the command. */
4502  if (i == 10) {
4503  dev_err(&pdev->dev,
4504  "controller message %02x:%02x timed out\n",
4505  opcode, type);
4506  return -ETIMEDOUT;
4507  }
4508 
4509  pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4510 
4511  if (tag & 2) {
4512  dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4513  opcode, type);
4514  return -EIO;
4515  }
4516 
4517  dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4518  opcode, type);
4519  return 0;
4520 }
4521 
4522 #define cciss_noop(p) cciss_message(p, 3, 0)
4523 
4524 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4525  void * __iomem vaddr, u32 use_doorbell)
4526 {
4527  u16 pmcsr;
4528  int pos;
4529 
4530  if (use_doorbell) {
4531  /* For everything after the P600, the PCI power state method
4532  * of resetting the controller doesn't work, so we have this
4533  * other way using the doorbell register.
4534  */
4535  dev_info(&pdev->dev, "using doorbell to reset controller\n");
4536  writel(use_doorbell, vaddr + SA5_DOORBELL);
4537  } else { /* Try to do it the PCI power state way */
4538 
4539  /* Quoting from the Open CISS Specification: "The Power
4540  * Management Control/Status Register (CSR) controls the power
4541  * state of the device. The normal operating state is D0,
4542  * CSR=00h. The software off state is D3, CSR=03h. To reset
4543  * the controller, place the interface device in D3 then to D0,
4544  * this causes a secondary PCI reset which will reset the
4545  * controller." */
4546 
4547  pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4548  if (pos == 0) {
4549  dev_err(&pdev->dev,
4550  "cciss_controller_hard_reset: "
4551  "PCI PM not supported\n");
4552  return -ENODEV;
4553  }
4554  dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4555  /* enter the D3hot power management state */
4556  pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4557  pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4558  pmcsr |= PCI_D3hot;
4559  pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4560 
4561  msleep(500);
4562 
4563  /* enter the D0 power management state */
4564  pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4565  pmcsr |= PCI_D0;
4566  pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4567 
4568  /*
4569  * The P600 requires a small delay when changing states.
4570  * Otherwise we may think the board did not reset and we bail.
4571  * This for kdump only and is particular to the P600.
4572  */
4573  msleep(500);
4574  }
4575  return 0;
4576 }
4577 
4578 static __devinit void init_driver_version(char *driver_version, int len)
4579 {
4580  memset(driver_version, 0, len);
4581  strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4582 }
4583 
4584 static __devinit int write_driver_ver_to_cfgtable(
4585  CfgTable_struct __iomem *cfgtable)
4586 {
4587  char *driver_version;
4588  int i, size = sizeof(cfgtable->driver_version);
4589 
4590  driver_version = kmalloc(size, GFP_KERNEL);
4591  if (!driver_version)
4592  return -ENOMEM;
4593 
4594  init_driver_version(driver_version, size);
4595  for (i = 0; i < size; i++)
4596  writeb(driver_version[i], &cfgtable->driver_version[i]);
4597  kfree(driver_version);
4598  return 0;
4599 }
4600 
4601 static __devinit void read_driver_ver_from_cfgtable(
4602  CfgTable_struct __iomem *cfgtable, unsigned char *driver_ver)
4603 {
4604  int i;
4605 
4606  for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4607  driver_ver[i] = readb(&cfgtable->driver_version[i]);
4608 }
4609 
4610 static __devinit int controller_reset_failed(
4611  CfgTable_struct __iomem *cfgtable)
4612 {
4613 
4614  char *driver_ver, *old_driver_ver;
4615  int rc, size = sizeof(cfgtable->driver_version);
4616 
4617  old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4618  if (!old_driver_ver)
4619  return -ENOMEM;
4620  driver_ver = old_driver_ver + size;
4621 
4622  /* After a reset, the 32 bytes of "driver version" in the cfgtable
4623  * should have been changed, otherwise we know the reset failed.
