Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
disk-io.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007 Oracle. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 
49 #ifdef CONFIG_X86
50 #include <asm/cpufeature.h>
51 #endif
52 
53 static struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void free_fs_root(struct btrfs_root *root);
56 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
57  int read_only);
58 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
59 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
60 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
61  struct btrfs_root *root);
62 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
63 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
64 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
65  struct extent_io_tree *dirty_pages,
66  int mark);
67 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
68  struct extent_io_tree *pinned_extents);
69 
70 /*
71  * end_io_wq structs are used to do processing in task context when an IO is
72  * complete. This is used during reads to verify checksums, and it is used
73  * by writes to insert metadata for new file extents after IO is complete.
74  */
75 struct end_io_wq {
76  struct bio *bio;
77  bio_end_io_t *end_io;
78  void *private;
80  int error;
81  int metadata;
82  struct list_head list;
83  struct btrfs_work work;
84 };
85 
86 /*
87  * async submit bios are used to offload expensive checksumming
88  * onto the worker threads. They checksum file and metadata bios
89  * just before they are sent down the IO stack.
90  */
92  struct inode *inode;
93  struct bio *bio;
94  struct list_head list;
97  int rw;
99  unsigned long bio_flags;
100  /*
101  * bio_offset is optional, can be used if the pages in the bio
102  * can't tell us where in the file the bio should go
103  */
105  struct btrfs_work work;
106  int error;
107 };
108 
109 /*
110  * Lockdep class keys for extent_buffer->lock's in this root. For a given
111  * eb, the lockdep key is determined by the btrfs_root it belongs to and
112  * the level the eb occupies in the tree.
113  *
114  * Different roots are used for different purposes and may nest inside each
115  * other and they require separate keysets. As lockdep keys should be
116  * static, assign keysets according to the purpose of the root as indicated
117  * by btrfs_root->objectid. This ensures that all special purpose roots
118  * have separate keysets.
119  *
120  * Lock-nesting across peer nodes is always done with the immediate parent
121  * node locked thus preventing deadlock. As lockdep doesn't know this, use
122  * subclass to avoid triggering lockdep warning in such cases.
123  *
124  * The key is set by the readpage_end_io_hook after the buffer has passed
125  * csum validation but before the pages are unlocked. It is also set by
126  * btrfs_init_new_buffer on freshly allocated blocks.
127  *
128  * We also add a check to make sure the highest level of the tree is the
129  * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
130  * needs update as well.
131  */
132 #ifdef CONFIG_DEBUG_LOCK_ALLOC
133 # if BTRFS_MAX_LEVEL != 8
134 # error
135 # endif
136 
137 static struct btrfs_lockdep_keyset {
138  u64 id; /* root objectid */
139  const char *name_stem; /* lock name stem */
140  char names[BTRFS_MAX_LEVEL + 1][20];
141  struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
142 } btrfs_lockdep_keysets[] = {
143  { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
144  { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
145  { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
146  { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
147  { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
148  { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
149  { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
150  { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
151  { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
152  { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
153  { .id = 0, .name_stem = "tree" },
154 };
155 
156 void __init btrfs_init_lockdep(void)
157 {
158  int i, j;
159 
160  /* initialize lockdep class names */
161  for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
162  struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
163 
164  for (j = 0; j < ARRAY_SIZE(ks->names); j++)
165  snprintf(ks->names[j], sizeof(ks->names[j]),
166  "btrfs-%s-%02d", ks->name_stem, j);
167  }
168 }
169 
170 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
171  int level)
172 {
173  struct btrfs_lockdep_keyset *ks;
174 
175  BUG_ON(level >= ARRAY_SIZE(ks->keys));
176 
177  /* find the matching keyset, id 0 is the default entry */
178  for (ks = btrfs_lockdep_keysets; ks->id; ks++)
179  if (ks->id == objectid)
180  break;
181 
183  &ks->keys[level], ks->names[level]);
184 }
185 
186 #endif
187 
188 /*
189  * extents on the btree inode are pretty simple, there's one extent
190  * that covers the entire device
191  */
192 static struct extent_map *btree_get_extent(struct inode *inode,
193  struct page *page, size_t pg_offset, u64 start, u64 len,
194  int create)
195 {
196  struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
197  struct extent_map *em;
198  int ret;
199 
200  read_lock(&em_tree->lock);
201  em = lookup_extent_mapping(em_tree, start, len);
202  if (em) {
203  em->bdev =
204  BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
205  read_unlock(&em_tree->lock);
206  goto out;
207  }
208  read_unlock(&em_tree->lock);
209 
210  em = alloc_extent_map();
211  if (!em) {
212  em = ERR_PTR(-ENOMEM);
213  goto out;
214  }
215  em->start = 0;
216  em->len = (u64)-1;
217  em->block_len = (u64)-1;
218  em->block_start = 0;
219  em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
220 
221  write_lock(&em_tree->lock);
222  ret = add_extent_mapping(em_tree, em);
223  if (ret == -EEXIST) {
224  free_extent_map(em);
225  em = lookup_extent_mapping(em_tree, start, len);
226  if (!em)
227  em = ERR_PTR(-EIO);
228  } else if (ret) {
229  free_extent_map(em);
230  em = ERR_PTR(ret);
231  }
232  write_unlock(&em_tree->lock);
233 
234 out:
235  return em;
236 }
237 
238 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
239 {
240  return crc32c(seed, data, len);
241 }
242 
244 {
245  put_unaligned_le32(~crc, result);
246 }
247 
248 /*
249  * compute the csum for a btree block, and either verify it or write it
250  * into the csum field of the block.
251  */
252 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
253  int verify)
254 {
255  u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
256  char *result = NULL;
257  unsigned long len;
258  unsigned long cur_len;
259  unsigned long offset = BTRFS_CSUM_SIZE;
260  char *kaddr;
261  unsigned long map_start;
262  unsigned long map_len;
263  int err;
264  u32 crc = ~(u32)0;
265  unsigned long inline_result;
266 
267  len = buf->len - offset;
268  while (len > 0) {
269  err = map_private_extent_buffer(buf, offset, 32,
270  &kaddr, &map_start, &map_len);
271  if (err)
272  return 1;
273  cur_len = min(len, map_len - (offset - map_start));
274  crc = btrfs_csum_data(root, kaddr + offset - map_start,
275  crc, cur_len);
276  len -= cur_len;
277  offset += cur_len;
278  }
279  if (csum_size > sizeof(inline_result)) {
280  result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
281  if (!result)
282  return 1;
283  } else {
284  result = (char *)&inline_result;
285  }
286 
287  btrfs_csum_final(crc, result);
288 
289  if (verify) {
290  if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
291  u32 val;
292  u32 found = 0;
293  memcpy(&found, result, csum_size);
294 
295  read_extent_buffer(buf, &val, 0, csum_size);
296  printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
297  "failed on %llu wanted %X found %X "
298  "level %d\n",
299  root->fs_info->sb->s_id,
300  (unsigned long long)buf->start, val, found,
301  btrfs_header_level(buf));
302  if (result != (char *)&inline_result)
303  kfree(result);
304  return 1;
305  }
306  } else {
307  write_extent_buffer(buf, result, 0, csum_size);
308  }
309  if (result != (char *)&inline_result)
310  kfree(result);
311  return 0;
312 }
313 
314 /*
315  * we can't consider a given block up to date unless the transid of the
316  * block matches the transid in the parent node's pointer. This is how we
317  * detect blocks that either didn't get written at all or got written
318  * in the wrong place.
