Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cmipci.c
Go to the documentation of this file.
1 /*
2  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3  * Copyright (c) 2000 by Takashi Iwai <[email protected]>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  */
19 
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22 
23 #include <asm/io.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/gameport.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
42 
43 MODULE_AUTHOR("Takashi Iwai <[email protected]>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47  "{C-Media,CMI8738B},"
48  "{C-Media,CMI8338A},"
49  "{C-Media,CMI8338B}}");
50 
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
54 
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
57 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
64 
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
81 
82 /*
83  * CM8x38 registers definition
84  */
85 
86 #define CM_REG_FUNCTRL0 0x00
87 #define CM_RST_CH1 0x00080000
88 #define CM_RST_CH0 0x00040000
89 #define CM_CHEN1 0x00020000 /* ch1: enable */
90 #define CM_CHEN0 0x00010000 /* ch0: enable */
91 #define CM_PAUSE1 0x00000008 /* ch1: pause */
92 #define CM_PAUSE0 0x00000004 /* ch0: pause */
93 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
94 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
95 
96 #define CM_REG_FUNCTRL1 0x04
97 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
98 #define CM_DSFC_SHIFT 13
99 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
100 #define CM_ASFC_SHIFT 10
101 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
102 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
103 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
104 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
105 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
106 #define CM_BREQ 0x00000010 /* bus master enabled */
107 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
108 #define CM_UART_EN 0x00000004 /* legacy UART */
109 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */
110 #define CM_ZVPORT 0x00000001 /* ZVPORT */
111 
112 #define CM_REG_CHFORMAT 0x08
113 
114 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */
115 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
116 #define CM_CHB3D 0x20000000 /* 4 channels */
117 
118 #define CM_CHIP_MASK1 0x1f000000
119 #define CM_CHIP_037 0x01000000
120 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */
121 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
122 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
123 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
124 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
125 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
126 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
127 
128 #define CM_ADCBITLEN_MASK 0x0000C000
129 #define CM_ADCBITLEN_16 0x00000000
130 #define CM_ADCBITLEN_15 0x00004000
131 #define CM_ADCBITLEN_14 0x00008000
132 #define CM_ADCBITLEN_13 0x0000C000
133 
134 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
135 #define CM_ADCDACLEN_060 0x00000000
136 #define CM_ADCDACLEN_066 0x00001000
137 #define CM_ADCDACLEN_130 0x00002000
138 #define CM_ADCDACLEN_280 0x00003000
139 
140 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
141 #define CM_ADCDLEN_ORIGINAL 0x00000000
142 #define CM_ADCDLEN_EXTRA 0x00001000
143 #define CM_ADCDLEN_24K 0x00002000
144 #define CM_ADCDLEN_WEIGHT 0x00003000
145 
146 #define CM_CH1_SRATE_176K 0x00000800
147 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
148 #define CM_CH1_SRATE_88K 0x00000400
149 #define CM_CH0_SRATE_176K 0x00000200
150 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
151 #define CM_CH0_SRATE_88K 0x00000100
152 #define CM_CH0_SRATE_128K 0x00000300
153 #define CM_CH0_SRATE_MASK 0x00000300
154 
155 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
156 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
157 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
158 #define CM_SPDLOCKED 0x00000010
159 
160 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
161 #define CM_CH1FMT_SHIFT 2
162 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
163 #define CM_CH0FMT_SHIFT 0
164 
165 #define CM_REG_INT_HLDCLR 0x0C
166 #define CM_CHIP_MASK2 0xff000000
167 #define CM_CHIP_8768 0x20000000
168 #define CM_CHIP_055 0x08000000
169 #define CM_CHIP_039 0x04000000
170 #define CM_CHIP_039_6CH 0x01000000
171 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
172 #define CM_TDMA_INT_EN 0x00040000
173 #define CM_CH1_INT_EN 0x00020000
174 #define CM_CH0_INT_EN 0x00010000
175 
176 #define CM_REG_INT_STATUS 0x10
177 #define CM_INTR 0x80000000
178 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
179 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
180 #define CM_UARTINT 0x00010000
181 #define CM_LTDMAINT 0x00008000
182 #define CM_HTDMAINT 0x00004000
183 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
184 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
185 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
186 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
187 #define CM_CH1BUSY 0x00000008
188 #define CM_CH0BUSY 0x00000004
189 #define CM_CHINT1 0x00000002
190 #define CM_CHINT0 0x00000001
191 
192 #define CM_REG_LEGACY_CTRL 0x14
193 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
194 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
195 #define CM_VMPU_330 0x00000000
196 #define CM_VMPU_320 0x20000000
197 #define CM_VMPU_310 0x40000000
198 #define CM_VMPU_300 0x60000000
199 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
200 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
201 #define CM_VSBSEL_220 0x00000000
202 #define CM_VSBSEL_240 0x04000000
203 #define CM_VSBSEL_260 0x08000000
204 #define CM_VSBSEL_280 0x0C000000
205 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
206 #define CM_FMSEL_388 0x00000000
207 #define CM_FMSEL_3C8 0x01000000
208 #define CM_FMSEL_3E0 0x02000000
209 #define CM_FMSEL_3E8 0x03000000
210 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
211 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
212 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
213 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
214 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
216 #define CM_C_EECS 0x00040000
217 #define CM_C_EEDI46 0x00020000
218 #define CM_C_EECK46 0x00010000
219 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
220 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */
221 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */
222 #define CM_EXBASEN 0x00001000 /* external bass input enable */
223 
224 #define CM_REG_MISC_CTRL 0x18
225 #define CM_PWD 0x80000000 /* power down */
226 #define CM_RESET 0x40000000
227 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
228 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
229 #define CM_TXVX 0x08000000 /* model 037? */
230 #define CM_N4SPK3D 0x04000000 /* copy front to rear */
231 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
232 #define CM_SPDIF48K 0x01000000 /* write */
233 #define CM_SPATUS48K 0x01000000 /* read */
234 #define CM_ENDBDAC 0x00800000 /* enable double dac */
235 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
236 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
237 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
238 #define CM_FM_EN 0x00080000 /* enable legacy FM */
239 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
240 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
241 #define CM_VIDWPDSB 0x00010000 /* model 037? */
242 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
243 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
244 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
245 #define CM_VIDWPPRT 0x00002000 /* model 037? */
246 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
247 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
248 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
249 #define CM_ENCENTER 0x00000080
250 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
251 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
252 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
253 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
254 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
255 #define CM_UPDDMA_2048 0x00000000
256 #define CM_UPDDMA_1024 0x00000004
257 #define CM_UPDDMA_512 0x00000008
258 #define CM_UPDDMA_256 0x0000000C
259 #define CM_TWAIT_MASK 0x00000003 /* model 037 */
260 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
262 
263 #define CM_REG_TDMA_POSITION 0x1C
264 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
265 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
266 
267  /* byte */
268 #define CM_REG_MIXER0 0x20
269 #define CM_REG_SBVR 0x20 /* write: sb16 version */
270 #define CM_REG_DEV 0x20 /* read: hardware device version */
271 
272 #define CM_REG_MIXER21 0x21
273 #define CM_UNKNOWN_21_MASK 0x78 /* ? */
274 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
275 #define CM_PROINV 0x02 /* SBPro left/right channel switching */
276 #define CM_X_SB16 0x01 /* SB16 compatible */
277 
278 #define CM_REG_SB16_DATA 0x22
279 #define CM_REG_SB16_ADDR 0x23
280 
281 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
282 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
284 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
285 
286 #define CM_REG_MIXER1 0x24
287 #define CM_FMMUTE 0x80 /* mute FM */
288 #define CM_FMMUTE_SHIFT 7
289 #define CM_WSMUTE 0x40 /* mute PCM */
290 #define CM_WSMUTE_SHIFT 6
291 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
292 #define CM_REAR2LIN_SHIFT 5
293 #define CM_REAR2FRONT 0x10 /* exchange rear/front */
294 #define CM_REAR2FRONT_SHIFT 4
295 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */
296 #define CM_WAVEINL_SHIFT 3
297 #define CM_WAVEINR 0x04 /* digical wave rec. right */
298 #define CM_WAVEINR_SHIFT 2
299 #define CM_X3DEN 0x02 /* 3D surround enable */
300 #define CM_X3DEN_SHIFT 1
301 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
302 #define CM_CDPLAY_SHIFT 0
303 
304 #define CM_REG_MIXER2 0x25
305 #define CM_RAUXREN 0x80 /* AUX right capture */
306 #define CM_RAUXREN_SHIFT 7
307 #define CM_RAUXLEN 0x40 /* AUX left capture */
308 #define CM_RAUXLEN_SHIFT 6
309 #define CM_VAUXRM 0x20 /* AUX right mute */
310 #define CM_VAUXRM_SHIFT 5
311 #define CM_VAUXLM 0x10 /* AUX left mute */
312 #define CM_VAUXLM_SHIFT 4
313 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
314 #define CM_VADMIC_SHIFT 1
315 #define CM_MICGAINZ 0x01 /* mic boost */
316 #define CM_MICGAINZ_SHIFT 0
317 
318 #define CM_REG_MIXER3 0x24
319 #define CM_REG_AUX_VOL 0x26
320 #define CM_VAUXL_MASK 0xf0
321 #define CM_VAUXR_MASK 0x0f
322 
323 #define CM_REG_MISC 0x27
324 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */
325 #define CM_XGPO1 0x20
326 // #define CM_XGPBIO 0x04
327 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
328 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
329 #define CM_SPDVALID 0x02 /* spdif input valid check */
330 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
331 
332 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
333 /*
334  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335  * or identical with AC97 codec?
336  */
337 #define CM_REG_EXTERN_CODEC CM_REG_AC97
338 
339 /*
340  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341  */
342 #define CM_REG_MPU_PCI 0x40
343 
344 /*
345  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346  */
347 #define CM_REG_FM_PCI 0x50
348 
349 /*
350  * access from SB-mixer port
351  */
352 #define CM_REG_EXTENT_IND 0xf0
353 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
354 #define CM_VPHONE_SHIFT 5
355 #define CM_VPHOM 0x10 /* Phone mute control */
356 #define CM_VSPKM 0x08 /* Speaker mute control, default high */
357 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
358 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
359 #define CM_VADMIC3 0x01 /* Mic record boost */
360 
361 /*
362  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364  * unit (readonly?).