4624  */
4625  init_driver_version(old_driver_ver, size);
4626  read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4627  rc = !memcmp(driver_ver, old_driver_ver, size);
4628  kfree(old_driver_ver);
4629  return rc;
4630 }
4631 
4632 /* This does a hard reset of the controller using PCI power management
4633  * states or using the doorbell register. */
4634 static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4635 {
4636  u64 cfg_offset;
4637  u32 cfg_base_addr;
4638  u64 cfg_base_addr_index;
4639  void __iomem *vaddr;
4640  unsigned long paddr;
4641  u32 misc_fw_support;
4642  int rc;
4643  CfgTable_struct __iomem *cfgtable;
4644  u32 use_doorbell;
4645  u32 board_id;
4646  u16 command_register;
4647 
4648  /* For controllers as old a the p600, this is very nearly
4649  * the same thing as
4650  *
4651  * pci_save_state(pci_dev);
4652  * pci_set_power_state(pci_dev, PCI_D3hot);
4653  * pci_set_power_state(pci_dev, PCI_D0);
4654  * pci_restore_state(pci_dev);
4655  *
4656  * For controllers newer than the P600, the pci power state
4657  * method of resetting doesn't work so we have another way
4658  * using the doorbell register.
4659  */
4660 
4661  /* Exclude 640x boards. These are two pci devices in one slot
4662  * which share a battery backed cache module. One controls the
4663  * cache, the other accesses the cache through the one that controls
4664  * it. If we reset the one controlling the cache, the other will
4665  * likely not be happy. Just forbid resetting this conjoined mess.
4666  */
4667  cciss_lookup_board_id(pdev, &board_id);
4668  if (!ctlr_is_resettable(board_id)) {
4669  dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4670  "due to shared cache module.");
4671  return -ENODEV;
4672  }
4673 
4674  /* if controller is soft- but not hard resettable... */
4675  if (!ctlr_is_hard_resettable(board_id))
4676  return -ENOTSUPP; /* try soft reset later. */
4677 
4678  /* Save the PCI command register */
4679  pci_read_config_word(pdev, 4, &command_register);
4680  /* Turn the board off. This is so that later pci_restore_state()
4681  * won't turn the board on before the rest of config space is ready.
4682  */
4683  pci_disable_device(pdev);
4684  pci_save_state(pdev);
4685 
4686  /* find the first memory BAR, so we can find the cfg table */
4687  rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4688  if (rc)
4689  return rc;
4690  vaddr = remap_pci_mem(paddr, 0x250);
4691  if (!vaddr)
4692  return -ENOMEM;
4693 
4694  /* find cfgtable in order to check if reset via doorbell is supported */
4695  rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4696  &cfg_base_addr_index, &cfg_offset);
4697  if (rc)
4698  goto unmap_vaddr;
4699  cfgtable = remap_pci_mem(pci_resource_start(pdev,
4700  cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4701  if (!cfgtable) {
4702  rc = -ENOMEM;
4703  goto unmap_vaddr;
4704  }
4705  rc = write_driver_ver_to_cfgtable(cfgtable);
4706  if (rc)
4707  goto unmap_vaddr;
4708 
4709  /* If reset via doorbell register is supported, use that.
4710  * There are two such methods. Favor the newest method.
4711  */
4712  misc_fw_support = readl(&cfgtable->misc_fw_support);
4713  use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4714  if (use_doorbell) {
4715  use_doorbell = DOORBELL_CTLR_RESET2;
4716  } else {
4717  use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4718  if (use_doorbell) {
4719  dev_warn(&pdev->dev, "Controller claims that "
4720  "'Bit 2 doorbell reset' is "
4721  "supported, but not 'bit 5 doorbell reset'. "
4722  "Firmware update is recommended.\n");
4723  rc = -ENOTSUPP; /* use the soft reset */
4724  goto unmap_cfgtable;
4725  }
4726  }
4727 
4728  rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4729  if (rc)
4730  goto unmap_cfgtable;
4731  pci_restore_state(pdev);
4732  rc = pci_enable_device(pdev);
4733  if (rc) {
4734  dev_warn(&pdev->dev, "failed to enable device.\n");
4735  goto unmap_cfgtable;
4736  }
4737  pci_write_config_word(pdev, 4, command_register);
4738 
4739  /* Some devices (notably the HP Smart Array 5i Controller)