319  */
320 static int verify_parent_transid(struct extent_io_tree *io_tree,
321  struct extent_buffer *eb, u64 parent_transid,
322  int atomic)
323 {
324  struct extent_state *cached_state = NULL;
325  int ret;
326 
327  if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
328  return 0;
329 
330  if (atomic)
331  return -EAGAIN;
332 
333  lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
334  0, &cached_state);
335  if (extent_buffer_uptodate(eb) &&
336  btrfs_header_generation(eb) == parent_transid) {
337  ret = 0;
338  goto out;
339  }
340  printk_ratelimited("parent transid verify failed on %llu wanted %llu "
341  "found %llu\n",
342  (unsigned long long)eb->start,
343  (unsigned long long)parent_transid,
344  (unsigned long long)btrfs_header_generation(eb));
345  ret = 1;
347 out:
348  unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349  &cached_state, GFP_NOFS);
350  return ret;
351 }
352 
353 /*
354  * helper to read a given tree block, doing retries as required when
355  * the checksums don't match and we have alternate mirrors to try.
356  */
357 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358  struct extent_buffer *eb,
359  u64 start, u64 parent_transid)
360 {
361  struct extent_io_tree *io_tree;
362  int failed = 0;
363  int ret;
364  int num_copies = 0;
365  int mirror_num = 0;
366  int failed_mirror = 0;
367 
369  io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
370  while (1) {
371  ret = read_extent_buffer_pages(io_tree, eb, start,
373  btree_get_extent, mirror_num);
374  if (!ret) {
375  if (!verify_parent_transid(io_tree, eb,
376  parent_transid, 0))
377  break;
378  else
379  ret = -EIO;
380  }
381 
382  /*
383  * This buffer's crc is fine, but its contents are corrupted, so
384  * there is no reason to read the other copies, they won't be
385  * any less wrong.
386  */
388  break;
389 
390  num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
391  eb->start, eb->len);
392  if (num_copies == 1)
393  break;
394 
395  if (!failed_mirror) {
396  failed = 1;
397  failed_mirror = eb->read_mirror;
398  }
399 
400  mirror_num++;
401  if (mirror_num == failed_mirror)
402  mirror_num++;
403 
404  if (mirror_num > num_copies)
405  break;
406  }
407 
408  if (failed && !ret && failed_mirror)
409  repair_eb_io_failure(root, eb, failed_mirror);
410 
411  return ret;
412 }
413 
414 /*
415  * checksum a dirty tree block before IO. This has extra checks to make sure
416  * we only fill in the checksum field in the first page of a multi-page block
417  */
418 
419 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
420 {
421  struct extent_io_tree *tree;
422  u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
423  u64 found_start;
424  struct extent_buffer *eb;
425 
426  tree = &BTRFS_I(page->mapping->host)->io_tree;
427 
428  eb = (struct extent_buffer *)page->private;
429  if (page != eb->pages[0])
430  return 0;
431  found_start = btrfs_header_bytenr(eb);
432  if (found_start != start) {
433  WARN_ON(1);
434  return 0;
435  }
436  if (!PageUptodate(page)) {
437  WARN_ON(1);
438  return 0;
439  }
440  csum_tree_block(root, eb, 0);
441  return 0;
442 }
443 
444 static int check_tree_block_fsid(struct btrfs_root *root,
445  struct extent_buffer *eb)
446 {
447  struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449  int ret = 1;
450 
451  read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453  while (fs_devices) {
454  if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
455  ret = 0;
456  break;
457  }
458  fs_devices = fs_devices->seed;
459  }
460  return ret;
461 }
462 
463 #define CORRUPT(reason, eb, root, slot) \
464  printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
465  "root=%llu, slot=%d\n", reason, \
466  (unsigned long long)btrfs_header_bytenr(eb), \
467  (unsigned long long)root->objectid, slot)
468 
469 static noinline int check_leaf(struct btrfs_root *root,
470  struct extent_buffer *leaf)
471 {
472  struct btrfs_key key;
473  struct btrfs_key leaf_key;
474  u32 nritems = btrfs_header_nritems(leaf);
475  int slot;
476 
477  if (nritems == 0)
478  return 0;
479 
480  /* Check the 0 item */
481  if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
482  BTRFS_LEAF_DATA_SIZE(root)) {
483  CORRUPT("invalid item offset size pair", leaf, root, 0);
484  return -EIO;
485  }
486 
487  /*
488  * Check to make sure each items keys are in the correct order and their
489  * offsets make sense. We only have to loop through nritems-1 because
490  * we check the current slot against the next slot, which verifies the
491  * next slot's offset+size makes sense and that the current's slot
492  * offset is correct.
493  */
494  for (slot = 0; slot < nritems - 1; slot++) {
495  btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
496  btrfs_item_key_to_cpu(leaf, &key, slot + 1);
497 
498  /* Make sure the keys are in the right order */
499  if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
500  CORRUPT("bad key order", leaf, root, slot);
501  return -EIO;
502  }
503 
504  /*
505  * Make sure the offset and ends are right, remember that the
506  * item data starts at the end of the leaf and grows towards the
507  * front.
508  */
509  if (btrfs_item_offset_nr(leaf, slot) !=
510  btrfs_item_end_nr(leaf, slot + 1)) {
511  CORRUPT("slot offset bad", leaf, root, slot);
512  return -EIO;
513  }
514 
515  /*
516  * Check to make sure that we don't point outside of the leaf,
517  * just incase all the items are consistent to eachother, but
518  * all point outside of the leaf.
519  */
520  if (btrfs_item_end_nr(leaf, slot) >
521  BTRFS_LEAF_DATA_SIZE(root)) {
522  CORRUPT("slot end outside of leaf", leaf, root, slot);
523  return -EIO;
524  }
525  }
526 
527  return 0;
528 }
529 
531  struct page *page, int max_walk)
532 {
533  struct extent_buffer *eb;
534  u64 start = page_offset(page);
535  u64 target = start;
536  u64 min_start;
537 
538  if (start < max_walk)
539  min_start = 0;
540  else
541  min_start = start - max_walk;
542 
543  while (start >= min_start) {
544  eb = find_extent_buffer(tree, start, 0);
545  if (eb) {
546  /*
547  * we found an extent buffer and it contains our page
548  * horray!
549  */
550  if (eb->start <= target &&
551  eb->start + eb->len > target)
552  return eb;
553 
554  /* we found an extent buffer that wasn't for us */
555  free_extent_buffer(eb);
556  return NULL;
557  }
558  if (start == 0)
559  break;
560  start -= PAGE_CACHE_SIZE;
561  }
562  return NULL;
563 }
564 
565 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
566  struct extent_state *state, int mirror)
567 {
568  struct extent_io_tree *tree;
569  u64 found_start;
570  int found_level;
571  struct extent_buffer *eb;
572  struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
573  int ret = 0;
574  int reads_done;
575 
576  if (!page->private)
577  goto out;
578 
579  tree = &BTRFS_I(page->mapping->host)->io_tree;
580  eb = (struct extent_buffer *)page->private;
581 
582  /* the pending IO might have been the only thing that kept this buffer
583  * in memory. Make sure we have a ref for all this other checks
584  */
585  extent_buffer_get(eb);
586 
587  reads_done = atomic_dec_and_test(&eb->io_pages);
588  if (!reads_done)
589  goto err;
590 
591  eb->read_mirror = mirror;
592  if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593  ret = -EIO;
594  goto err;
595  }
596 
597  found_start = btrfs_header_bytenr(eb);
598  if (found_start != eb->start) {
599  printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600  "%llu %llu\n",
601  (unsigned long long)found_start,
602  (unsigned long long)eb->start);
603  ret = -EIO;
604  goto err;
605  }
606  if (check_tree_block_fsid(root, eb)) {
607  printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
608  (unsigned long long)eb->start);
609  ret = -EIO;
610  goto err;
611  }
612  found_level = btrfs_header_level(eb);
613 
614  btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
615  eb, found_level);
616 
617  ret = csum_tree_block(root, eb, 1);
618  if (ret) {
619  ret = -EIO;
620  goto err;
621  }
622 
623  /*
624  * If this is a leaf block and it is corrupt, set the corrupt bit so
625  * that we don't try and read the other copies of this block, just
626  * return -EIO.