365  */
366 #define CM_REG_PLL 0xf8
367 
368 /*
369  * extended registers
370  */
371 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */
372 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */
373 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
374 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
375 
376 #define CM_REG_EXT_MISC 0x90
377 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
378 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
379 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
380 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
381 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
382 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
383 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
384 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
385 
386 /*
387  * size of i/o region
388  */
389 #define CM_EXTENT_CODEC 0x100
390 #define CM_EXTENT_MIDI 0x2
391 #define CM_EXTENT_SYNTH 0x4
392 
393 
394 /*
395  * channels for playback / capture
396  */
397 #define CM_CH_PLAY 0
398 #define CM_CH_CAPT 1
399 
400 /*
401  * flags to check device open/close
402  */
403 #define CM_OPEN_NONE 0
404 #define CM_OPEN_CH_MASK 0x01
405 #define CM_OPEN_DAC 0x10
406 #define CM_OPEN_ADC 0x20
407 #define CM_OPEN_SPDIF 0x40
408 #define CM_OPEN_MCHAN 0x80
409 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
410 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
411 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
413 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415 
416 
417 #if CM_CH_PLAY == 1
418 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
419 #define CM_PLAYBACK_SPDF CM_SPDF_1
420 #define CM_CAPTURE_SPDF CM_SPDF_0
421 #else
422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423 #define CM_PLAYBACK_SPDF CM_SPDF_0
424 #define CM_CAPTURE_SPDF CM_SPDF_1
425 #endif
426 
427 
428 /*
429  * driver data
430  */
431 
432 struct cmipci_pcm {
434  u8 running; /* dac/adc running? */
435  u8 fmt; /* format bits */
438  unsigned int dma_size; /* in frames */
439  unsigned int shift;
440  unsigned int ch; /* channel (0/1) */
441  unsigned int offset; /* physical address of the buffer */
442 };
443 
444 /* mixer elements toggled/resumed during ac3 playback */
446  const char *name; /* switch to toggle */
447  int toggle_on; /* value to change when ac3 mode */
448 };
449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450  {"PCM Playback Switch", 0},
451  {"IEC958 Output Switch", 1},
452  {"IEC958 Mix Analog", 0},
453  // {"IEC958 Out To DAC", 1}, // no longer used
454  {"IEC958 Loop", 0},
455 };
456 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
457 
458 struct cmipci {
459  struct snd_card *card;
460 
461  struct pci_dev *pci;
462  unsigned int device; /* device ID */
463  int irq;
464 
465  unsigned long iobase;
466  unsigned int ctrl; /* FUNCTRL0 current value */
467 
468  struct snd_pcm *pcm; /* DAC/ADC PCM */
469  struct snd_pcm *pcm2; /* 2nd DAC */
470  struct snd_pcm *pcm_spdif; /* SPDIF */
471 
474  unsigned int can_ac3_sw: 1;
475  unsigned int can_ac3_hw: 1;
476  unsigned int can_multi_ch: 1;
477  unsigned int can_96k: 1; /* samplerate above 48k */
478  unsigned int do_soft_ac3: 1;
479 
480  unsigned int spdif_playback_avail: 1; /* spdif ready? */
481  unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
482  int spdif_counter; /* for software AC3 */
483 
484  unsigned int dig_status;
485  unsigned int dig_pcm_status;
486 
487  struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488 
489  int opened[2]; /* open mode */
491 
492  unsigned int mixer_insensitive: 1;
495 
496  struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
497 
498  /* external MIDI */
500 
501 #ifdef SUPPORT_JOYSTICK
502  struct gameport *gameport;
503 #endif
504 
506 
507 #ifdef CONFIG_PM_SLEEP
508  unsigned int saved_regs[0x20];
509  unsigned char saved_mixers[0x20];
510 #endif
511 };
512 
513 
514 /* read/write operations for dword register */
515 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516 {
517  outl(data, cm->iobase + cmd);
518 }
519 
520 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521 {
522  return inl(cm->iobase + cmd);
523 }
524 
525 /* read/write operations for word register */
526 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527 {
528  outw(data, cm->iobase + cmd);
529 }
530 
531 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532 {
533  return inw(cm->iobase + cmd);
534 }
535 
536 /* read/write operations for byte register */
537 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538 {
539  outb(data, cm->iobase + cmd);
540 }
541 
542 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543 {
544  return inb(cm->iobase + cmd);
545 }
546 
547 /* bit operations for dword register */
548 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549 {
550  unsigned int val, oval;
551  val = oval = inl(cm->iobase + cmd);
552  val |= flag;
553  if (val == oval)
554  return 0;
555  outl(val, cm->iobase + cmd);
556  return 1;
557 }
558 
559 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560 {
561  unsigned int val, oval;
562  val = oval = inl(cm->iobase + cmd);
563  val &= ~flag;
564  if (val == oval)
565  return 0;
566  outl(val, cm->iobase + cmd);
567  return 1;
568 }
569 
570 /* bit operations for byte register */
571 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572 {
573  unsigned char val, oval;
574  val = oval = inb(cm->iobase + cmd);
575  val |= flag;
576  if (val == oval)
577  return 0;
578  outb(val, cm->iobase + cmd);
579  return 1;
580 }
581 
582 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583 {
584  unsigned char val, oval;
585  val = oval = inb(cm->iobase + cmd);
586  val &= ~flag;
587  if (val == oval)
588  return 0;
589  outb(val, cm->iobase + cmd);
590  return 1;
591 }
592 
593 
594 /*
595  * PCM interface
596  */
597 
598 /*
599  * calculate frequency
600  */
601 
602 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603 
604 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605 {
606  unsigned int i;
607 
608  for (i = 0; i < ARRAY_SIZE(rates); i++) {
609  if (rates[i] == rate)
610  return i;
611  }
612  snd_BUG();
613  return 0;
614 }
615 
616 #ifdef USE_VAR48KRATE
617 /*
618  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619  * does it this way .. maybe not. Never get any information from C-Media about
620  * that <[email protected]>.
621  */
622 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623 {
624  unsigned int delta, tolerance;
625  int xm, xn, xr;
626 
627  for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628  rate <<= 1;
629  *n = -1;
630  if (*r > 0xff)
631  goto out;
632  tolerance = rate*CM_TOLERANCE_RATE;
633 
634  for (xn = (1+2); xn < (0x1f+2); xn++) {
635  for (xm = (1+2); xm < (0xff+2); xm++) {
636  xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637 
638  if (xr < rate)
639  delta = rate - xr;
640  else
641  delta = xr - rate;
642 
643  /*
644  * If we found one, remember this,
645  * and try to find a closer one
646  */
647  if (delta < tolerance) {
648  tolerance = delta;
649  *m = xm - 2;
650  *n = xn - 2;
651  }
652  }
653  }
654 out:
655  return (*n > -1);
656 }
657 
658 /*
659  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
660  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
661  * at the register CM_REG_FUNCTRL1 (0x04).
662  * Problem: other ways are also possible (any information about that?)
663  */
664 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665 {
666  unsigned int reg = CM_REG_PLL + slot;
667  /*
668  * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669  * for DSFC/ASFC (000 up to 111).
670  */
671 
672  /* FIXME: Init (Do we've to set an other register first before programming?) */
673 
674  /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675  snd_cmipci_write_b(cm, reg, rate>>8);
676  snd_cmipci_write_b(cm, reg, rate&0xff);
677 
678  /* FIXME: Setup (Do we've to set an other register first to enable this?) */
679 }
680 #endif /* USE_VAR48KRATE */
681 
682 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683  struct snd_pcm_hw_params *hw_params)
684 {
685  return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686 }
687 
688 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689  struct snd_pcm_hw_params *hw_params)
690 {
691  struct cmipci *cm = snd_pcm_substream_chip(substream);
692  if (params_channels(hw_params) > 2) {
693  mutex_lock(&cm->open_mutex);
694  if (cm->opened[CM_CH_PLAY]) {
695  mutex_unlock(&cm->open_mutex);
696  return -EBUSY;
697  }
698  /* reserve the channel A */
700  mutex_unlock(&cm->open_mutex);
701  }
702  return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703 }
704 
705 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
706 {
707  int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710  udelay(10);
711 }
712 
713 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
714 {
715  return snd_pcm_lib_free_pages(substream);
716 }
717 
718 
719 /*
720  */
721 
722 static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724  .count = 3,
725  .list = hw_channels,
726  .mask = 0,
727 };
728 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729  .count = 4,
730  .list = hw_channels,
731  .mask = 0,
732 };
733 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734  .count = 5,
735  .list = hw_channels,
736  .mask = 0,
737 };
738 
739 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
740 {
741  if (channels > 2) {
742  if (!cm->can_multi_ch || !rec->ch)
743  return -EINVAL;
744  if (rec->fmt != 0x03) /* stereo 16bit only */
745  return -EINVAL;
746  }
747 
748  if (cm->can_multi_ch) {
749  spin_lock_irq(&cm->reg_lock);
750  if (channels > 2) {
751  snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753  } else {
754  snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
756  }
757  if (channels == 8)
758  snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759  else
760  snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761  if (channels == 6) {
762  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763  snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764  } else {
765  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766  snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
767  }
768  if (channels == 4)
769  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770  else
771  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772  spin_unlock_irq(&cm->reg_lock);
773  }
774  return 0;
775 }
776 
777 
778 /*
779  * prepare playback/capture channel
780  * channel to be used must have been set in rec->ch.
781  */
782 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783  struct snd_pcm_substream *substream)
784 {
785  unsigned int reg, freq, freq_ext, val;
786  unsigned int period_size;
787  struct snd_pcm_runtime *runtime = substream->runtime;
788 
789  rec->fmt = 0;
790  rec->shift = 0;
791  if (snd_pcm_format_width(runtime->format) >= 16) {
792  rec->fmt |= 0x02;
793  if (snd_pcm_format_width(runtime->format) > 16)
794  rec->shift++; /* 24/32bit */
795  }
796  if (runtime->channels > 1)
797  rec->fmt |= 0x01;
798  if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799  snd_printd("cannot set dac channels\n");
800  return -EINVAL;
801  }
802 
803  rec->offset = runtime->dma_addr;
804  /* buffer and period sizes in frame */
805  rec->dma_size = runtime->buffer_size << rec->shift;
806  period_size = runtime->period_size << rec->shift;
807  if (runtime->channels > 2) {
808  /* multi-channels */
809  rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810  period_size = (period_size * runtime->channels) / 2;
811  }
812 
813  spin_lock_irq(&cm->reg_lock);
814 
815  /* set buffer address */
816  reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817  snd_cmipci_write(cm, reg, rec->offset);
818  /* program sample counts */
819  reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820  snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821  snd_cmipci_write_w(cm, reg + 2, period_size - 1);
822 
823  /* set adc/dac flag */
824  val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825  if (rec->is_dac)
826  cm->ctrl &= ~val;
827  else
828  cm->ctrl |= val;
829  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830  //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
831 
832  /* set sample rate */
833  freq = 0;
834  freq_ext = 0;
835  if (runtime->rate > 48000)
836  switch (runtime->rate) {
837  case 88200: freq_ext = CM_CH0_SRATE_88K; break;
838  case 96000: freq_ext = CM_CH0_SRATE_96K; break;
839  case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840  default: snd_BUG(); break;
841  }
842  else
843  freq = snd_cmipci_rate_freq(runtime->rate);
844  val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845  if (rec->ch) {
846  val &= ~CM_DSFC_MASK;
847  val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848  } else {
849  val &= ~CM_ASFC_MASK;
850  val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
851  }
852  snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853  //snd_printd("cmipci: functrl1 = %08x\n", val);
854 
855  /* set format */
856  val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857  if (rec->ch) {
858  val &= ~CM_CH1FMT_MASK;
859  val |= rec->fmt << CM_CH1FMT_SHIFT;
860  } else {
861  val &= ~CM_CH0FMT_MASK;
862  val |= rec->fmt << CM_CH0FMT_SHIFT;
863  }
864  if (cm->can_96k) {
865  val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866  val |= freq_ext << (rec->ch * 2);
867  }
868  snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869  //snd_printd("cmipci: chformat = %08x\n", val);
870 
871  if (!rec->is_dac && cm->chip_version) {
872  if (runtime->rate > 44100)
873  snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874  else
875  snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
876  }
877 
878  rec->running = 0;
879  spin_unlock_irq(&cm->reg_lock);
880 
881  return 0;
882 }
883 
884 /*
885  * PCM trigger/stop
886  */
887 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888  int cmd)
889 {
890  unsigned int inthld, chen, reset, pause;
891  int result = 0;
892 
893  inthld = CM_CH0_INT_EN << rec->ch;
894  chen = CM_CHEN0 << rec->ch;
895  reset = CM_RST_CH0 << rec->ch;
896  pause = CM_PAUSE0 << rec->ch;
897 
898  spin_lock(&cm->reg_lock);
899  switch (cmd) {
901  rec->running = 1;
902  /* set interrupt */
903  snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904  cm->ctrl |= chen;
905  /* enable channel */
906  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907  //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
908  break;
910  rec->running = 0;
911  /* disable interrupt */
912  snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913  /* reset */
914  cm->ctrl &= ~chen;
915  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917  rec->needs_silencing = rec->is_dac;
918  break;
921  cm->ctrl |= pause;
922  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923  break;
926  cm->ctrl &= ~pause;
927  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928  break;
929  default:
930  result = -EINVAL;
931  break;
932  }
933  spin_unlock(&cm->reg_lock);
934  return result;
935 }
936 
937 /*
938  * return the current pointer
939  */
940 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941  struct snd_pcm_substream *substream)
942 {
943  size_t ptr;
944  unsigned int reg, rem, tries;
945 
946  if (!rec->running)
947  return 0;
948 #if 1 // this seems better..