4740  need a little pause here */
4742 
4743  /* Wait for board to become not ready, then ready. */
4744  dev_info(&pdev->dev, "Waiting for board to reset.\n");
4745  rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4746  if (rc) {
4747  dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4748  " Will try soft reset.\n");
4749  rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4750  goto unmap_cfgtable;
4751  }
4752  rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4753  if (rc) {
4754  dev_warn(&pdev->dev,
4755  "failed waiting for board to become ready "
4756  "after hard reset\n");
4757  goto unmap_cfgtable;
4758  }
4759 
4760  rc = controller_reset_failed(vaddr);
4761  if (rc < 0)
4762  goto unmap_cfgtable;
4763  if (rc) {
4764  dev_warn(&pdev->dev, "Unable to successfully hard reset "
4765  "controller. Will try soft reset.\n");
4766  rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4767  } else {
4768  dev_info(&pdev->dev, "Board ready after hard reset.\n");
4769  }
4770 
4771 unmap_cfgtable:
4772  iounmap(cfgtable);
4773 
4774 unmap_vaddr:
4775  iounmap(vaddr);
4776  return rc;
4777 }
4778 
4779 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4780 {
4781  int rc, i;
4782 
4783  if (!reset_devices)
4784  return 0;
4785 
4786  /* Reset the controller with a PCI power-cycle or via doorbell */
4787  rc = cciss_kdump_hard_reset_controller(pdev);
4788 
4789  /* -ENOTSUPP here means we cannot reset the controller
4790  * but it's already (and still) up and running in
4791  * "performant mode". Or, it might be 640x, which can't reset
4792  * due to concerns about shared bbwc between 6402/6404 pair.
4793  */
4794  if (rc == -ENOTSUPP)
4795  return rc; /* just try to do the kdump anyhow. */
4796  if (rc)
4797  return -ENODEV;
4798 
4799  /* Now try to get the controller to respond to a no-op */
4800  dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4801  for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4802  if (cciss_noop(pdev) == 0)
4803  break;
4804  else
4805  dev_warn(&pdev->dev, "no-op failed%s\n",
4806  (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4807  "; re-trying" : ""));
4809  }
4810  return 0;
4811 }
4812 
4813 static __devinit int cciss_allocate_cmd_pool(ctlr_info_t *h)
4814 {
4815  h->cmd_pool_bits = kmalloc(
4817  sizeof(unsigned long), GFP_KERNEL);
4819  h->nr_cmds * sizeof(CommandList_struct),
4820  &(h->cmd_pool_dhandle));
4822  h->nr_cmds * sizeof(ErrorInfo_struct),
4823  &(h->errinfo_pool_dhandle));
4824  if ((h->cmd_pool_bits == NULL)
4825  || (h->cmd_pool == NULL)
4826  || (h->errinfo_pool == NULL)) {
4827  dev_err(&h->pdev->dev, "out of memory");
4828  return -ENOMEM;
4829  }
4830  return 0;
4831 }
4832 
4833 static __devinit int cciss_allocate_scatterlists(ctlr_info_t *h)
4834 {
4835  int i;
4836 
4837  /* zero it, so that on free we need not know how many were alloc'ed */
4838  h->scatter_list = kzalloc(h->max_commands *
4839  sizeof(struct scatterlist *), GFP_KERNEL);
4840  if (!h->scatter_list)
4841  return -ENOMEM;
4842 
4843  for (i = 0; i < h->nr_cmds; i++) {
4844  h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4845  h->maxsgentries, GFP_KERNEL);
4846  if (h->scatter_list[i] == NULL) {
4847  dev_err(&h->pdev->dev, "could not allocate "
4848  "s/g lists\n");
4849  return -ENOMEM;
4850  }
4851  }
4852  return 0;
4853 }
4854 
4855 static void cciss_free_scatterlists(ctlr_info_t *h)
4856 {
4857  int i;
4858 
4859  if (h->scatter_list) {
4860  for (i = 0; i < h->nr_cmds; i++)
4861  kfree(h->scatter_list[i]);
4862  kfree(h->scatter_list);
4863  }
4864 }
4865 
4866 static void cciss_free_cmd_pool(ctlr_info_t *h)
4867 {
4868  kfree(h->cmd_pool_bits);
4869  if (h->cmd_pool)
4871  h->nr_cmds * sizeof(CommandList_struct),
4872  h->cmd_pool, h->cmd_pool_dhandle);
4873  if (h->errinfo_pool)
4875  h->nr_cmds * sizeof(ErrorInfo_struct),
4877 }
4878 
4879 static int cciss_request_irq(ctlr_info_t *h,
4880  irqreturn_t (*msixhandler)(int, void *),
4881  irqreturn_t (*intxhandler)(int, void *))
4882 {
4883  if (h->msix_vector || h->msi_vector) {