627  */
628  if (found_level == 0 && check_leaf(root, eb)) {
630  ret = -EIO;
631  }
632 
633  if (!ret)
635 err:
638  btree_readahead_hook(root, eb, eb->start, ret);
639  }
640 
641  if (ret)
643  free_extent_buffer(eb);
644 out:
645  return ret;
646 }
647 
648 static int btree_io_failed_hook(struct page *page, int failed_mirror)
649 {
650  struct extent_buffer *eb;
651  struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
652 
653  eb = (struct extent_buffer *)page->private;
655  eb->read_mirror = failed_mirror;
657  btree_readahead_hook(root, eb, eb->start, -EIO);
658  return -EIO; /* we fixed nothing */
659 }
660 
661 static void end_workqueue_bio(struct bio *bio, int err)
662 {
663  struct end_io_wq *end_io_wq = bio->bi_private;
664  struct btrfs_fs_info *fs_info;
665 
666  fs_info = end_io_wq->info;
667  end_io_wq->error = err;
668  end_io_wq->work.func = end_workqueue_fn;
669  end_io_wq->work.flags = 0;
670 
671  if (bio->bi_rw & REQ_WRITE) {
672  if (end_io_wq->metadata == 1)
674  &end_io_wq->work);
675  else if (end_io_wq->metadata == 2)
677  &end_io_wq->work);
678  else
680  &end_io_wq->work);
681  } else {
682  if (end_io_wq->metadata)
684  &end_io_wq->work);
685  else
687  &end_io_wq->work);
688  }
689 }
690 
691 /*
692  * For the metadata arg you want
693  *
694  * 0 - if data
695  * 1 - if normal metadta
696  * 2 - if writing to the free space cache area
697  */
698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
699  int metadata)
700 {
701  struct end_io_wq *end_io_wq;
702  end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
703  if (!end_io_wq)
704  return -ENOMEM;
705 
706  end_io_wq->private = bio->bi_private;
707  end_io_wq->end_io = bio->bi_end_io;
708  end_io_wq->info = info;
709  end_io_wq->error = 0;
710  end_io_wq->bio = bio;
711  end_io_wq->metadata = metadata;
712 
713  bio->bi_private = end_io_wq;
714  bio->bi_end_io = end_workqueue_bio;
715  return 0;
716 }
717 
719 {
720  unsigned long limit = min_t(unsigned long,
721  info->workers.max_workers,
722  info->fs_devices->open_devices);
723  return 256 * limit;
724 }
725 
726 static void run_one_async_start(struct btrfs_work *work)
727 {
728  struct async_submit_bio *async;
729  int ret;
730 
731  async = container_of(work, struct async_submit_bio, work);
732  ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733  async->mirror_num, async->bio_flags,
734  async->bio_offset);
735  if (ret)
736  async->error = ret;
737 }
738 
739 static void run_one_async_done(struct btrfs_work *work)
740 {
741  struct btrfs_fs_info *fs_info;
742  struct async_submit_bio *async;
743  int limit;
744 
745  async = container_of(work, struct async_submit_bio, work);
746  fs_info = BTRFS_I(async->inode)->root->fs_info;
747 
748  limit = btrfs_async_submit_limit(fs_info);
749  limit = limit * 2 / 3;
750 
751  if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
752  waitqueue_active(&fs_info->async_submit_wait))
753  wake_up(&fs_info->async_submit_wait);
754 
755  /* If an error occured we just want to clean up the bio and move on */
756  if (async->error) {
757  bio_endio(async->bio, async->error);
758  return;
759  }
760 
761  async->submit_bio_done(async->inode, async->rw, async->bio,
762  async->mirror_num, async->bio_flags,
763  async->bio_offset);
764 }
765 
766 static void run_one_async_free(struct btrfs_work *work)
767 {
768  struct async_submit_bio *async;
769 
770  async = container_of(work, struct async_submit_bio, work);
771  kfree(async);
772 }
773 
774 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
775  int rw, struct bio *bio, int mirror_num,
776  unsigned long bio_flags,
777  u64 bio_offset,
780 {
781  struct async_submit_bio *async;
782 
783  async = kmalloc(sizeof(*async), GFP_NOFS);
784  if (!async)
785  return -ENOMEM;
786 
787  async->inode = inode;
788  async->rw = rw;
789  async->bio = bio;
790  async->mirror_num = mirror_num;
793 
794  async->work.func = run_one_async_start;
795  async->work.ordered_func = run_one_async_done;
796  async->work.ordered_free = run_one_async_free;
797 
798  async->work.flags = 0;
799  async->bio_flags = bio_flags;
800  async->bio_offset = bio_offset;
801 
802  async->error = 0;
803 
804  atomic_inc(&fs_info->nr_async_submits);
805 
806  if (rw & REQ_SYNC)
808 
809  btrfs_queue_worker(&fs_info->workers, &async->work);
810 
811  while (atomic_read(&fs_info->async_submit_draining) &&
812  atomic_read(&fs_info->nr_async_submits)) {
813  wait_event(fs_info->async_submit_wait,
814  (atomic_read(&fs_info->nr_async_submits) == 0));
815  }
816 
817  return 0;
818 }
819 
820 static int btree_csum_one_bio(struct bio *bio)
821 {
822  struct bio_vec *bvec = bio->bi_io_vec;
823  int bio_index = 0;
824  struct btrfs_root *root;
825  int ret = 0;
826 
827  WARN_ON(bio->bi_vcnt <= 0);
828  while (bio_index < bio->bi_vcnt) {
829  root = BTRFS_I(bvec->bv_page->mapping->host)->root;
830  ret = csum_dirty_buffer(root, bvec->bv_page);
831  if (ret)
832  break;
833  bio_index++;
834  bvec++;
835  }
836  return ret;
837 }
838 
839 static int __btree_submit_bio_start(struct inode *inode, int rw,
840  struct bio *bio, int mirror_num,
841  unsigned long bio_flags,
842  u64 bio_offset)
843 {
844  /*
845  * when we're called for a write, we're already in the async
846  * submission context. Just jump into btrfs_map_bio
847  */
848  return btree_csum_one_bio(bio);
849 }
850 
851 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
852  int mirror_num, unsigned long bio_flags,
853  u64 bio_offset)
854 {
855  /*
856  * when we're called for a write, we're already in the async
857  * submission context. Just jump into btrfs_map_bio
858  */
859  return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
860 }
861 
862 static int check_async_write(struct inode *inode, unsigned long bio_flags)
863 {
864  if (bio_flags & EXTENT_BIO_TREE_LOG)
865  return 0;
866 #ifdef CONFIG_X86
867  if (cpu_has_xmm4_2)
868  return 0;
869 #endif
870  return 1;
871 }
872 
873 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
874  int mirror_num, unsigned long bio_flags,
875  u64 bio_offset)
876 {
877  int async = check_async_write(inode, bio_flags);
878  int ret;
879 
880  if (!(rw & REQ_WRITE)) {
881 
882  /*
883  * called for a read, do the setup so that checksum validation
884  * can happen in the async kernel threads
885  */
886  ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
887  bio, 1);
888  if (ret)
889  return ret;
890  return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
891  mirror_num, 0);
892  } else if (!async) {
893  ret = btree_csum_one_bio(bio);
894  if (ret)
895  return ret;
896  return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
897  mirror_num, 0);
898  }
899 
900  /*
901  * kthread helpers are used to submit writes so that checksumming
902  * can happen in parallel across all CPUs
903  */
904  return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
905  inode, rw, bio, mirror_num, 0,
906  bio_offset,
907  __btree_submit_bio_start,
908  __btree_submit_bio_done);
909 }
910 
911 #ifdef CONFIG_MIGRATION
912 static int btree_migratepage(struct address_space *mapping,
913  struct page *newpage, struct page *page,
914  enum migrate_mode mode)
915 {
916  /*
917  * we can't safely write a btree page from here,
918  * we haven't done the locking hook
919  */
920  if (PageDirty(page))
921  return -EAGAIN;
922  /*
923  * Buffers may be managed in a filesystem specific way.