949  reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
950  for (tries = 0; tries < 3; tries++) {
951  rem = snd_cmipci_read_w(cm, reg);
952  if (rem < rec->dma_size)
953  goto ok;
954  }
955  printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem);
956  return SNDRV_PCM_POS_XRUN;
957 ok:
958  ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
959 #else
960  reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
961  ptr = snd_cmipci_read(cm, reg) - rec->offset;
962  ptr = bytes_to_frames(substream->runtime, ptr);
963 #endif
964  if (substream->runtime->channels > 2)
965  ptr = (ptr * 2) / substream->runtime->channels;
966  return ptr;
967 }
968 
969 /*
970  * playback
971  */
972 
973 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
974  int cmd)
975 {
976  struct cmipci *cm = snd_pcm_substream_chip(substream);
977  return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
978 }
979 
980 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
981 {
982  struct cmipci *cm = snd_pcm_substream_chip(substream);
983  return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
984 }
985 
986 
987 
988 /*
989  * capture
990  */
991 
992 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
993  int cmd)
994 {
995  struct cmipci *cm = snd_pcm_substream_chip(substream);
996  return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
997 }
998 
999 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000 {
1001  struct cmipci *cm = snd_pcm_substream_chip(substream);
1002  return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003 }
1004 
1005 
1006 /*
1007  * hw preparation for spdif
1008  */
1009 
1010 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011  struct snd_ctl_elem_info *uinfo)
1012 {
1014  uinfo->count = 1;
1015  return 0;
1016 }
1017 
1018 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019  struct snd_ctl_elem_value *ucontrol)
1020 {
1021  struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022  int i;
1023 
1024  spin_lock_irq(&chip->reg_lock);
1025  for (i = 0; i < 4; i++)
1026  ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027  spin_unlock_irq(&chip->reg_lock);
1028  return 0;
1029 }
1030 
1031 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032  struct snd_ctl_elem_value *ucontrol)
1033 {
1034  struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035  int i, change;
1036  unsigned int val;
1037 
1038  val = 0;
1039  spin_lock_irq(&chip->reg_lock);
1040  for (i = 0; i < 4; i++)
1041  val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042  change = val != chip->dig_status;
1043  chip->dig_status = val;
1044  spin_unlock_irq(&chip->reg_lock);
1045  return change;
1046 }
1047 
1048 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1049 {
1050  .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1052  .info = snd_cmipci_spdif_default_info,
1053  .get = snd_cmipci_spdif_default_get,
1054  .put = snd_cmipci_spdif_default_put
1055 };
1056 
1057 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058  struct snd_ctl_elem_info *uinfo)
1059 {
1061  uinfo->count = 1;
1062  return 0;
1063 }
1064 
1065 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066  struct snd_ctl_elem_value *ucontrol)
1067 {
1068  ucontrol->value.iec958.status[0] = 0xff;
1069  ucontrol->value.iec958.status[1] = 0xff;
1070  ucontrol->value.iec958.status[2] = 0xff;
1071  ucontrol->value.iec958.status[3] = 0xff;
1072  return 0;
1073 }
1074 
1075 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1076 {
1078  .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1080  .info = snd_cmipci_spdif_mask_info,
1081  .get = snd_cmipci_spdif_mask_get,
1082 };
1083 
1084 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085  struct snd_ctl_elem_info *uinfo)
1086 {
1088  uinfo->count = 1;
1089  return 0;
1090 }
1091 
1092 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093  struct snd_ctl_elem_value *ucontrol)
1094 {
1095  struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096  int i;
1097 
1098  spin_lock_irq(&chip->reg_lock);
1099  for (i = 0; i < 4; i++)
1100  ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101  spin_unlock_irq(&chip->reg_lock);
1102  return 0;
1103 }
1104 
1105 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106  struct snd_ctl_elem_value *ucontrol)
1107 {
1108  struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109  int i, change;
1110  unsigned int val;
1111 
1112  val = 0;
1113  spin_lock_irq(&chip->reg_lock);
1114  for (i = 0; i < 4; i++)
1115  val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116  change = val != chip->dig_pcm_status;
1117  chip->dig_pcm_status = val;
1118  spin_unlock_irq(&chip->reg_lock);
1119  return change;
1120 }
1121 
1122 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1123 {
1125  .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1126  .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127  .info = snd_cmipci_spdif_stream_info,
1128  .get = snd_cmipci_spdif_stream_get,
1129  .put = snd_cmipci_spdif_stream_put
1130 };
1131 
1132 /*
1133  */
1134 
1135 /* save mixer setting and mute for AC3 playback */
1136 static int save_mixer_state(struct cmipci *cm)
1137 {
1138  if (! cm->mixer_insensitive) {
1139  struct snd_ctl_elem_value *val;
1140  unsigned int i;
1141 
1142  val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143  if (!val)
1144  return -ENOMEM;
1145  for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146  struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147  if (ctl) {
1148  int event;
1149  memset(val, 0, sizeof(*val));
1150  ctl->get(ctl, val);
1151  cm->mixer_res_status[i] = val->value.integer.value[0];
1152  val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153  event = SNDRV_CTL_EVENT_MASK_INFO;
1154  if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155  ctl->put(ctl, val); /* toggle */
1156  event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157  }
1158  ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159  snd_ctl_notify(cm->card, event, &ctl->id);
1160  }
1161  }
1162  kfree(val);
1163  cm->mixer_insensitive = 1;
1164  }
1165  return 0;
1166 }
1167 
1168 
1169 /* restore the previously saved mixer status */
1170 static void restore_mixer_state(struct cmipci *cm)
1171 {
1172  if (cm->mixer_insensitive) {
1173  struct snd_ctl_elem_value *val;
1174  unsigned int i;
1175 
1176  val = kmalloc(sizeof(*val), GFP_KERNEL);
1177  if (!val)
1178  return;
1179  cm->mixer_insensitive = 0; /* at first clear this;
1180  otherwise the changes will be ignored */
1181  for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182  struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183  if (ctl) {
1184  int event;
1185 
1186  memset(val, 0, sizeof(*val));
1187  ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188  ctl->get(ctl, val);
1189  event = SNDRV_CTL_EVENT_MASK_INFO;
1190  if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191  val->value.integer.value[0] = cm->mixer_res_status[i];
1192  ctl->put(ctl, val);
1193  event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194  }
1195  snd_ctl_notify(cm->card, event, &ctl->id);
1196  }
1197  }
1198  kfree(val);
1199  }
1200 }
1201 
1202 /* spinlock held! */
1203 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204 {
1205  if (do_ac3) {
1206  /* AC3EN for 037 */
1207  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208  /* AC3EN for 039 */
1209  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210 
1211  if (cm->can_ac3_hw) {
1212  /* SPD24SEL for 037, 0x02 */
1213  /* SPD24SEL for 039, 0x20, but cannot be set */
1214  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216  } else { /* can_ac3_sw */
1217  /* SPD32SEL for 037 & 039, 0x20 */
1218  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219  /* set 176K sample rate to fix 033 HW bug */
1220  if (cm->chip_version == 33) {
1221  if (rate >= 48000) {
1222  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223  } else {
1224  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225  }
1226  }
1227  }
1228 
1229  } else {
1230  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232 
1233  if (cm->can_ac3_hw) {
1234  /* chip model >= 37 */
1235  if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238  } else {
1239  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241  }
1242  } else {
1243  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246  }
1247  }
1248 }
1249 
1250 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251 {
1252  int rate, err;
1253 
1254  rate = subs->runtime->rate;
1255 
1256  if (up && do_ac3)
1257  if ((err = save_mixer_state(cm)) < 0)
1258  return err;
1259 
1260  spin_lock_irq(&cm->reg_lock);
1261  cm->spdif_playback_avail = up;
1262  if (up) {
1263  /* they are controlled via "IEC958 Output Switch" */
1264  /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265  /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266  if (cm->spdif_playback_enabled)
1267  snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268  setup_ac3(cm, subs, do_ac3, rate);
1269 
1270  if (rate == 48000 || rate == 96000)
1271  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272  else
1273  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274  if (rate > 48000)
1275  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276  else
1277  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278  } else {
1279  /* they are controlled via "IEC958 Output Switch" */
1280  /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281  /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283  snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284  setup_ac3(cm, subs, 0, 0);
1285  }
1286  spin_unlock_irq(&cm->reg_lock);
1287  return 0;
1288 }
1289 
1290 
1291 /*
1292  * preparation
1293  */
1294 
1295 /* playback - enable spdif only on the certain condition */
1296 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297 {
1298  struct cmipci *cm = snd_pcm_substream_chip(substream);
1299  int rate = substream->runtime->rate;
1300  int err, do_spdif, do_ac3 = 0;
1301 
1302  do_spdif = (rate >= 44100 && rate <= 96000 &&
1303  substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304  substream->runtime->channels == 2);
1305  if (do_spdif && cm->can_ac3_hw)
1306  do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307  if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1308  return err;
1309  return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310 }
1311 
1312 /* playback (via device #2) - enable spdif always */
1313 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314 {
1315  struct cmipci *cm = snd_pcm_substream_chip(substream);
1316  int err, do_ac3;
1317 
1318  if (cm->can_ac3_hw)
1319  do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320  else
1321  do_ac3 = 1; /* doesn't matter */
1322  if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1323  return err;
1324  return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325 }
1326 
1327 /*
1328  * Apparently, the samples last played on channel A stay in some buffer, even
1329  * after the channel is reset, and get added to the data for the rear DACs when
1330  * playing a multichannel stream on channel B. This is likely to generate
1331  * wraparounds and thus distortions.