4884  if (!request_irq(h->intr[h->intr_mode], msixhandler,
4885  0, h->devname, h))
4886  return 0;
4887  dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4888  " for %s\n", h->intr[h->intr_mode],
4889  h->devname);
4890  return -1;
4891  }
4892 
4893  if (!request_irq(h->intr[h->intr_mode], intxhandler,
4894  IRQF_SHARED, h->devname, h))
4895  return 0;
4896  dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4897  h->intr[h->intr_mode], h->devname);
4898  return -1;
4899 }
4900 
4901 static int __devinit cciss_kdump_soft_reset(ctlr_info_t *h)
4902 {
4903  if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4904  dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4905  return -EIO;
4906  }
4907 
4908  dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4909  if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4910  dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4911  return -1;
4912  }
4913 
4914  dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4915  if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4916  dev_warn(&h->pdev->dev, "Board failed to become ready "
4917  "after soft reset.\n");
4918  return -1;
4919  }
4920 
4921  return 0;
4922 }
4923 
4924 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4925 {
4926  int ctlr = h->ctlr;
4927 
4928  free_irq(h->intr[h->intr_mode], h);
4929 #ifdef CONFIG_PCI_MSI
4930  if (h->msix_vector)
4931  pci_disable_msix(h->pdev);
4932  else if (h->msi_vector)
4933  pci_disable_msi(h->pdev);
4934 #endif /* CONFIG_PCI_MSI */
4935  cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4936  cciss_free_scatterlists(h);
4937  cciss_free_cmd_pool(h);
4938  kfree(h->blockFetchTable);
4939  if (h->reply_pool)
4940  pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4942  if (h->transtable)
4943  iounmap(h->transtable);
4944  if (h->cfgtable)
4945  iounmap(h->cfgtable);
4946  if (h->vaddr)
4947  iounmap(h->vaddr);
4949  cciss_destroy_hba_sysfs_entry(h);
4951  kfree(h);
4952  hba[ctlr] = NULL;
4953 }
4954 
4955 /*
4956  * This is it. Find all the controllers and register them. I really hate
4957  * stealing all these major device numbers.
4958  * returns the number of block devices registered.
4959  */
4960 static int __devinit cciss_init_one(struct pci_dev *pdev,
4961  const struct pci_device_id *ent)
4962 {
4963  int i;
4964  int j = 0;
4965  int rc;
4966  int try_soft_reset = 0;
4967  int dac, return_code;
4968  InquiryData_struct *inq_buff;
4969  ctlr_info_t *h;
4970  unsigned long flags;
4971 
4972  rc = cciss_init_reset_devices(pdev);
4973  if (rc) {
4974  if (rc != -ENOTSUPP)
4975  return rc;
4976  /* If the reset fails in a particular way (it has no way to do
4977  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4978  * a soft reset once we get the controller configured up to the
4979  * point that it can accept a command.
4980  */
4981  try_soft_reset = 1;
4982  rc = 0;
4983  }
4984 
4985 reinit_after_soft_reset:
4986 
4987  i = alloc_cciss_hba(pdev);
4988  if (i < 0)
4989  return -1;
4990 
4991  h = hba[i];
4992  h->pdev = pdev;
4993  h->busy_initializing = 1;
4994  h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4995  INIT_LIST_HEAD(&h->cmpQ);
4996  INIT_LIST_HEAD(&h->reqQ);
4998 
4999  if (cciss_pci_init(h) != 0)
5000  goto clean_no_release_regions;
5001 
5002  sprintf(h->devname, "cciss%d", i);
5003  h->ctlr = i;
5004 
5005  if (cciss_tape_cmds < 2)
5006  cciss_tape_cmds = 2;
5007  if (cciss_tape_cmds > 16)
5008  cciss_tape_cmds = 16;
5009 
5010  init_completion(&h->scan_wait);
5011 
5012  if (cciss_create_hba_sysfs_entry(h))
5013  goto clean0;
5014 
5015  /* configure PCI DMA stuff */
5016  if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5017  dac = 1;
5018  else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5019  dac = 0;
5020  else {
5021  dev_err(&h->pdev->dev, "no suitable DMA available\n");
5022  goto clean1;
5023  }
5024 
5025  /*
5026  * register with the major number, or get a dynamic major number
5027  * by passing 0 as argument. This is done for greater than
5028  * 8 controller support.