924  * We must have no buffers or drop them.
925  */
926  if (page_has_private(page) &&
928  return -EAGAIN;
929  return migrate_page(mapping, newpage, page, mode);
930 }
931 #endif
932 
933 
934 static int btree_writepages(struct address_space *mapping,
935  struct writeback_control *wbc)
936 {
937  struct extent_io_tree *tree;
938  tree = &BTRFS_I(mapping->host)->io_tree;
939  if (wbc->sync_mode == WB_SYNC_NONE) {
940  struct btrfs_root *root = BTRFS_I(mapping->host)->root;
941  u64 num_dirty;
942  unsigned long thresh = 32 * 1024 * 1024;
943 
944  if (wbc->for_kupdate)
945  return 0;
946 
947  /* this is a bit racy, but that's ok */
948  num_dirty = root->fs_info->dirty_metadata_bytes;
949  if (num_dirty < thresh)
950  return 0;
951  }
952  return btree_write_cache_pages(mapping, wbc);
953 }
954 
955 static int btree_readpage(struct file *file, struct page *page)
956 {
957  struct extent_io_tree *tree;
958  tree = &BTRFS_I(page->mapping->host)->io_tree;
959  return extent_read_full_page(tree, page, btree_get_extent, 0);
960 }
961 
962 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
963 {
964  if (PageWriteback(page) || PageDirty(page))
965  return 0;
966  /*
967  * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
968  * slab allocation from alloc_extent_state down the callchain where
969  * it'd hit a BUG_ON as those flags are not allowed.
970  */
971  gfp_flags &= ~GFP_SLAB_BUG_MASK;
972 
973  return try_release_extent_buffer(page, gfp_flags);
974 }
975 
976 static void btree_invalidatepage(struct page *page, unsigned long offset)
977 {
978  struct extent_io_tree *tree;
979  tree = &BTRFS_I(page->mapping->host)->io_tree;
980  extent_invalidatepage(tree, page, offset);
981  btree_releasepage(page, GFP_NOFS);
982  if (PagePrivate(page)) {
983  printk(KERN_WARNING "btrfs warning page private not zero "
984  "on page %llu\n", (unsigned long long)page_offset(page));
985  ClearPagePrivate(page);
986  set_page_private(page, 0);
987  page_cache_release(page);
988  }
989 }
990 
991 static int btree_set_page_dirty(struct page *page)
992 {
993  struct extent_buffer *eb;
994 
995  BUG_ON(!PagePrivate(page));
996  eb = (struct extent_buffer *)page->private;
997  BUG_ON(!eb);
999  BUG_ON(!atomic_read(&eb->refs));
1001  return __set_page_dirty_nobuffers(page);
1002 }
1003 
1004 static const struct address_space_operations btree_aops = {
1005  .readpage = btree_readpage,
1006  .writepages = btree_writepages,
1007  .releasepage = btree_releasepage,
1008  .invalidatepage = btree_invalidatepage,
1009 #ifdef CONFIG_MIGRATION
1010  .migratepage = btree_migratepage,
1011 #endif
1012  .set_page_dirty = btree_set_page_dirty,
1013 };
1014 
1015 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1016  u64 parent_transid)
1017 {
1018  struct extent_buffer *buf = NULL;
1019  struct inode *btree_inode = root->fs_info->btree_inode;
1020  int ret = 0;
1021 
1022  buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1023  if (!buf)
1024  return 0;
1025  read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1026  buf, 0, WAIT_NONE, btree_get_extent, 0);
1027  free_extent_buffer(buf);
1028  return ret;
1029 }
1030 
1031 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1032  int mirror_num, struct extent_buffer **eb)
1033 {
1034  struct extent_buffer *buf = NULL;
1035  struct inode *btree_inode = root->fs_info->btree_inode;
1036  struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1037  int ret;
1038 
1039  buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1040  if (!buf)
1041  return 0;
1042 
1044 
1045  ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1046  btree_get_extent, mirror_num);
1047  if (ret) {
1048  free_extent_buffer(buf);
1049  return ret;
1050  }
1051 
1052  if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1053  free_extent_buffer(buf);
1054  return -EIO;
1055  } else if (extent_buffer_uptodate(buf)) {
1056  *eb = buf;
1057  } else {
1058  free_extent_buffer(buf);
1059  }
1060  return 0;
1061 }
1062 
1064  u64 bytenr, u32 blocksize)
1065 {
1066  struct inode *btree_inode = root->fs_info->btree_inode;
1067  struct extent_buffer *eb;
1068  eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1069  bytenr, blocksize);
1070  return eb;
1071 }
1072 
1074  u64 bytenr, u32 blocksize)
1075 {
1076  struct inode *btree_inode = root->fs_info->btree_inode;
1077  struct extent_buffer *eb;
1078 
1079  eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1080  bytenr, blocksize);
1081  return eb;
1082 }
1083 
1084 
1086 {
1087  return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1088  buf->start + buf->len - 1);
1089 }
1090 
1092 {
1093  return filemap_fdatawait_range(buf->pages[0]->mapping,
1094  buf->start, buf->start + buf->len - 1);
1095 }
1096 
1098  u32 blocksize, u64 parent_transid)
1099 {
1100  struct extent_buffer *buf = NULL;
1101  int ret;
1102 
1103  buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1104  if (!buf)
1105  return NULL;
1106 
1107  ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1108  return buf;
1109 
1110 }
1111 
1113  struct extent_buffer *buf)
1114 {
1115  if (btrfs_header_generation(buf) ==
1116  root->fs_info->running_transaction->transid) {
1118 
1120  spin_lock(&root->fs_info->delalloc_lock);
1121  if (root->fs_info->dirty_metadata_bytes >= buf->len)
1122  root->fs_info->dirty_metadata_bytes -= buf->len;
1123  else {
1124  spin_unlock(&root->fs_info->delalloc_lock);
1125  btrfs_panic(root->fs_info, -EOVERFLOW,
1126  "Can't clear %lu bytes from "
1127  " dirty_mdatadata_bytes (%llu)",
1128  buf->len,
1129  root->fs_info->dirty_metadata_bytes);
1130  }
1131  spin_unlock(&root->fs_info->delalloc_lock);
1132  }
1133 
1134  /* ugh, clear_extent_buffer_dirty needs to lock the page */
1135  btrfs_set_lock_blocking(buf);
1137  }
1138 }
1139 
1140 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1141  u32 stripesize, struct btrfs_root *root,
1142  struct btrfs_fs_info *fs_info,
1143  u64 objectid)
1144 {
1145  root->node = NULL;
1146  root->commit_root = NULL;
1147  root->sectorsize = sectorsize;