1332  * To avoid this, we play at least one zero sample after the actual stream has
1333  * stopped.
1334  */
1335 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336 {
1337  struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338  unsigned int reg, val;
1339 
1340  if (rec->needs_silencing && runtime && runtime->dma_area) {
1341  /* set up a small silence buffer */
1342  memset(runtime->dma_area, 0, PAGE_SIZE);
1343  reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344  val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345  snd_cmipci_write(cm, reg, val);
1346 
1347  /* configure for 16 bits, 2 channels, 8 kHz */
1348  if (runtime->channels > 2)
1349  set_dac_channels(cm, rec, 2);
1350  spin_lock_irq(&cm->reg_lock);
1351  val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352  val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353  val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354  snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355  val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356  val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357  val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358  if (cm->can_96k)
1359  val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360  snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361 
1362  /* start stream (we don't need interrupts) */
1363  cm->ctrl |= CM_CHEN0 << rec->ch;
1364  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365  spin_unlock_irq(&cm->reg_lock);
1366 
1367  msleep(1);
1368 
1369  /* stop and reset stream */
1370  spin_lock_irq(&cm->reg_lock);
1371  cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372  val = CM_RST_CH0 << rec->ch;
1373  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374  snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375  spin_unlock_irq(&cm->reg_lock);
1376 
1377  rec->needs_silencing = 0;
1378  }
1379 }
1380 
1381 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382 {
1383  struct cmipci *cm = snd_pcm_substream_chip(substream);
1384  setup_spdif_playback(cm, substream, 0, 0);
1385  restore_mixer_state(cm);
1386  snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387  return snd_cmipci_hw_free(substream);
1388 }
1389 
1390 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391 {
1392  struct cmipci *cm = snd_pcm_substream_chip(substream);
1393  snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394  return snd_cmipci_hw_free(substream);
1395 }
1396 
1397 /* capture */
1398 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399 {
1400  struct cmipci *cm = snd_pcm_substream_chip(substream);
1401  return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402 }
1403 
1404 /* capture with spdif (via device #2) */
1405 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406 {
1407  struct cmipci *cm = snd_pcm_substream_chip(substream);
1408 
1409  spin_lock_irq(&cm->reg_lock);
1410  snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411  if (cm->can_96k) {
1412  if (substream->runtime->rate > 48000)
1413  snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414  else
1415  snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416  }
1417  if (snd_pcm_format_width(substream->runtime->format) > 16)
1418  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419  else
1420  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421 
1422  spin_unlock_irq(&cm->reg_lock);
1423 
1424  return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425 }
1426 
1427 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428 {
1429  struct cmipci *cm = snd_pcm_substream_chip(subs);
1430 
1431  spin_lock_irq(&cm->reg_lock);
1432  snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434  spin_unlock_irq(&cm->reg_lock);
1435 
1436  return snd_cmipci_hw_free(subs);
1437 }
1438 
1439 
1440 /*
1441  * interrupt handler
1442  */
1443 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444 {
1445  struct cmipci *cm = dev_id;
1446  unsigned int status, mask = 0;
1447 
1448  /* fastpath out, to ease interrupt sharing */
1449  status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450  if (!(status & CM_INTR))
1451  return IRQ_NONE;
1452 
1453  /* acknowledge interrupt */
1454  spin_lock(&cm->reg_lock);
1455  if (status & CM_CHINT0)
1456  mask |= CM_CH0_INT_EN;
1457  if (status & CM_CHINT1)
1458  mask |= CM_CH1_INT_EN;
1459  snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460  snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461  spin_unlock(&cm->reg_lock);
1462 
1463  if (cm->rmidi && (status & CM_UARTINT))
1464  snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465 
1466  if (cm->pcm) {
1467  if ((status & CM_CHINT0) && cm->channel[0].running)
1468  snd_pcm_period_elapsed(cm->channel[0].substream);
1469  if ((status & CM_CHINT1) && cm->channel[1].running)
1470  snd_pcm_period_elapsed(cm->channel[1].substream);
1471  }
1472  return IRQ_HANDLED;
1473 }
1474 
1475 /*
1476  * h/w infos
1477  */
1478 
1479 /* playback on channel A */
1480 static struct snd_pcm_hardware snd_cmipci_playback =
1481 {
1487  .rate_min = 5512,
1488  .rate_max = 48000,
1489  .channels_min = 1,
1490  .channels_max = 2,
1491  .buffer_bytes_max = (128*1024),
1492  .period_bytes_min = 64,
1493  .period_bytes_max = (128*1024),
1494  .periods_min = 2,
1495  .periods_max = 1024,
1496  .fifo_size = 0,
1497 };
1498 
1499 /* capture on channel B */
1500 static struct snd_pcm_hardware snd_cmipci_capture =
1501 {
1507  .rate_min = 5512,
1508  .rate_max = 48000,
1509  .channels_min = 1,
1510  .channels_max = 2,
1511  .buffer_bytes_max = (128*1024),
1512  .period_bytes_min = 64,
1513  .period_bytes_max = (128*1024),
1514  .periods_min = 2,
1515  .periods_max = 1024,
1516  .fifo_size = 0,
1517 };
1518 
1519 /* playback on channel B - stereo 16bit only? */
1520 static struct snd_pcm_hardware snd_cmipci_playback2 =
1521 {
1527  .rate_min = 5512,
1528  .rate_max = 48000,
1529  .channels_min = 2,
1530  .channels_max = 2,
1531  .buffer_bytes_max = (128*1024),
1532  .period_bytes_min = 64,
1533  .period_bytes_max = (128*1024),
1534  .periods_min = 2,
1535  .periods_max = 1024,
1536  .fifo_size = 0,
1537 };
1538 
1539 /* spdif playback on channel A */
1540 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541 {
1547  .rate_min = 44100,
1548  .rate_max = 48000,
1549  .channels_min = 2,
1550  .channels_max = 2,
1551  .buffer_bytes_max = (128*1024),
1552  .period_bytes_min = 64,
1553  .period_bytes_max = (128*1024),
1554  .periods_min = 2,
1555  .periods_max = 1024,
1556  .fifo_size = 0,
1557 };
1558 
1559 /* spdif playback on channel A (32bit, IEC958 subframes) */
1560 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561 {
1567  .rate_min = 44100,
1568  .rate_max = 48000,
1569  .channels_min = 2,
1570  .channels_max = 2,
1571  .buffer_bytes_max = (128*1024),
1572  .period_bytes_min = 64,
1573  .period_bytes_max = (128*1024),
1574  .periods_min = 2,
1575  .periods_max = 1024,
1576  .fifo_size = 0,
1577 };
1578 
1579 /* spdif capture on channel B */
1580 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581 {
1588  .rate_min = 44100,
1589  .rate_max = 48000,
1590  .channels_min = 2,
1591  .channels_max = 2,
1592  .buffer_bytes_max = (128*1024),
1593  .period_bytes_min = 64,
1594  .period_bytes_max = (128*1024),
1595  .periods_min = 2,
1596  .periods_max = 1024,
1597  .fifo_size = 0,
1598 };
1599 
1600 static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601  32000, 44100, 48000, 88200, 96000, 128000 };
1602 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603  .count = ARRAY_SIZE(rate_constraints),
1604  .list = rate_constraints,
1605  .mask = 0,
1606 };
1607 
1608 /*
1609  * check device open/close
1610  */
1611 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612 {
1613  int ch = mode & CM_OPEN_CH_MASK;
1614 
1615  /* FIXME: a file should wait until the device becomes free
1616  * when it's opened on blocking mode. however, since the current
1617  * pcm framework doesn't pass file pointer before actually opened,
1618  * we can't know whether blocking mode or not in open callback..