5029  */
5030  if (i < MAX_CTLR_ORIG)
5031  h->major = COMPAQ_CISS_MAJOR + i;
5032  rc = register_blkdev(h->major, h->devname);
5033  if (rc == -EBUSY || rc == -EINVAL) {
5034  dev_err(&h->pdev->dev,
5035  "Unable to get major number %d for %s "
5036  "on hba %d\n", h->major, h->devname, i);
5037  goto clean1;
5038  } else {
5039  if (i >= MAX_CTLR_ORIG)
5040  h->major = rc;
5041  }
5042 
5043  /* make sure the board interrupts are off */
5044  h->access.set_intr_mask(h, CCISS_INTR_OFF);
5045  rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5046  if (rc)
5047  goto clean2;
5048 
5049  dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5050  h->devname, pdev->device, pci_name(pdev),
5051  h->intr[h->intr_mode], dac ? "" : " not");
5052 
5053  if (cciss_allocate_cmd_pool(h))
5054  goto clean4;
5055 
5056  if (cciss_allocate_scatterlists(h))
5057  goto clean4;
5058 
5059  h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5060  h->chainsize, h->nr_cmds);
5061  if (!h->cmd_sg_list && h->chainsize > 0)
5062  goto clean4;
5063 
5064  spin_lock_init(&h->lock);
5065 
5066  /* Initialize the pdev driver private data.
5067  have it point to h. */
5068  pci_set_drvdata(pdev, h);
5069  /* command and error info recs zeroed out before
5070  they are used */
5071  memset(h->cmd_pool_bits, 0,
5073  * sizeof(unsigned long));
5074 
5075  h->num_luns = 0;
5076  h->highest_lun = -1;
5077  for (j = 0; j < CISS_MAX_LUN; j++) {
5078  h->drv[j] = NULL;
5079  h->gendisk[j] = NULL;
5080  }
5081 
5082  /* At this point, the controller is ready to take commands.
5083  * Now, if reset_devices and the hard reset didn't work, try
5084  * the soft reset and see if that works.
5085  */
5086  if (try_soft_reset) {
5087 
5088  /* This is kind of gross. We may or may not get a completion
5089  * from the soft reset command, and if we do, then the value
5090  * from the fifo may or may not be valid. So, we wait 10 secs
5091  * after the reset throwing away any completions we get during
5092  * that time. Unregister the interrupt handler and register
5093  * fake ones to scoop up any residual completions.
5094  */
5095  spin_lock_irqsave(&h->lock, flags);
5096  h->access.set_intr_mask(h, CCISS_INTR_OFF);
5097  spin_unlock_irqrestore(&h->lock, flags);
5098  free_irq(h->intr[h->intr_mode], h);
5099  rc = cciss_request_irq(h, cciss_msix_discard_completions,
5100  cciss_intx_discard_completions);
5101  if (rc) {
5102  dev_warn(&h->pdev->dev, "Failed to request_irq after "
5103  "soft reset.\n");
5104  goto clean4;
5105  }
5106 
5107  rc = cciss_kdump_soft_reset(h);
5108  if (rc) {
5109  dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5110  goto clean4;
5111  }
5112 
5113  dev_info(&h->pdev->dev, "Board READY.\n");
5114  dev_info(&h->pdev->dev,
5115  "Waiting for stale completions to drain.\n");
5116  h->access.set_intr_mask(h, CCISS_INTR_ON);
5117  msleep(10000);
5118  h->access.set_intr_mask(h, CCISS_INTR_OFF);
5119 
5120  rc = controller_reset_failed(h->cfgtable);
5121  if (rc)
5122  dev_info(&h->pdev->dev,
5123  "Soft reset appears to have failed.\n");
5124 
5125  /* since the controller's reset, we have to go back and re-init
5126  * everything. Easiest to just forget what we've done and do it
5127  * all over again.