1148  root->nodesize = nodesize;
1149  root->leafsize = leafsize;
1150  root->stripesize = stripesize;
1151  root->ref_cows = 0;
1152  root->track_dirty = 0;
1153  root->in_radix = 0;
1154  root->orphan_item_inserted = 0;
1155  root->orphan_cleanup_state = 0;
1156 
1157  root->objectid = objectid;
1158  root->last_trans = 0;
1159  root->highest_objectid = 0;
1160  root->name = NULL;
1161  root->inode_tree = RB_ROOT;
1163  root->block_rsv = NULL;
1164  root->orphan_block_rsv = NULL;
1165 
1166  INIT_LIST_HEAD(&root->dirty_list);
1167  INIT_LIST_HEAD(&root->root_list);
1168  spin_lock_init(&root->orphan_lock);
1169  spin_lock_init(&root->inode_lock);
1171  mutex_init(&root->objectid_mutex);
1172  mutex_init(&root->log_mutex);
1176  atomic_set(&root->log_commit[0], 0);
1177  atomic_set(&root->log_commit[1], 0);
1178  atomic_set(&root->log_writers, 0);
1179  atomic_set(&root->log_batch, 0);
1180  atomic_set(&root->orphan_inodes, 0);
1181  root->log_transid = 0;
1182  root->last_log_commit = 0;
1184  fs_info->btree_inode->i_mapping);
1185 
1186  memset(&root->root_key, 0, sizeof(root->root_key));
1187  memset(&root->root_item, 0, sizeof(root->root_item));
1188  memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1189  memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1190  root->defrag_trans_start = fs_info->generation;
1191  init_completion(&root->kobj_unregister);
1192  root->defrag_running = 0;
1193  root->root_key.objectid = objectid;
1194  root->anon_dev = 0;
1195 
1197 }
1198 
1199 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1200  struct btrfs_fs_info *fs_info,
1201  u64 objectid,
1202  struct btrfs_root *root)
1203 {
1204  int ret;
1205  u32 blocksize;
1206  u64 generation;
1207 
1208  __setup_root(tree_root->nodesize, tree_root->leafsize,
1209  tree_root->sectorsize, tree_root->stripesize,
1210  root, fs_info, objectid);
1211  ret = btrfs_find_last_root(tree_root, objectid,
1212  &root->root_item, &root->root_key);
1213  if (ret > 0)
1214  return -ENOENT;
1215  else if (ret < 0)
1216  return ret;
1217 
1218  generation = btrfs_root_generation(&root->root_item);
1219  blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1220  root->commit_root = NULL;
1221  root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1222  blocksize, generation);
1223  if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1224  free_extent_buffer(root->node);
1225  root->node = NULL;
1226  return -EIO;
1227  }
1228  root->commit_root = btrfs_root_node(root);
1229  return 0;
1230 }
1231 
1232 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1233 {
1234  struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1235  if (root)
1236  root->fs_info = fs_info;
1237  return root;
1238 }
1239 
1241  struct btrfs_fs_info *fs_info,
1242  u64 objectid)
1243 {
1244  struct extent_buffer *leaf;
1245  struct btrfs_root *tree_root = fs_info->tree_root;
1246  struct btrfs_root *root;
1247  struct btrfs_key key;
1248  int ret = 0;
1249  u64 bytenr;
1250 
1251  root = btrfs_alloc_root(fs_info);
1252  if (!root)
1253  return ERR_PTR(-ENOMEM);
1254 
1255  __setup_root(tree_root->nodesize, tree_root->leafsize,
1256  tree_root->sectorsize, tree_root->stripesize,
1257  root, fs_info, objectid);
1258  root->root_key.objectid = objectid;
1259  root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1260  root->root_key.offset = 0;
1261 
1262  leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1263  0, objectid, NULL, 0, 0, 0);
1264  if (IS_ERR(leaf)) {
1265  ret = PTR_ERR(leaf);
1266  goto fail;
1267  }
1268 
1269  bytenr = leaf->start;
1270  memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1271  btrfs_set_header_bytenr(leaf, leaf->start);
1272  btrfs_set_header_generation(leaf, trans->transid);
1273  btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1274  btrfs_set_header_owner(leaf, objectid);
1275  root->node = leaf;
1276 
1277  write_extent_buffer(leaf, fs_info->fsid,
1278  (unsigned long)btrfs_header_fsid(leaf),
1279  BTRFS_FSID_SIZE);
1280  write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1281  (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1282  BTRFS_UUID_SIZE);
1284 
1285  root->commit_root = btrfs_root_node(root);
1286  root->track_dirty = 1;
1287 
1288 
1289  root->root_item.flags = 0;
1290  root->root_item.byte_limit = 0;
1291  btrfs_set_root_bytenr(&root->root_item, leaf->start);
1292  btrfs_set_root_generation(&root->root_item, trans->transid);
1293  btrfs_set_root_level(&root->root_item, 0);
1294  btrfs_set_root_refs(&root->root_item, 1);
1295  btrfs_set_root_used(&root->root_item, leaf->len);
1296  btrfs_set_root_last_snapshot(&root->root_item, 0);
1297  btrfs_set_root_dirid(&root->root_item, 0);
1298  root->root_item.drop_level = 0;
1299 
1300  key.objectid = objectid;
1301  key.type = BTRFS_ROOT_ITEM_KEY;
1302  key.offset = 0;
1303  ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1304  if (ret)
1305  goto fail;
1306 
1307  btrfs_tree_unlock(leaf);
1308 
1309 fail:
1310  if (ret)
1311  return ERR_PTR(ret);
1312 
1313  return root;
1314 }
1315 
1316 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1317  struct btrfs_fs_info *fs_info)
1318 {
1319  struct btrfs_root *root;
1320  struct btrfs_root *tree_root = fs_info->tree_root;
1321  struct extent_buffer *leaf;
1322 
1323  root = btrfs_alloc_root(fs_info);
1324  if (!root)
1325  return ERR_PTR(-ENOMEM);
1326 
1327  __setup_root(tree_root->nodesize, tree_root->leafsize,
1328  tree_root->sectorsize, tree_root->stripesize,
1329  root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1330 
1331  root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1332  root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1333  root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1334  /*
1335  * log trees do not get reference counted because they go away
1336  * before a real commit is actually done. They do store pointers
1337  * to file data extents, and those reference counts still get
1338  * updated (along with back refs to the log tree).