1619  */
1620  mutex_lock(&cm->open_mutex);
1621  if (cm->opened[ch]) {
1622  mutex_unlock(&cm->open_mutex);
1623  return -EBUSY;
1624  }
1625  cm->opened[ch] = mode;
1626  cm->channel[ch].substream = subs;
1627  if (! (mode & CM_OPEN_DAC)) {
1628  /* disable dual DAC mode */
1629  cm->channel[ch].is_dac = 0;
1630  spin_lock_irq(&cm->reg_lock);
1631  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632  spin_unlock_irq(&cm->reg_lock);
1633  }
1634  mutex_unlock(&cm->open_mutex);
1635  return 0;
1636 }
1637 
1638 static void close_device_check(struct cmipci *cm, int mode)
1639 {
1640  int ch = mode & CM_OPEN_CH_MASK;
1641 
1642  mutex_lock(&cm->open_mutex);
1643  if (cm->opened[ch] == mode) {
1644  if (cm->channel[ch].substream) {
1645  snd_cmipci_ch_reset(cm, ch);
1646  cm->channel[ch].running = 0;
1647  cm->channel[ch].substream = NULL;
1648  }
1649  cm->opened[ch] = 0;
1650  if (! cm->channel[ch].is_dac) {
1651  /* enable dual DAC mode again */
1652  cm->channel[ch].is_dac = 1;
1653  spin_lock_irq(&cm->reg_lock);
1654  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655  spin_unlock_irq(&cm->reg_lock);
1656  }
1657  }
1658  mutex_unlock(&cm->open_mutex);
1659 }
1660 
1661 /*
1662  */
1663 
1664 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665 {
1666  struct cmipci *cm = snd_pcm_substream_chip(substream);
1667  struct snd_pcm_runtime *runtime = substream->runtime;
1668  int err;
1669 
1670  if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1671  return err;
1672  runtime->hw = snd_cmipci_playback;
1673  if (cm->chip_version == 68) {
1674  runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1676  runtime->hw.rate_max = 96000;
1677  } else if (cm->chip_version == 55) {
1678  err = snd_pcm_hw_constraint_list(runtime, 0,
1679  SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680  if (err < 0)
1681  return err;
1682  runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683  runtime->hw.rate_max = 128000;
1684  }
1686  cm->dig_pcm_status = cm->dig_status;
1687  return 0;
1688 }
1689 
1690 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691 {
1692  struct cmipci *cm = snd_pcm_substream_chip(substream);
1693  struct snd_pcm_runtime *runtime = substream->runtime;
1694  int err;
1695 
1696  if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1697  return err;
1698  runtime->hw = snd_cmipci_capture;
1699  if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1700  runtime->hw.rate_min = 41000;
1701  runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702  } else if (cm->chip_version == 55) {
1703  err = snd_pcm_hw_constraint_list(runtime, 0,
1704  SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705  if (err < 0)
1706  return err;
1707  runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708  runtime->hw.rate_max = 128000;
1709  }
1711  return 0;
1712 }
1713 
1714 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715 {
1716  struct cmipci *cm = snd_pcm_substream_chip(substream);
1717  struct snd_pcm_runtime *runtime = substream->runtime;
1718  int err;
1719 
1720  if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1721  return err;
1722  runtime->hw = snd_cmipci_playback2;
1723  mutex_lock(&cm->open_mutex);
1724  if (! cm->opened[CM_CH_PLAY]) {
1725  if (cm->can_multi_ch) {
1726  runtime->hw.channels_max = cm->max_channels;
1727  if (cm->max_channels == 4)
1728  snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729  else if (cm->max_channels == 6)
1730  snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731  else if (cm->max_channels == 8)
1732  snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733  }
1734  }
1735  mutex_unlock(&cm->open_mutex);
1736  if (cm->chip_version == 68) {
1737  runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1739  runtime->hw.rate_max = 96000;
1740  } else if (cm->chip_version == 55) {
1741  err = snd_pcm_hw_constraint_list(runtime, 0,
1742  SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743  if (err < 0)
1744  return err;
1745  runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746  runtime->hw.rate_max = 128000;
1747  }
1749  return 0;
1750 }
1751 
1752 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753 {
1754  struct cmipci *cm = snd_pcm_substream_chip(substream);
1755  struct snd_pcm_runtime *runtime = substream->runtime;
1756  int err;
1757 
1758  if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1759  return err;
1760  if (cm->can_ac3_hw) {
1761  runtime->hw = snd_cmipci_playback_spdif;
1762  if (cm->chip_version >= 37) {
1763  runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764  snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765  }
1766  if (cm->can_96k) {
1767  runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1769  runtime->hw.rate_max = 96000;
1770  }
1771  } else {
1772  runtime->hw = snd_cmipci_playback_iec958_subframe;
1773  }
1775  cm->dig_pcm_status = cm->dig_status;
1776  return 0;
1777 }
1778 
1779 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780 {
1781  struct cmipci *cm = snd_pcm_substream_chip(substream);
1782  struct snd_pcm_runtime *runtime = substream->runtime;
1783  int err;
1784 
1785  if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1786  return err;
1787  runtime->hw = snd_cmipci_capture_spdif;
1788  if (cm->can_96k && !(cm->chip_version == 68)) {
1789  runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1791  runtime->hw.rate_max = 96000;
1792  }
1794  return 0;
1795 }
1796 
1797 
1798 /*
1799  */
1800 
1801 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802 {
1803  struct cmipci *cm = snd_pcm_substream_chip(substream);
1804  close_device_check(cm, CM_OPEN_PLAYBACK);
1805  return 0;
1806 }
1807 
1808 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809 {
1810  struct cmipci *cm = snd_pcm_substream_chip(substream);
1811  close_device_check(cm, CM_OPEN_CAPTURE);
1812  return 0;
1813 }
1814 
1815 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816 {
1817  struct cmipci *cm = snd_pcm_substream_chip(substream);
1818  close_device_check(cm, CM_OPEN_PLAYBACK2);
1819  close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820  return 0;
1821 }
1822 
1823 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824 {
1825  struct cmipci *cm = snd_pcm_substream_chip(substream);
1826  close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827  return 0;
1828 }
1829 
1830 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831 {
1832  struct cmipci *cm = snd_pcm_substream_chip(substream);
1833  close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834  return 0;
1835 }
1836 
1837 
1838 /*
1839  */
1840 
1841 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1842  .open = snd_cmipci_playback_open,
1843  .close = snd_cmipci_playback_close,
1844  .ioctl = snd_pcm_lib_ioctl,
1845  .hw_params = snd_cmipci_hw_params,
1846  .hw_free = snd_cmipci_playback_hw_free,
1847  .prepare = snd_cmipci_playback_prepare,
1848  .trigger = snd_cmipci_playback_trigger,
1849  .pointer = snd_cmipci_playback_pointer,
1850 };
1851 
1852 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1853  .open = snd_cmipci_capture_open,
1854  .close = snd_cmipci_capture_close,
1855  .ioctl = snd_pcm_lib_ioctl,
1856  .hw_params = snd_cmipci_hw_params,
1857  .hw_free = snd_cmipci_hw_free,
1858  .prepare = snd_cmipci_capture_prepare,
1859  .trigger = snd_cmipci_capture_trigger,
1860  .pointer = snd_cmipci_capture_pointer,
1861 };
1862 
1863 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864  .open = snd_cmipci_playback2_open,
1865  .close = snd_cmipci_playback2_close,
1866  .ioctl = snd_pcm_lib_ioctl,
1867  .hw_params = snd_cmipci_playback2_hw_params,
1868  .hw_free = snd_cmipci_playback2_hw_free,
1869  .prepare = snd_cmipci_capture_prepare, /* channel B */
1870  .trigger = snd_cmipci_capture_trigger, /* channel B */
1871  .pointer = snd_cmipci_capture_pointer, /* channel B */
1872 };
1873 
1874 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875  .open = snd_cmipci_playback_spdif_open,
1876  .close = snd_cmipci_playback_spdif_close,
1877  .ioctl = snd_pcm_lib_ioctl,
1878  .hw_params = snd_cmipci_hw_params,
1879  .hw_free = snd_cmipci_playback_hw_free,
1880  .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1881  .trigger = snd_cmipci_playback_trigger,
1882  .pointer = snd_cmipci_playback_pointer,
1883 };
1884 
1885 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886  .open = snd_cmipci_capture_spdif_open,
1887  .close = snd_cmipci_capture_spdif_close,
1888  .ioctl = snd_pcm_lib_ioctl,
1889  .hw_params = snd_cmipci_hw_params,
1890  .hw_free = snd_cmipci_capture_spdif_hw_free,
1891  .prepare = snd_cmipci_capture_spdif_prepare,
1892  .trigger = snd_cmipci_capture_trigger,
1893  .pointer = snd_cmipci_capture_pointer,
1894 };
1895 
1896 
1897 /*
1898  */
1899 
1900 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901 {
1902  struct snd_pcm *pcm;
1903  int err;
1904 
1905  err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906  if (err < 0)
1907  return err;
1908 
1909  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911 
1912  pcm->private_data = cm;
1913  pcm->info_flags = 0;
1914  strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915  cm->pcm = pcm;
1916 
1918  snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919 
1920  return 0;
1921 }
1922 
1923 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924 {
1925  struct snd_pcm *pcm;
1926  int err;
1927 
1928  err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929  if (err < 0)
1930  return err;
1931 
1932  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933 
1934  pcm->private_data = cm;
1935  pcm->info_flags = 0;
1936  strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937  cm->pcm2 = pcm;
1938 
1940  snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941 
1942  return 0;
1943 }
1944 
1945 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946 {
1947  struct snd_pcm *pcm;
1948  int err;
1949 
1950  err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951  if (err < 0)
1952  return err;
1953 
1954  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956 
1957  pcm->private_data = cm;
1958  pcm->info_flags = 0;
1959  strcpy(pcm->name, "C-Media PCI IEC958");
1960  cm->pcm_spdif = pcm;
1961 
1963  snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964 
1967  NULL);
1968  if (err < 0)
1969  return err;
1970 
1971  return 0;
1972 }
1973 
1974 /*
1975  * mixer interface:
1976  * - CM8338/8738 has a compatible mixer interface with SB16, but
1977  * lack of some elements like tone control, i/o gain and AGC.
1978  * - Access to native registers:
1979  * - A 3D switch
1980  * - Output mute switches
1981  */
1982 
1983 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1984 {
1985  outb(idx, s->iobase + CM_REG_SB16_ADDR);
1986  outb(data, s->iobase + CM_REG_SB16_DATA);
1987 }
1988 
1989 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1990 {
1991  unsigned char v;
1992 
1993  outb(idx, s->iobase + CM_REG_SB16_ADDR);
1994  v = inb(s->iobase + CM_REG_SB16_DATA);
1995  return v;
1996 }
1997 
1998 /*
1999  * general mixer element
2000  */
2002  unsigned int left_reg, right_reg;
2003  unsigned int left_shift, right_shift;
2004  unsigned int mask;
2005  unsigned int invert: 1;
2006  unsigned int stereo: 1;
2007 };
2008 
2009 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2010  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2011 
2012 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2013 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2014  .info = snd_cmipci_info_volume, \
2015  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2016  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2017 }
2018 
2019 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2020 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2021 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2022 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2023 
2024 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2025 {
2026  r->left_reg = val & 0xff;
2027  r->right_reg = (val >> 8) & 0xff;
2028  r->left_shift = (val >> 16) & 0x07;
2029  r->right_shift = (val >> 19) & 0x07;
2030  r->invert = (val >> 22) & 1;
2031  r->stereo = (val >> 23) & 1;
2032  r->mask = (val >> 24) & 0xff;
2033 }
2034 
2035 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2036  struct snd_ctl_elem_info *uinfo)
2037 {
2038  struct cmipci_sb_reg reg;
2039 
2040  cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2042  uinfo->count = reg.stereo + 1;
2043  uinfo->value.integer.min = 0;
2044  uinfo->value.integer.max = reg.mask;
2045  return 0;
2046 }
2047 
2048 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2049  struct snd_ctl_elem_value *ucontrol)
2050 {
2051  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2052  struct cmipci_sb_reg reg;
2053  int val;
2054 
2055  cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2056  spin_lock_irq(&cm->reg_lock);
2057  val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2058  if (reg.invert)
2059  val = reg.mask - val;
2060  ucontrol->value.integer.value[0] = val;
2061  if (reg.stereo) {
2062  val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2063  if (reg.invert)
2064  val = reg.mask - val;
2065  ucontrol->value.integer.value[1] = val;
2066  }
2067  spin_unlock_irq(&cm->reg_lock);
2068  return 0;
2069 }
2070 
2071 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2072  struct snd_ctl_elem_value *ucontrol)
2073 {
2074  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075  struct cmipci_sb_reg reg;
2076  int change;