5128  */
5129  cciss_undo_allocations_after_kdump_soft_reset(h);
5130  try_soft_reset = 0;
5131  if (rc)
5132  /* don't go to clean4, we already unallocated */
5133  return -ENODEV;
5134 
5135  goto reinit_after_soft_reset;
5136  }
5137 
5138  cciss_scsi_setup(h);
5139 
5140  /* Turn the interrupts on so we can service requests */
5141  h->access.set_intr_mask(h, CCISS_INTR_ON);
5142 
5143  /* Get the firmware version */
5144  inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5145  if (inq_buff == NULL) {
5146  dev_err(&h->pdev->dev, "out of memory\n");
5147  goto clean4;
5148  }
5149 
5150  return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5151  sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5152  if (return_code == IO_OK) {
5153  h->firm_ver[0] = inq_buff->data_byte[32];
5154  h->firm_ver[1] = inq_buff->data_byte[33];
5155  h->firm_ver[2] = inq_buff->data_byte[34];
5156  h->firm_ver[3] = inq_buff->data_byte[35];
5157  } else { /* send command failed */
5158  dev_warn(&h->pdev->dev, "unable to determine firmware"
5159  " version of controller\n");
5160  }
5161  kfree(inq_buff);
5162 
5163  cciss_procinit(h);
5164 
5165  h->cciss_max_sectors = 8192;
5166 
5167  rebuild_lun_table(h, 1, 0);
5168  cciss_engage_scsi(h);
5169  h->busy_initializing = 0;
5170  return 1;
5171 
5172 clean4:
5173  cciss_free_cmd_pool(h);
5174  cciss_free_scatterlists(h);
5175  cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5176  free_irq(h->intr[h->intr_mode], h);
5177 clean2:
5179 clean1:
5180  cciss_destroy_hba_sysfs_entry(h);
5181 clean0:
5182  pci_release_regions(pdev);
5183 clean_no_release_regions:
5184  h->busy_initializing = 0;
5185 
5186  /*
5187  * Deliberately omit pci_disable_device(): it does something nasty to
5188  * Smart Array controllers that pci_enable_device does not undo
5189  */
5190  pci_set_drvdata(pdev, NULL);
5191  free_hba(h);
5192  return -1;
5193 }
5194 
5195 static void cciss_shutdown(struct pci_dev *pdev)
5196 {
5197  ctlr_info_t *h;
5198  char *flush_buf;
5199  int return_code;
5200 
5201  h = pci_get_drvdata(pdev);
5202  flush_buf = kzalloc(4, GFP_KERNEL);
5203  if (!flush_buf) {
5204  dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5205  return;
5206  }
5207  /* write all data in the battery backed cache to disk */
5208  return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5209  4, 0, CTLR_LUNID, TYPE_CMD);
5210  kfree(flush_buf);
5211  if (return_code != IO_OK)
5212  dev_warn(&h->pdev->dev, "Error flushing cache\n");
5213  h->access.set_intr_mask(h, CCISS_INTR_OFF);
5214  free_irq(h->intr[h->intr_mode], h);
5215 }
5216 
5217 static int __devinit cciss_enter_simple_mode(struct ctlr_info *h)
5218 {
5219  u32 trans_support;
5220 
5221  trans_support = readl(&(h->cfgtable->TransportSupport));
5222  if (!(trans_support & SIMPLE_MODE))
5223  return -ENOTSUPP;
5224 
5225  h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5228  cciss_wait_for_mode_change_ack(h);
5229  print_cfg_table(h);
5231  dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5232  return -ENODEV;
5233  }
5235  return 0;
5236 }
5237 
5238 
5239 static void __devexit cciss_remove_one(struct pci_dev *pdev)
5240 {
5241  ctlr_info_t *h;
5242  int i, j;
5243 
5244  if (pci_get_drvdata(pdev) == NULL) {
5245  dev_err(&pdev->dev, "Unable to remove device\n");
5246  return;
5247  }
5248 
5249  h = pci_get_drvdata(pdev);
5250  i = h->ctlr;
5251  if (hba[i] == NULL) {
5252  dev_err(&pdev->dev, "device appears to already be removed\n");
5253  return;