1339  */
1340  root->ref_cows = 0;
1341 
1342  leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1344  0, 0, 0);
1345  if (IS_ERR(leaf)) {
1346  kfree(root);
1347  return ERR_CAST(leaf);
1348  }
1349 
1350  memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1351  btrfs_set_header_bytenr(leaf, leaf->start);
1352  btrfs_set_header_generation(leaf, trans->transid);
1353  btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1354  btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1355  root->node = leaf;
1356 
1357  write_extent_buffer(root->node, root->fs_info->fsid,
1358  (unsigned long)btrfs_header_fsid(root->node),
1359  BTRFS_FSID_SIZE);
1361  btrfs_tree_unlock(root->node);
1362  return root;
1363 }
1364 
1366  struct btrfs_fs_info *fs_info)
1367 {
1368  struct btrfs_root *log_root;
1369 
1370  log_root = alloc_log_tree(trans, fs_info);
1371  if (IS_ERR(log_root))
1372  return PTR_ERR(log_root);
1373  WARN_ON(fs_info->log_root_tree);
1374  fs_info->log_root_tree = log_root;
1375  return 0;
1376 }
1377 
1379  struct btrfs_root *root)
1380 {
1381  struct btrfs_root *log_root;
1382  struct btrfs_inode_item *inode_item;
1383 
1384  log_root = alloc_log_tree(trans, root->fs_info);
1385  if (IS_ERR(log_root))
1386  return PTR_ERR(log_root);
1387 
1388  log_root->last_trans = trans->transid;
1389  log_root->root_key.offset = root->root_key.objectid;
1390 
1391  inode_item = &log_root->root_item.inode;
1392  inode_item->generation = cpu_to_le64(1);
1393  inode_item->size = cpu_to_le64(3);
1394  inode_item->nlink = cpu_to_le32(1);
1395  inode_item->nbytes = cpu_to_le64(root->leafsize);
1396  inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1397 
1398  btrfs_set_root_node(&log_root->root_item, log_root->node);
1399 
1400  WARN_ON(root->log_root);
1401  root->log_root = log_root;
1402  root->log_transid = 0;
1403  root->last_log_commit = 0;
1404  return 0;
1405 }
1406 
1408  struct btrfs_key *location)
1409 {
1410  struct btrfs_root *root;
1411  struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412  struct btrfs_path *path;
1413  struct extent_buffer *l;
1414  u64 generation;
1415  u32 blocksize;
1416  int ret = 0;
1417  int slot;
1418 
1419  root = btrfs_alloc_root(fs_info);
1420  if (!root)
1421  return ERR_PTR(-ENOMEM);
1422  if (location->offset == (u64)-1) {
1423  ret = find_and_setup_root(tree_root, fs_info,
1424  location->objectid, root);
1425  if (ret) {
1426  kfree(root);
1427  return ERR_PTR(ret);
1428  }
1429  goto out;
1430  }
1431 
1432  __setup_root(tree_root->nodesize, tree_root->leafsize,
1433  tree_root->sectorsize, tree_root->stripesize,
1434  root, fs_info, location->objectid);
1435 
1436  path = btrfs_alloc_path();
1437  if (!path) {
1438  kfree(root);
1439  return ERR_PTR(-ENOMEM);
1440  }
1441  ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1442  if (ret == 0) {
1443  l = path->nodes[0];
1444  slot = path->slots[0];
1445  btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1446  memcpy(&root->root_key, location, sizeof(*location));
1447  }
1448  btrfs_free_path(path);
1449  if (ret) {
1450  kfree(root);
1451  if (ret > 0)
1452  ret = -ENOENT;
1453  return ERR_PTR(ret);
1454  }
1455 
1456  generation = btrfs_root_generation(&root->root_item);
1457  blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1458  root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1459  blocksize, generation);
1460  root->commit_root = btrfs_root_node(root);
1461  BUG_ON(!root->node); /* -ENOMEM */
1462 out:
1463  if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1464  root->ref_cows = 1;
1466  }
1467 
1468  return root;
1469 }
1470 
1472  struct btrfs_key *location)
1473 {
1474  struct btrfs_root *root;
1475  int ret;
1476 
1477  if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1478  return fs_info->tree_root;
1479  if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1480  return fs_info->extent_root;
1481  if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1482  return fs_info->chunk_root;
1483  if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1484  return fs_info->dev_root;
1485  if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1486  return fs_info->csum_root;
1487  if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1488  return fs_info->quota_root ? fs_info->quota_root :
1489  ERR_PTR(-ENOENT);
1490 again:
1491  spin_lock(&fs_info->fs_roots_radix_lock);
1492  root = radix_tree_lookup(&fs_info->fs_roots_radix,
1493  (unsigned long)location->objectid);
1494  spin_unlock(&fs_info->fs_roots_radix_lock);
1495  if (root)
1496  return root;
1497 
1498  root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1499  if (IS_ERR(root))
1500  return root;
1501 
1502  root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1503  root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1504  GFP_NOFS);
1505  if (!root->free_ino_pinned || !root->free_ino_ctl) {
1506  ret = -ENOMEM;
1507  goto fail;
1508  }
1509 
1511  mutex_init(&root->fs_commit_mutex);
1512  spin_lock_init(&root->cache_lock);
1514 
1515  ret = get_anon_bdev(&root->anon_dev);
1516  if (ret)
1517  goto fail;
1518 
1519  if (btrfs_root_refs(&root->root_item) == 0) {
1520  ret = -ENOENT;
1521  goto fail;
1522  }
1523 
1524  ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1525  if (ret < 0)
1526  goto fail;
1527  if (ret == 0)
1528  root->orphan_item_inserted = 1;
1529 
1531  if (ret)
1532  goto fail;
1533 
1534  spin_lock(&fs_info->fs_roots_radix_lock);
1535  ret = radix_tree_insert(&fs_info->fs_roots_radix,
1536  (unsigned long)root->root_key.objectid,
1537  root);
1538  if (ret == 0)
1539  root->in_radix = 1;
1540 
1541  spin_unlock(&fs_info->fs_roots_radix_lock);
1542  radix_tree_preload_end();
1543  if (ret) {
1544  if (ret == -EEXIST) {
1545  free_fs_root(root);
1546  goto again;
1547  }
1548  goto fail;
1549  }
1550 
1551  ret = btrfs_find_dead_roots(fs_info->tree_root,
1552  root->root_key.objectid);
1553  WARN_ON(ret);
1554  return root;
1555 fail:
1556  free_fs_root(root);
1557  return ERR_PTR(ret);
1558 }
1559 
1560 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1561 {
1562  struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1563  int ret = 0;
1564  struct btrfs_device *device;
1565  struct backing_dev_info *bdi;
1566 
1567  rcu_read_lock();
1568  list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1569  if (!device->bdev)
1570  continue;
1571  bdi = blk_get_backing_dev_info(device->bdev);
1572  if (bdi && bdi_congested(bdi, bdi_bits)) {
1573  ret = 1;
1574  break;
1575  }
1576  }
1577  rcu_read_unlock();
1578  return ret;
1579 }
1580 
1581 /*
1582  * If this fails, caller must call bdi_destroy() to get rid of the
1583  * bdi again.