2077  int left, right, oleft, oright;
2078 
2079  cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2080  left = ucontrol->value.integer.value[0] & reg.mask;
2081  if (reg.invert)
2082  left = reg.mask - left;
2083  left <<= reg.left_shift;
2084  if (reg.stereo) {
2085  right = ucontrol->value.integer.value[1] & reg.mask;
2086  if (reg.invert)
2087  right = reg.mask - right;
2088  right <<= reg.right_shift;
2089  } else
2090  right = 0;
2091  spin_lock_irq(&cm->reg_lock);
2092  oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2093  left |= oleft & ~(reg.mask << reg.left_shift);
2094  change = left != oleft;
2095  if (reg.stereo) {
2096  if (reg.left_reg != reg.right_reg) {
2097  snd_cmipci_mixer_write(cm, reg.left_reg, left);
2098  oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2099  } else
2100  oright = left;
2101  right |= oright & ~(reg.mask << reg.right_shift);
2102  change |= right != oright;
2103  snd_cmipci_mixer_write(cm, reg.right_reg, right);
2104  } else
2105  snd_cmipci_mixer_write(cm, reg.left_reg, left);
2106  spin_unlock_irq(&cm->reg_lock);
2107  return change;
2108 }
2109 
2110 /*
2111  * input route (left,right) -> (left,right)
2112  */
2113 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2114 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2115  .info = snd_cmipci_info_input_sw, \
2116  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2117  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2118 }
2119 
2120 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2121  struct snd_ctl_elem_info *uinfo)
2122 {
2124  uinfo->count = 4;
2125  uinfo->value.integer.min = 0;
2126  uinfo->value.integer.max = 1;
2127  return 0;
2128 }
2129 
2130 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2131  struct snd_ctl_elem_value *ucontrol)
2132 {
2133  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2134  struct cmipci_sb_reg reg;
2135  int val1, val2;
2136 
2137  cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2138  spin_lock_irq(&cm->reg_lock);
2139  val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2140  val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2141  spin_unlock_irq(&cm->reg_lock);
2142  ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2143  ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2144  ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2145  ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2146  return 0;
2147 }
2148 
2149 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2150  struct snd_ctl_elem_value *ucontrol)
2151 {
2152  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2153  struct cmipci_sb_reg reg;
2154  int change;
2155  int val1, val2, oval1, oval2;
2156 
2157  cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2158  spin_lock_irq(&cm->reg_lock);
2159  oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2160  oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2161  val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2162  val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2163  val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2164  val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2165  val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2166  val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2167  change = val1 != oval1 || val2 != oval2;
2168  snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2169  snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2170  spin_unlock_irq(&cm->reg_lock);
2171  return change;
2172 }
2173 
2174 /*
2175  * native mixer switches/volumes
2176  */
2177 
2178 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2179 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180  .info = snd_cmipci_info_native_mixer, \
2181  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2183 }
2184 
2185 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2186 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187  .info = snd_cmipci_info_native_mixer, \
2188  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2190 }
2191 
2192 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2193 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2194  .info = snd_cmipci_info_native_mixer, \
2195  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2196  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2197 }
2198 
2199 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2200 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2201  .info = snd_cmipci_info_native_mixer, \
2202  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2203  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2204 }
2205 
2206 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2207  struct snd_ctl_elem_info *uinfo)
2208 {
2209  struct cmipci_sb_reg reg;
2210 
2211  cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2213  uinfo->count = reg.stereo + 1;
2214  uinfo->value.integer.min = 0;
2215  uinfo->value.integer.max = reg.mask;
2216  return 0;
2217 
2218 }
2219 
2220 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2221  struct snd_ctl_elem_value *ucontrol)
2222 {
2223  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2224  struct cmipci_sb_reg reg;
2225  unsigned char oreg, val;
2226 
2227  cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2228  spin_lock_irq(&cm->reg_lock);
2229  oreg = inb(cm->iobase + reg.left_reg);
2230  val = (oreg >> reg.left_shift) & reg.mask;
2231  if (reg.invert)
2232  val = reg.mask - val;
2233  ucontrol->value.integer.value[0] = val;
2234  if (reg.stereo) {
2235  val = (oreg >> reg.right_shift) & reg.mask;
2236  if (reg.invert)
2237  val = reg.mask - val;
2238  ucontrol->value.integer.value[1] = val;
2239  }
2240  spin_unlock_irq(&cm->reg_lock);
2241  return 0;
2242 }
2243 
2244 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2245  struct snd_ctl_elem_value *ucontrol)
2246 {
2247  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2248  struct cmipci_sb_reg reg;
2249  unsigned char oreg, nreg, val;
2250 
2251  cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2252  spin_lock_irq(&cm->reg_lock);
2253  oreg = inb(cm->iobase + reg.left_reg);
2254  val = ucontrol->value.integer.value[0] & reg.mask;
2255  if (reg.invert)
2256  val = reg.mask - val;
2257  nreg = oreg & ~(reg.mask << reg.left_shift);
2258  nreg |= (val << reg.left_shift);
2259  if (reg.stereo) {
2260  val = ucontrol->value.integer.value[1] & reg.mask;
2261  if (reg.invert)
2262  val = reg.mask - val;
2263  nreg &= ~(reg.mask << reg.right_shift);
2264  nreg |= (val << reg.right_shift);
2265  }
2266  outb(nreg, cm->iobase + reg.left_reg);
2267  spin_unlock_irq(&cm->reg_lock);
2268  return (nreg != oreg);
2269 }
2270 
2271 /*
2272  * special case - check mixer sensitivity
2273  */
2274 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2275  struct snd_ctl_elem_value *ucontrol)
2276 {
2277  //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2278  return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2279 }
2280 
2281 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2282  struct snd_ctl_elem_value *ucontrol)
2283 {
2284  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2285  if (cm->mixer_insensitive) {
2286  /* ignored */
2287  return 0;
2288  }
2289  return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2290 }
2291 
2292 
2293 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2294  CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2295  CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2296  CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2297  //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2298  { /* switch with sensitivity */
2299  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2300  .name = "PCM Playback Switch",
2301  .info = snd_cmipci_info_native_mixer,
2302  .get = snd_cmipci_get_native_mixer_sensitive,
2303  .put = snd_cmipci_put_native_mixer_sensitive,
2305  },
2307  CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2308  CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2309  CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2310  CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2311  CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2312  CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2313  CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2314  CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2315  CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2316  CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2317  CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2318  CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2319  CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2320  CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2323  CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2324  CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2325  CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2326  CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2327  CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2328  CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2329 };
2330 
2331 /*
2332  * other switches
2333  */
2334 
2336  int reg; /* register index */
2337  unsigned int mask; /* mask bits */
2338  unsigned int mask_on; /* mask bits to turn on */
2339  unsigned int is_byte: 1; /* byte access? */
2340  unsigned int ac3_sensitive: 1; /* access forbidden during
2341  * non-audio operation?
2342  */
2343 };
2344 
2345 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2346 
2347 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2348  struct snd_ctl_elem_value *ucontrol,
2349  struct cmipci_switch_args *args)
2350 {
2351  unsigned int val;
2352  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2353 
2354  spin_lock_irq(&cm->reg_lock);
2355  if (args->ac3_sensitive && cm->mixer_insensitive) {
2356  ucontrol->value.integer.value[0] = 0;
2357  spin_unlock_irq(&cm->reg_lock);
2358  return 0;
2359  }
2360  if (args->is_byte)
2361  val = inb(cm->iobase + args->reg);
2362  else
2363  val = snd_cmipci_read(cm, args->reg);
2364  ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2365  spin_unlock_irq(&cm->reg_lock);
2366  return 0;
2367 }
2368 
2369 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2370  struct snd_ctl_elem_value *ucontrol)
2371 {
2372  struct cmipci_switch_args *args;
2373  args = (struct cmipci_switch_args *)kcontrol->private_value;
2374  if (snd_BUG_ON(!args))
2375  return -EINVAL;
2376  return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2377 }
2378 
2379 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380  struct snd_ctl_elem_value *ucontrol,
2381  struct cmipci_switch_args *args)
2382 {
2383  unsigned int val;
2384  int change;
2385  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2386 
2387  spin_lock_irq(&cm->reg_lock);
2388  if (args->ac3_sensitive && cm->mixer_insensitive) {
2389  /* ignored */
2390  spin_unlock_irq(&cm->reg_lock);
2391  return 0;
2392  }
2393  if (args->is_byte)
2394  val = inb(cm->iobase + args->reg);
2395  else
2396  val = snd_cmipci_read(cm, args->reg);
2397  change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2398  args->mask_on : (args->mask & ~args->mask_on));
2399  if (change) {
2400  val &= ~args->mask;
2401  if (ucontrol->value.integer.value[0])
2402  val |= args->mask_on;
2403  else
2404  val |= (args->mask & ~args->mask_on);
2405  if (args->is_byte)
2406  outb((unsigned char)val, cm->iobase + args->reg);
2407  else
2408  snd_cmipci_write(cm, args->reg, val);
2409  }
2410  spin_unlock_irq(&cm->reg_lock);
2411  return change;
2412 }
2413 
2414 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2415  struct snd_ctl_elem_value *ucontrol)
2416 {
2417  struct cmipci_switch_args *args;
2418  args = (struct cmipci_switch_args *)kcontrol->private_value;
2419  if (snd_BUG_ON(!args))
2420  return -EINVAL;
2421  return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2422 }
2423 
2424 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2425 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2426  .reg = xreg, \
2427  .mask = xmask, \
2428  .mask_on = xmask_on, \
2429  .is_byte = xis_byte, \
2430  .ac3_sensitive = xac3, \
2431 }
2432 
2433 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2434  DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2435 
2436 #if 0 /* these will be controlled in pcm device */
2439 #endif
2444 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2445 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2447 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2448 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2450 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2451 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2454 #if CM_CH_PLAY == 1
2455 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2456 #else
2458 #endif
2460 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2461 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2462 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2464 
2465 #define DEFINE_SWITCH(sname, stype, sarg) \
2466 { .name = sname, \
2467  .iface = stype, \
2468  .info = snd_cmipci_uswitch_info, \
2469  .get = snd_cmipci_uswitch_get, \
2470  .put = snd_cmipci_uswitch_put, \
2471  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2472 }
2473 
2474 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2475 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2476 
2477 
2478 /*
2479  * callbacks for spdif output switch
2480  * needs toggle two registers..