5254  }
5255 
5257 
5258  remove_from_scan_list(h);
5259  remove_proc_entry(h->devname, proc_cciss);
5261 
5262  /* remove it from the disk list */
5263  for (j = 0; j < CISS_MAX_LUN; j++) {
5264  struct gendisk *disk = h->gendisk[j];
5265  if (disk) {
5266  struct request_queue *q = disk->queue;
5267 
5268  if (disk->flags & GENHD_FL_UP) {
5269  cciss_destroy_ld_sysfs_entry(h, j, 1);
5270  del_gendisk(disk);
5271  }
5272  if (q)
5273  blk_cleanup_queue(q);
5274  }
5275  }
5276 
5277 #ifdef CONFIG_CISS_SCSI_TAPE
5278  cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
5279 #endif
5280 
5281  cciss_shutdown(pdev);
5282 
5283 #ifdef CONFIG_PCI_MSI
5284  if (h->msix_vector)
5285  pci_disable_msix(h->pdev);
5286  else if (h->msi_vector)
5287  pci_disable_msi(h->pdev);
5288 #endif /* CONFIG_PCI_MSI */
5289 
5290  iounmap(h->transtable);
5291  iounmap(h->cfgtable);
5292  iounmap(h->vaddr);
5293 
5294  cciss_free_cmd_pool(h);
5295  /* Free up sg elements */
5296  for (j = 0; j < h->nr_cmds; j++)
5297  kfree(h->scatter_list[j]);
5298  kfree(h->scatter_list);
5299  cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5300  kfree(h->blockFetchTable);
5301  if (h->reply_pool)
5302  pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5304  /*
5305  * Deliberately omit pci_disable_device(): it does something nasty to
5306  * Smart Array controllers that pci_enable_device does not undo
5307  */
5308  pci_release_regions(pdev);
5309  pci_set_drvdata(pdev, NULL);
5310  cciss_destroy_hba_sysfs_entry(h);
5312  free_hba(h);
5313 }
5314 
5315 static struct pci_driver cciss_pci_driver = {
5316  .name = "cciss",
5317  .probe = cciss_init_one,
5318  .remove = __devexit_p(cciss_remove_one),
5319  .id_table = cciss_pci_device_id, /* id_table */
5320  .shutdown = cciss_shutdown,
5321 };
5322 
5323 /*
5324  * This is it. Register the PCI driver information for the cards we control
5325  * the OS will call our registered routines when it finds one of our cards.
5326  */
5327 static int __init cciss_init(void)
5328 {
5329  int err;
5330 
5331  /*
5332  * The hardware requires that commands are aligned on a 64-bit
5333  * boundary. Given that we use pci_alloc_consistent() to allocate an
5334  * array of them, the size must be a multiple of 8 bytes.
5335  */
5338 
5339  err = bus_register(&cciss_bus_type);
5340  if (err)
5341  return err;
5342 
5343  /* Start the scan thread */
5344  cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5345  if (IS_ERR(cciss_scan_thread)) {
5346  err = PTR_ERR(cciss_scan_thread);
5347  goto err_bus_unregister;
5348  }
5349 
5350  /* Register for our PCI devices */
5351  err = pci_register_driver(&cciss_pci_driver);
5352  if (err)
5353  goto err_thread_stop;
5354 
5355  return err;
5356 
5357 err_thread_stop:
5358  kthread_stop(cciss_scan_thread);
5359 err_bus_unregister:
5360  bus_unregister(&cciss_bus_type);
5361 
5362  return err;
5363 }
5364 
5365 static void __exit cciss_cleanup(void)
5366 {
5367  int i;
5368 
5369  pci_unregister_driver(&cciss_pci_driver);
5370  /* double check that all controller entrys have been removed */
5371  for (i = 0; i < MAX_CTLR; i++) {
5372  if (hba[i] != NULL) {
5373  dev_warn(&hba[i]->pdev->dev,
5374  "had to remove controller\n");
5375  cciss_remove_one(hba[i]->pdev);
5376  }
5377  }
5378  kthread_stop(cciss_scan_thread);
5379  if (proc_cciss)
5380  remove_proc_entry("driver/cciss", NULL);
5381  bus_unregister(&cciss_bus_type);
5382 }
5383 
5384 module_init(cciss_init);
5385 module_exit(cciss_cleanup);