1584  */
1585 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1586 {
1587  int err;
1588 
1590  err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1591  if (err)
1592  return err;
1593 
1594  bdi->ra_pages = default_backing_dev_info.ra_pages;
1595  bdi->congested_fn = btrfs_congested_fn;
1596  bdi->congested_data = info;
1597  return 0;
1598 }
1599 
1600 /*
1601  * called by the kthread helper functions to finally call the bio end_io
1602  * functions. This is where read checksum verification actually happens
1603  */
1604 static void end_workqueue_fn(struct btrfs_work *work)
1605 {
1606  struct bio *bio;
1607  struct end_io_wq *end_io_wq;
1608  struct btrfs_fs_info *fs_info;
1609  int error;
1610 
1611  end_io_wq = container_of(work, struct end_io_wq, work);
1612  bio = end_io_wq->bio;
1613  fs_info = end_io_wq->info;
1614 
1615  error = end_io_wq->error;
1616  bio->bi_private = end_io_wq->private;
1617  bio->bi_end_io = end_io_wq->end_io;
1618  kfree(end_io_wq);
1619  bio_endio(bio, error);
1620 }
1621 
1622 static int cleaner_kthread(void *arg)
1623 {
1624  struct btrfs_root *root = arg;
1625 
1626  do {
1627  if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1628  mutex_trylock(&root->fs_info->cleaner_mutex)) {
1631  mutex_unlock(&root->fs_info->cleaner_mutex);
1633  }
1634 
1635  if (!try_to_freeze()) {
1637  if (!kthread_should_stop())
1638  schedule();
1640  }
1641  } while (!kthread_should_stop());
1642  return 0;
1643 }
1644 
1645 static int transaction_kthread(void *arg)
1646 {
1647  struct btrfs_root *root = arg;
1648  struct btrfs_trans_handle *trans;
1649  struct btrfs_transaction *cur;
1650  u64 transid;
1651  unsigned long now;
1652  unsigned long delay;
1653  bool cannot_commit;
1654 
1655  do {
1656  cannot_commit = false;
1657  delay = HZ * 30;
1658  mutex_lock(&root->fs_info->transaction_kthread_mutex);
1659 
1660  spin_lock(&root->fs_info->trans_lock);
1661  cur = root->fs_info->running_transaction;
1662  if (!cur) {
1663  spin_unlock(&root->fs_info->trans_lock);
1664  goto sleep;
1665  }
1666 
1667  now = get_seconds();
1668  if (!cur->blocked &&
1669  (now < cur->start_time || now - cur->start_time < 30)) {
1670  spin_unlock(&root->fs_info->trans_lock);
1671  delay = HZ * 5;
1672  goto sleep;
1673  }
1674  transid = cur->transid;
1675  spin_unlock(&root->fs_info->trans_lock);
1676 
1677  /* If the file system is aborted, this will always fail. */
1678  trans = btrfs_attach_transaction(root);
1679  if (IS_ERR(trans)) {
1680  if (PTR_ERR(trans) != -ENOENT)
1681  cannot_commit = true;
1682  goto sleep;
1683  }
1684  if (transid == trans->transid) {
1685  btrfs_commit_transaction(trans, root);
1686  } else {
1687  btrfs_end_transaction(trans, root);
1688  }
1689 sleep:
1690  wake_up_process(root->fs_info->cleaner_kthread);
1691  mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1692 
1693  if (!try_to_freeze()) {
1695  if (!kthread_should_stop() &&
1697  cannot_commit))
1698  schedule_timeout(delay);
1700  }
1701  } while (!kthread_should_stop());
1702  return 0;
1703 }
1704 
1705 /*
1706  * this will find the highest generation in the array of
1707  * root backups. The index of the highest array is returned,
1708  * or -1 if we can't find anything.
1709  *
1710  * We check to make sure the array is valid by comparing the
1711  * generation of the latest root in the array with the generation
1712  * in the super block. If they don't match we pitch it.
1713  */
1714 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1715 {
1716  u64 cur;
1717  int newest_index = -1;
1718  struct btrfs_root_backup *root_backup;
1719  int i;
1720 
1721  for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1722  root_backup = info->super_copy->super_roots + i;
1723  cur = btrfs_backup_tree_root_gen(root_backup);
1724  if (cur == newest_gen)
1725  newest_index = i;
1726  }
1727 
1728  /* check to see if we actually wrapped around */
1729  if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1730  root_backup = info->super_copy->super_roots;
1731  cur = btrfs_backup_tree_root_gen(root_backup);
1732  if (cur == newest_gen)
1733  newest_index = 0;
1734  }
1735  return newest_index;
1736 }
1737 
1738 
1739 /*
1740  * find the oldest backup so we know where to store new entries
1741  * in the backup array. This will set the backup_root_index
1742  * field in the fs_info struct
1743  */
1744 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1745  u64 newest_gen)
1746 {
1747  int newest_index = -1;
1748 
1749  newest_index = find_newest_super_backup(info, newest_gen);
1750  /* if there was garbage in there, just move along */
1751  if (newest_index == -1) {
1752  info->backup_root_index = 0;
1753  } else {
1754  info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1755  }
1756 }
1757 
1758 /*
1759  * copy all the root pointers into the super backup array.
1760  * this will bump the backup pointer by one when it is
1761  * done
1762  */
1763 static void backup_super_roots(struct btrfs_fs_info *info)
1764 {
1765  int next_backup;
1766  struct btrfs_root_backup *root_backup;
1767  int last_backup;
1768 
1769  next_backup = info->backup_root_index;
1770  last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1771  BTRFS_NUM_BACKUP_ROOTS;
1772 
1773  /*
1774  * just overwrite the last backup if we're at the same generation
1775  * this happens only at umount
1776  */
1777  root_backup = info->super_for_commit->super_roots + last_backup;
1778  if (btrfs_backup_tree_root_gen(root_backup) ==
1779  btrfs_header_generation(info->tree_root->node))
1780  next_backup = last_backup;
1781 
1782  root_backup = info->super_for_commit->super_roots + next_backup;
1783 
1784  /*
1785  * make sure all of our padding and empty slots get zero filled
1786  * regardless of which ones we use today
1787  */
1788  memset(root_backup, 0, sizeof(*root_backup));
1789 
1790  info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1791 
1792  btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1793  btrfs_set_backup_tree_root_gen(root_backup,
1794  btrfs_header_generation(info->tree_root->node));
1795 
1796  btrfs_set_backup_tree_root_level(root_backup,
1797  btrfs_header_level(info->tree_root->node));
1798 
1799  btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1800  btrfs_set_backup_chunk_root_gen(root_backup,
1801  btrfs_header_generation(info->chunk_root->node));
1802  btrfs_set_backup_chunk_root_level(root_backup,
1803  btrfs_header_level(info->chunk_root->node));
1804 
1805  btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1806  btrfs_set_backup_extent_root_gen(root_backup,
1807  btrfs_header_generation(info->extent_root->node));
1808  btrfs_set_backup_extent_root_level(root_backup,
1809  btrfs_header_level(info->extent_root->node));
1810 
1811  /*
1812  * we might commit during log recovery, which happens before we set
1813  * the fs_root. Make sure it is valid before we fill it in.
1814  */
1815  if (info->fs_root && info->fs_root->node) {
1816  btrfs_set_backup_fs_root(root_backup,
1817  info->fs_root->node->start);
1818  btrfs_set_backup_fs_root_gen(root_backup,
1819  btrfs_header_generation(info->fs_root->node));
1820  btrfs_set_backup_fs_root_level(root_backup,
1821  btrfs_header_level(info->fs_root->node));
1822  }
1823 
1824  btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1825  btrfs_set_backup_dev_root_gen(root_backup,
1826  btrfs_header_generation(info->dev_root->node));
1827  btrfs_set_backup_dev_root_level(root_backup,
1828  btrfs_header_level(info->dev_root->node));
1829 
1830  btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1831  btrfs_set_backup_csum_root_gen(root_backup,
1832  btrfs_header_generation(info->csum_root->node));
1833  btrfs_set_backup_csum_root_level(root_backup,
1834  btrfs_header_level(info->csum_root->node));
1835 
1836  btrfs_set_backup_total_bytes(root_backup,
1837  btrfs_super_total_bytes(info->super_copy));
1838  btrfs_set_backup_bytes_used(root_backup,
1839  btrfs_super_bytes_used(info->super_copy));
1840  btrfs_set_backup_num_devices(root_backup,
1841  btrfs_super_num_devices(info->super_copy));
1842 
1843  /*
1844  * if we don't copy this out to the super_copy, it won't get remembered
1845  * for the next commit
1846  */
1847  memcpy(&info->super_copy->super_roots,
1848  &info->super_for_commit->super_roots,
1849  sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1850 }
1851 
1852 /*
1853  * this copies info out of the root backup array and back into
1854  * the in-memory super block. It is meant to help iterate through
1855  * the array, so you send it the number of backups you've already
1856  * tried and the last backup index you used.