2481  */
2482 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2483  struct snd_ctl_elem_value *ucontrol)
2484 {
2485  int changed;
2486  changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2487  changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2488  return changed;
2489 }
2490 
2491 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2492  struct snd_ctl_elem_value *ucontrol)
2493 {
2494  struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2495  int changed;
2496  changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2497  changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2498  if (changed) {
2499  if (ucontrol->value.integer.value[0]) {
2500  if (chip->spdif_playback_avail)
2501  snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2502  } else {
2503  if (chip->spdif_playback_avail)
2504  snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2505  }
2506  }
2507  chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2508  return changed;
2509 }
2510 
2511 
2512 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2513  struct snd_ctl_elem_info *uinfo)
2514 {
2515  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516  static const char *const texts[3] = {
2517  "Line-In", "Rear Output", "Bass Output"
2518  };
2519 
2520  return snd_ctl_enum_info(uinfo, 1,
2521  cm->chip_version >= 39 ? 3 : 2, texts);
2522 }
2523 
2524 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2525 {
2526  unsigned int val;
2527  if (cm->chip_version >= 39) {
2528  val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2529  if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2530  return 2;
2531  }
2532  val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2533  if (val & CM_REAR2LIN)
2534  return 1;
2535  return 0;
2536 }
2537 
2538 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2539  struct snd_ctl_elem_value *ucontrol)
2540 {
2541  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2542 
2543  spin_lock_irq(&cm->reg_lock);
2544  ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2545  spin_unlock_irq(&cm->reg_lock);
2546  return 0;
2547 }
2548 
2549 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2550  struct snd_ctl_elem_value *ucontrol)
2551 {
2552  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553  int change;
2554 
2555  spin_lock_irq(&cm->reg_lock);
2556  if (ucontrol->value.enumerated.item[0] == 2)
2557  change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2558  else
2559  change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2560  if (ucontrol->value.enumerated.item[0] == 1)
2561  change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2562  else
2563  change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2564  spin_unlock_irq(&cm->reg_lock);
2565  return change;
2566 }
2567 
2568 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2569  struct snd_ctl_elem_info *uinfo)
2570 {
2571  static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2572 
2573  return snd_ctl_enum_info(uinfo, 1, 2, texts);
2574 }
2575 
2576 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2577  struct snd_ctl_elem_value *ucontrol)
2578 {
2579  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2580  /* same bit as spdi_phase */
2581  spin_lock_irq(&cm->reg_lock);
2582  ucontrol->value.enumerated.item[0] =
2583  (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2584  spin_unlock_irq(&cm->reg_lock);
2585  return 0;
2586 }
2587 
2588 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2589  struct snd_ctl_elem_value *ucontrol)
2590 {
2591  struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2592  int change;
2593 
2594  spin_lock_irq(&cm->reg_lock);
2595  if (ucontrol->value.enumerated.item[0])
2596  change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2597  else
2598  change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2599  spin_unlock_irq(&cm->reg_lock);
2600  return change;
2601 }
2602 
2603 /* both for CM8338/8738 */
2604 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2605  DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2606  {
2607  .name = "Line-In Mode",
2608  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2609  .info = snd_cmipci_line_in_mode_info,
2610  .get = snd_cmipci_line_in_mode_get,
2611  .put = snd_cmipci_line_in_mode_put,
2612  },
2613 };
2614 
2615 /* for non-multichannel chips */
2616 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2617 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2618 
2619 /* only for CM8738 */
2620 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2621 #if 0 /* controlled in pcm device */
2622  DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2623  DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2624  DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2625 #endif
2626  // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2627  { .name = "IEC958 Output Switch",
2628  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629  .info = snd_cmipci_uswitch_info,
2630  .get = snd_cmipci_spdout_enable_get,
2631  .put = snd_cmipci_spdout_enable_put,
2632  },
2633  DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2634  DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2635  DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2636 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2637  DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2638  DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2639 };
2640 
2641 /* only for model 033/037 */
2642 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2643  DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2644  DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2645  DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2646 };
2647 
2648 /* only for model 039 or later */
2649 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2650  DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2651  DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2652  {
2653  .name = "Mic-In Mode",
2654  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2655  .info = snd_cmipci_mic_in_mode_info,
2656  .get = snd_cmipci_mic_in_mode_get,
2657  .put = snd_cmipci_mic_in_mode_put,
2658  }
2659 };
2660 
2661 /* card control switches */
2662 static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
2663 DEFINE_CARD_SWITCH("Modem", modem);
2664 
2665 
2666 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2667 {
2668  struct snd_card *card;
2669  struct snd_kcontrol_new *sw;
2670  struct snd_kcontrol *kctl;
2671  unsigned int idx;
2672  int err;
2673 
2674  if (snd_BUG_ON(!cm || !cm->card))
2675  return -EINVAL;
2676 
2677  card = cm->card;
2678 
2679  strcpy(card->mixername, "CMedia PCI");
2680 
2681  spin_lock_irq(&cm->reg_lock);
2682  snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2683  spin_unlock_irq(&cm->reg_lock);
2684 
2685  for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2686  if (cm->chip_version == 68) { // 8768 has no PCM volume
2687  if (!strcmp(snd_cmipci_mixers[idx].name,
2688  "PCM Playback Volume"))
2689  continue;
2690  }
2691  if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2692  return err;
2693  }
2694 
2695  /* mixer switches */
2696  sw = snd_cmipci_mixer_switches;
2697  for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2698  err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699  if (err < 0)
2700  return err;
2701  }
2702  if (! cm->can_multi_ch) {
2703  err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2704  if (err < 0)
2705  return err;
2706  }
2707  if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2709  sw = snd_cmipci_8738_mixer_switches;
2710  for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2711  err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2712  if (err < 0)
2713  return err;
2714  }
2715  if (cm->can_ac3_hw) {
2716  if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2717  return err;
2718  kctl->id.device = pcm_spdif_device;
2719  if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2720  return err;
2721  kctl->id.device = pcm_spdif_device;
2722  if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2723  return err;
2724  kctl->id.device = pcm_spdif_device;
2725  }
2726  if (cm->chip_version <= 37) {
2727  sw = snd_cmipci_old_mixer_switches;
2728  for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2729  err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2730  if (err < 0)
2731  return err;
2732  }
2733  }
2734  }
2735  if (cm->chip_version >= 39) {
2736  sw = snd_cmipci_extra_mixer_switches;
2737  for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2738  err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2739  if (err < 0)
2740  return err;
2741  }
2742  }
2743 
2744  /* card switches */
2745  /*
2746  * newer chips don't have the register bits to force modem link
2747  * detection; the bit that was FLINKON now mutes CH1
2748  */
2749  if (cm->chip_version < 39) {
2750  err = snd_ctl_add(cm->card,
2751  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2752  if (err < 0)
2753  return err;
2754  }
2755 
2756  for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2757  struct snd_ctl_elem_id elem_id;
2758  struct snd_kcontrol *ctl;
2759  memset(&elem_id, 0, sizeof(elem_id));
2760  elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2761  strcpy(elem_id.name, cm_saved_mixer[idx].name);
2762  ctl = snd_ctl_find_id(cm->card, &elem_id);
2763  if (ctl)
2764  cm->mixer_res_ctl[idx] = ctl;
2765  }
2766 
2767  return 0;
2768 }
2769 
2770 
2771 /*
2772  * proc interface
2773  */
2774 
2775 #ifdef CONFIG_PROC_FS
2776 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2777  struct snd_info_buffer *buffer)
2778 {
2779  struct cmipci *cm = entry->private_data;
2780  int i, v;
2781 
2782  snd_iprintf(buffer, "%s\n", cm->card->longname);
2783  for (i = 0; i < 0x94; i++) {
2784  if (i == 0x28)
2785  i = 0x90;
2786  v = inb(cm->iobase + i);
2787  if (i % 4 == 0)
2788  snd_iprintf(buffer, "\n%02x:", i);
2789  snd_iprintf(buffer, " %02x", v);
2790  }
2791  snd_iprintf(buffer, "\n");
2792 }
2793 
2794 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2795 {
2796  struct snd_info_entry *entry;
2797 
2798  if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2799  snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2800 }
2801 #else /* !CONFIG_PROC_FS */
2802 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2803 #endif
2804 
2805 
2806 static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
2812  {0,},
2813 };
2814 
2815 
2816 /*
2817  * check chip version and capabilities
2818  * driver name is modified according to the chip model
2819  */
2820 static void __devinit query_chip(struct cmipci *cm)
2821 {
2822  unsigned int detect;
2823 
2824  /* check reg 0Ch, bit 24-31 */
2825  detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2826  if (! detect) {
2827  /* check reg 08h, bit 24-28 */
2828  detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2829  switch (detect) {
2830  case 0:
2831  cm->chip_version = 33;
2832  if (cm->do_soft_ac3)
2833  cm->can_ac3_sw = 1;
2834  else
2835  cm->can_ac3_hw = 1;
2836  break;
2837  case CM_CHIP_037:
2838  cm->chip_version = 37;
2839  cm->can_ac3_hw = 1;
2840  break;
2841  default:
2842  cm->chip_version = 39;
2843  cm->can_ac3_hw = 1;
2844  break;
2845  }
2846  cm->max_channels = 2;
2847  } else {
2848  if (detect & CM_CHIP_039) {
2849  cm->chip_version = 39;
2850  if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2851  cm->max_channels = 6;
2852  else
2853  cm->max_channels = 4;
2854  } else if (detect & CM_CHIP_8768) {
2855  cm->chip_version = 68;
2856  cm->max_channels = 8;
2857  cm->can_96k = 1;
2858  } else {
2859  cm->chip_version = 55;
2860  cm->max_channels = 6;
2861  cm->can_96k = 1;
2862  }
2863  cm->can_ac3_hw = 1;
2864  cm->can_multi_ch = 1;
2865  }
2866 }
2867 
2868 #ifdef SUPPORT_JOYSTICK
2869 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2870 {
2871  static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2872  struct gameport *gp;
2873  struct resource *r = NULL;
2874  int i, io_port = 0;
2875 
2876  if (joystick_port[dev] == 0)
2877  return -ENODEV;
2878 
2879  if (joystick_port[dev] == 1) { /* auto-detect */
2880  for (i = 0; ports[i]; i++) {
2881  io_port = ports[i];
2882  r = request_region(io_port, 1, "CMIPCI gameport");
2883  if (r)
2884  break;
2885  }
2886  } else {
2887  io_port = joystick_port[dev];
2888  r = request_region(io_port, 1, "CMIPCI gameport");
2889  }
2890 
2891  if (!r) {
2892  printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2893  return -EBUSY;
2894  }
2895 
2896  cm->gameport = gp = gameport_allocate_port();
2897  if (!gp) {
2898  printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2900  return -ENOMEM;
2901  }
2902  gameport_set_name(gp, "C-Media Gameport");
2903  gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2904  gameport_set_dev_parent(gp, &cm->pci->dev);
2905  gp->io = io_port;
2906  gameport_set_port_data(gp, r);
2907 
2908  snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2909 
2910  gameport_register_port(cm->gameport);
2911 
2912  return 0;
2913 }
2914 
2915 static void snd_cmipci_free_gameport(struct cmipci *cm)
2916 {
2917  if (cm->gameport) {
2918  struct resource *r = gameport_get_port_data(cm->gameport);
2919 
2920  gameport_unregister_port(cm->gameport);
2921  cm->gameport = NULL;
2922 
2923  snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2925  }
2926 }
2927 #else
2928 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2929 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2930 #endif
2931 
2932 static int snd_cmipci_free(struct cmipci *cm)
2933 {
2934  if (cm->irq >= 0) {
2935  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2936  snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2937  snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2938  snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2939  snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2940  snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2941  snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2942 
2943  /* reset mixer */
2944  snd_cmipci_mixer_write(cm, 0, 0);
2945 
2946  free_irq(cm->irq, cm);
2947  }
2948 
2949  snd_cmipci_free_gameport(cm);
2950  pci_release_regions(cm->pci);
2951  pci_disable_device(cm->pci);
2952  kfree(cm);
2953  return 0;
2954 }
2955 
2956 static int snd_cmipci_dev_free(struct snd_device *device)
2957 {
2958  struct cmipci *cm = device->device_data;
2959  return snd_cmipci_free(cm);
2960 }
2961 
2962 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2963 {
2964  long iosynth;
2965  unsigned int val;
2966  struct snd_opl3 *opl3;
2967  int err;
2968 
2969  if (!fm_port)
2970  goto disable_fm;
2971 
2972  if (cm->chip_version >= 39) {
2973  /* first try FM regs in PCI port range */
2974  iosynth = cm->iobase + CM_REG_FM_PCI;
2975  err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2976  OPL3_HW_OPL3, 1, &opl3);
2977  } else {
2978  err = -EIO;
2979  }
2980  if (err < 0) {
2981  /* then try legacy ports */
2982  val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2983  iosynth = fm_port;
2984  switch (iosynth) {
2985  case 0x3E8: val |= CM_FMSEL_3E8; break;
2986  case 0x3E0: val |= CM_FMSEL_3E0; break;
2987  case 0x3C8: val |= CM_FMSEL_3C8; break;
2988  case 0x388: val |= CM_FMSEL_388; break;
2989  default:
2990  goto disable_fm;
2991  }
2992  snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2993  /* enable FM */
2994  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2995 
2996  if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2997  OPL3_HW_OPL3, 0, &opl3) < 0) {
2998  printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2999  "skipping...\n", iosynth);
3000  goto disable_fm;
3001  }
3002  }
3003  if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
3004  printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
3005  return err;
3006  }
3007  return 0;
3008 
3009  disable_fm:
3010  snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3011  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3012  return 0;
3013 }
3014 
3015 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3016  int dev, struct cmipci **rcmipci)
3017 {
3018  struct cmipci *cm;
3019  int err;
3020  static struct snd_device_ops ops = {
3021  .dev_free = snd_cmipci_dev_free,
3022  };
3023  unsigned int val;
3024  long iomidi = 0;
3025  int integrated_midi = 0;
3026  char modelstr[16];
3027  int pcm_index, pcm_spdif_index;
3028  static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
3030  { },
3031  };
3032 
3033  *rcmipci = NULL;
3034 
3035  if ((err = pci_enable_device(pci)) < 0)
3036  return err;
3037 
3038  cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3039  if (cm == NULL) {
3040  pci_disable_device(pci);
3041  return -ENOMEM;
3042  }
3043 
3044  spin_lock_init(&cm->reg_lock);
3045  mutex_init(&cm->open_mutex);
3046  cm->device = pci->device;
3047  cm->card = card;
3048  cm->pci = pci;
3049  cm->irq = -1;
3050  cm->channel[0].ch = 0;
3051  cm->channel[1].ch = 1;
3052  cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3053 
3054  if ((err = pci_request_regions(pci, card->driver)) < 0) {
3055  kfree(cm);
3056  pci_disable_device(pci);
3057  return err;
3058  }
3059  cm->iobase = pci_resource_start(pci, 0);
3060 
3061  if (request_irq(pci->irq, snd_cmipci_interrupt,
3062  IRQF_SHARED, KBUILD_MODNAME, cm)) {
3063  snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3064  snd_cmipci_free(cm);
3065  return -EBUSY;
3066  }
3067  cm->irq = pci->irq;
3068 
3069  pci_set_master(cm->pci);
3070 
3071  /*
3072  * check chip version, max channels and capabilities
3073  */
3074 
3075  cm->chip_version = 0;
3076  cm->max_channels = 2;
3077  cm->do_soft_ac3 = soft_ac3[dev];
3078 
3079  if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3081  query_chip(cm);
3082  /* added -MCx suffix for chip supporting multi-channels */
3083  if (cm->can_multi_ch)
3084  sprintf(cm->card->driver + strlen(cm->card->driver),
3085  "-MC%d", cm->max_channels);
3086  else if (cm->can_ac3_sw)
3087  strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3088 
3091 
3092 #if CM_CH_PLAY == 1
3093  cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3094 #else
3095  cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3096 #endif
3097 
3098  /* initialize codec registers */
3099  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3100  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3101  snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3102  snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3103  snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3104  snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3105  snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3106 
3107  snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3108  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3109 #if CM_CH_PLAY == 1
3110  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3111 #else
3112  snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3113 #endif
3114  if (cm->chip_version) {
3115  snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3116  snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3117  }
3118  /* Set Bus Master Request */
3119  snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3120 
3121  /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3122  switch (pci->device) {
3125  if (!pci_dev_present(intel_82437vx))
3126  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3127  break;
3128  default:
3129  break;
3130  }
3131 
3132  if (cm->chip_version < 68) {
3133  val = pci->device < 0x110 ? 8338 : 8738;
3134  } else {
3135  switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3136  case 0:
3137  val = 8769;
3138  break;
3139  case 2:
3140  val = 8762;
3141  break;
3142  default:
3143  switch ((pci->subsystem_vendor << 16) |
3144  pci->subsystem_device) {
3145  case 0x13f69761:
3146  case 0x584d3741:
3147  case 0x584d3751:
3148  case 0x584d3761:
3149  case 0x584d3771:
3150  case 0x72848384:
3151  val = 8770;
3152  break;
3153  default:
3154  val = 8768;
3155  break;
3156  }
3157  }
3158  }
3159  sprintf(card->shortname, "C-Media CMI%d", val);
3160  if (cm->chip_version < 68)
3161  sprintf(modelstr, " (model %d)", cm->chip_version);
3162  else
3163  modelstr[0] = '\0';
3164  sprintf(card->longname, "%s%s at %#lx, irq %i",
3165  card->shortname, modelstr, cm->iobase, cm->irq);
3166 
3167  if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3168  snd_cmipci_free(cm);
3169  return err;
3170  }
3171 
3172  if (cm->chip_version >= 39) {
3173  val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3174  if (val != 0x00 && val != 0xff) {
3175  iomidi = cm->iobase + CM_REG_MPU_PCI;
3176  integrated_midi = 1;
3177  }
3178  }
3179  if (!integrated_midi) {
3180  val = 0;
3181  iomidi = mpu_port[dev];
3182  switch (iomidi) {
3183  case 0x320: val = CM_VMPU_320; break;
3184  case 0x310: val = CM_VMPU_310; break;
3185  case 0x300: val = CM_VMPU_300; break;
3186  case 0x330: val = CM_VMPU_330; break;
3187  default:
3188  iomidi = 0; break;
3189  }
3190  if (iomidi > 0) {
3191  snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3192  /* enable UART */
3193  snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3194  if (inb(iomidi + 1) == 0xff) {
3195  snd_printk(KERN_ERR "cannot enable MPU-401 port"
3196  " at %#lx\n", iomidi);
3197  snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3198  CM_UART_EN);
3199  iomidi = 0;
3200  }
3201  }
3202  }
3203 
3204  if (cm->chip_version < 68) {
3205  err = snd_cmipci_create_fm(cm, fm_port[dev]);
3206  if (err < 0)
3207  return err;
3208  }
3209 
3210  /* reset mixer */
3211  snd_cmipci_mixer_write(cm, 0, 0);
3212 
3213  snd_cmipci_proc_init(cm);
3214 
3215  /* create pcm devices */
3216  pcm_index = pcm_spdif_index = 0;
3217  if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3218  return err;
3219  pcm_index++;
3220  if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3221  return err;
3222  pcm_index++;
3223  if (cm->can_ac3_hw || cm->can_ac3_sw) {
3224  pcm_spdif_index = pcm_index;
3225  if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3226  return err;
3227  }
3228 
3229  /* create mixer interface & switches */
3230  if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3231  return err;
3232 
3233  if (iomidi > 0) {
3234  if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3235  iomidi,
3236  (integrated_midi ?
3237  MPU401_INFO_INTEGRATED : 0) |
3239  -1, &cm->rmidi)) < 0) {
3240  printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3241  }
3242  }
3243 
3244 #ifdef USE_VAR48KRATE
3245  for (val = 0; val < ARRAY_SIZE(rates); val++)
3246  snd_cmipci_set_pll(cm, rates[val], val);
3247 
3248  /*
3249  * (Re-)Enable external switch spdo_48k
3250  */
3251  snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3252 #endif /* USE_VAR48KRATE */
3253 
3254  if (snd_cmipci_create_gameport(cm, dev) < 0)
3255  snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3256 
3257  snd_card_set_dev(card, &pci->dev);
3258 
3259  *rcmipci = cm;
3260  return 0;
3261 }
3262 
3263 /*
3264  */
3265 
3266 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3267 
3268 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3269  const struct pci_device_id *pci_id)
3270 {
3271  static int dev;
3272  struct snd_card *card;
3273  struct cmipci *cm;
3274  int err;
3275 
3276  if (dev >= SNDRV_CARDS)
3277  return -ENODEV;
3278  if (! enable[dev]) {
3279  dev++;
3280  return -ENOENT;
3281  }
3282 
3283  err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
3284  if (err < 0)
3285  return err;
3286 
3287  switch (pci->device) {
3290  strcpy(card->driver, "CMI8738");
3291  break;
3294  strcpy(card->driver, "CMI8338");
3295  break;
3296  default:
3297  strcpy(card->driver, "CMIPCI");
3298  break;
3299  }
3300 
3301  if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3302  snd_card_free(card);
3303  return err;
3304  }
3305  card->private_data = cm;
3306 
3307  if ((err = snd_card_register(card)) < 0) {
3308  snd_card_free(card);
3309  return err;
3310  }
3311  pci_set_drvdata(pci, card);
3312  dev++;
3313  return 0;
3314 
3315 }
3316 
3317 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3318 {
3319  snd_card_free(pci_get_drvdata(pci));
3320  pci_set_drvdata(pci, NULL);
3321 }
3322 
3323 
3324 #ifdef CONFIG_PM_SLEEP
3325 /*
3326  * power management
3327  */
3328 static unsigned char saved_regs[] = {
3334 };
3335 
3336 static unsigned char saved_mixers[] = {
3338  SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3339  SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3340  SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3341  SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3345 };
3346 
3347 static int snd_cmipci_suspend(struct device *dev)
3348 {
3349  struct pci_dev *pci = to_pci_dev(dev);
3350  struct snd_card *card = dev_get_drvdata(dev);
3351  struct cmipci *cm = card->private_data;
3352  int i;
3353 
3355 
3356  snd_pcm_suspend_all(cm->pcm);
3357  snd_pcm_suspend_all(cm->pcm2);
3358  snd_pcm_suspend_all(cm->pcm_spdif);
3359 
3360  /* save registers */
3361  for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3362  cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3363  for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3364  cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3365 
3366  /* disable ints */
3367  snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3368 
3369  pci_disable_device(pci);
3370  pci_save_state(pci);
3372  return 0;
3373 }
3374 
3375 static int snd_cmipci_resume(struct device *dev)
3376 {
3377  struct pci_dev *pci = to_pci_dev(dev);
3378  struct snd_card *card = dev_get_drvdata(dev);
3379  struct cmipci *cm = card->private_data;
3380  int i;
3381 
3383  pci_restore_state(pci);
3384  if (pci_enable_device(pci) < 0) {
3385  printk(KERN_ERR "cmipci: pci_enable_device failed, "
3386  "disabling device\n");
3387  snd_card_disconnect(card);
3388  return -EIO;
3389  }
3390  pci_set_master(pci);
3391 
3392  /* reset / initialize to a sane state */
3393  snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3394  snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3395  snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3396  snd_cmipci_mixer_write(cm, 0, 0);
3397 
3398  /* restore registers */
3399  for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3400  snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3401  for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3402  snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3403 
3405  return 0;
3406 }
3407 
3408 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3409 #define SND_CMIPCI_PM_OPS &snd_cmipci_pm
3410 #else
3411 #define SND_CMIPCI_PM_OPS NULL
3412 #endif /* CONFIG_PM_SLEEP */
3413 
3414 static struct pci_driver cmipci_driver = {
3415  .name = KBUILD_MODNAME,
3416  .id_table = snd_cmipci_ids,
3417  .probe = snd_cmipci_probe,
3418  .remove = __devexit_p(snd_cmipci_remove),
3419  .driver = {
3420  .pm = SND_CMIPCI_PM_OPS,
3421  },
3422 };
3423 
3424 module_pci_driver(cmipci_driver);