1857  *
1858  * this returns -1 when it has tried all the backups
1859  */
1860 static noinline int next_root_backup(struct btrfs_fs_info *info,
1861  struct btrfs_super_block *super,
1862  int *num_backups_tried, int *backup_index)
1863 {
1864  struct btrfs_root_backup *root_backup;
1865  int newest = *backup_index;
1866 
1867  if (*num_backups_tried == 0) {
1868  u64 gen = btrfs_super_generation(super);
1869 
1870  newest = find_newest_super_backup(info, gen);
1871  if (newest == -1)
1872  return -1;
1873 
1874  *backup_index = newest;
1875  *num_backups_tried = 1;
1876  } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1877  /* we've tried all the backups, all done */
1878  return -1;
1879  } else {
1880  /* jump to the next oldest backup */
1881  newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1882  BTRFS_NUM_BACKUP_ROOTS;
1883  *backup_index = newest;
1884  *num_backups_tried += 1;
1885  }
1886  root_backup = super->super_roots + newest;
1887 
1888  btrfs_set_super_generation(super,
1889  btrfs_backup_tree_root_gen(root_backup));
1890  btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1891  btrfs_set_super_root_level(super,
1892  btrfs_backup_tree_root_level(root_backup));
1893  btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1894 
1895  /*
1896  * fixme: the total bytes and num_devices need to match or we should
1897  * need a fsck
1898  */
1899  btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1900  btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1901  return 0;
1902 }
1903 
1904 /* helper to cleanup tree roots */
1905 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1906 {
1907  free_extent_buffer(info->tree_root->node);
1908  free_extent_buffer(info->tree_root->commit_root);
1909  free_extent_buffer(info->dev_root->node);
1910  free_extent_buffer(info->dev_root->commit_root);
1911  free_extent_buffer(info->extent_root->node);
1912  free_extent_buffer(info->extent_root->commit_root);
1913  free_extent_buffer(info->csum_root->node);
1914  free_extent_buffer(info->csum_root->commit_root);
1915  if (info->quota_root) {
1916  free_extent_buffer(info->quota_root->node);
1917  free_extent_buffer(info->quota_root->commit_root);
1918  }
1919 
1920  info->tree_root->node = NULL;
1921  info->tree_root->commit_root = NULL;
1922  info->dev_root->node = NULL;
1923  info->dev_root->commit_root = NULL;
1924  info->extent_root->node = NULL;
1925  info->extent_root->commit_root = NULL;
1926  info->csum_root->node = NULL;
1927  info->csum_root->commit_root = NULL;
1928  if (info->quota_root) {
1929  info->quota_root->node = NULL;
1930  info->quota_root->commit_root = NULL;
1931  }
1932 
1933  if (chunk_root) {
1934  free_extent_buffer(info->chunk_root->node);
1935  free_extent_buffer(info->chunk_root->commit_root);
1936  info->chunk_root->node = NULL;
1937  info->chunk_root->commit_root = NULL;
1938  }
1939 }
1940 
1941 
1943  struct btrfs_fs_devices *fs_devices,
1944  char *options)
1945 {
1946  u32 sectorsize;
1947  u32 nodesize;
1948  u32 leafsize;
1949  u32 blocksize;
1950  u32 stripesize;
1951  u64 generation;
1952  u64 features;
1953  struct btrfs_key location;
1954  struct buffer_head *bh;
1955  struct btrfs_super_block *disk_super;
1956  struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1957  struct btrfs_root *tree_root;
1958  struct btrfs_root *extent_root;
1959  struct btrfs_root *csum_root;
1960  struct btrfs_root *chunk_root;
1961  struct btrfs_root *dev_root;
1962  struct btrfs_root *quota_root;
1963  struct btrfs_root *log_tree_root;
1964  int ret;
1965  int err = -EINVAL;
1966  int num_backups_tried = 0;
1967  int backup_index = 0;
1968 
1969  tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1970  extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1971  csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1972  chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1973  dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1974  quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1975 
1976  if (!tree_root || !extent_root || !csum_root ||
1977  !chunk_root || !dev_root || !quota_root) {
1978  err = -ENOMEM;
1979  goto fail;
1980  }
1981 
1982  ret = init_srcu_struct(&fs_info->subvol_srcu);
1983  if (ret) {
1984  err = ret;
1985  goto fail;
1986  }
1987 
1988  ret = setup_bdi(fs_info, &fs_info->bdi);
1989  if (ret) {
1990  err = ret;
1991  goto fail_srcu;
1992  }
1993 
1994  fs_info->btree_inode = new_inode(sb);
1995  if (!fs_info->btree_inode) {
1996  err = -ENOMEM;
1997  goto fail_bdi;
1998  }
1999 
2000  mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2001 
2003  INIT_LIST_HEAD(&fs_info->trans_list);
2004  INIT_LIST_HEAD(&fs_info->dead_roots);
2005  INIT_LIST_HEAD(&fs_info->delayed_iputs);
2006  INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2007  INIT_LIST_HEAD(&fs_info->ordered_operations);
2008  INIT_LIST_HEAD(&fs_info->caching_block_groups);
2009  spin_lock_init(&fs_info->delalloc_lock);
2010  spin_lock_init(&fs_info->trans_lock);
2012  spin_lock_init(&fs_info->delayed_iput_lock);
2014  spin_lock_init(&fs_info->free_chunk_lock);
2015  spin_lock_init(&fs_info->tree_mod_seq_lock);
2016  rwlock_init(&fs_info->tree_mod_log_lock);
2017  mutex_init(&fs_info->reloc_mutex);
2018 
2019  init_completion(&fs_info->kobj_unregister);
2020  INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2021  INIT_LIST_HEAD(&fs_info->space_info);
2022  INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2023  btrfs_mapping_init(&fs_info->mapping_tree);
2033  atomic_set(&fs_info->nr_async_submits, 0);
2034  atomic_set(&fs_info->async_delalloc_pages, 0);
2035  atomic_set(&fs_info->async_submit_draining, 0);
2036  atomic_set(&fs_info->nr_async_bios, 0);
2037  atomic_set(&fs_info->defrag_running, 0);
2038  atomic_set(&fs_info->tree_mod_seq, 0);
2039  fs_info->sb = sb;
2040  fs_info->max_inline = 8192 * 1024;
2041  fs_info->metadata_ratio = 0;
2042  fs_info->defrag_inodes = RB_ROOT;
2043  fs_info->trans_no_join = 0;
2044  fs_info->free_chunk_space = 0;
2045  fs_info->tree_mod_log = RB_ROOT;
2046 
2047  /* readahead state */
2049  spin_lock_init(&fs_info->reada_lock);
2050 
2051  fs_info->thread_pool_size = min_t(unsigned long,
2052  num_online_cpus() + 2, 8);
2053 
2054  INIT_LIST_HEAD(&fs_info->ordered_extents);
2056  fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2057  GFP_NOFS);
2058  if (!fs_info->delayed_root) {
2059  err = -ENOMEM;
2060  goto fail_iput;
2061  }
2062  btrfs_init_delayed_root(fs_info->delayed_root);
2063 
2064  mutex_init(&fs_info->scrub_lock);
2065  atomic_set(&fs_info->scrubs_running, 0);
2066  atomic_set(&fs_info->scrub_pause_req, 0);
2067  atomic_set(&fs_info->scrubs_paused, 0);
2068  atomic_set(&fs_info->scrub_cancel_req, 0);
2070  init_rwsem(&fs_info->scrub_super_lock);
2071  fs_info->scrub_workers_refcnt = 0;
2072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2073  fs_info->check_integrity_print_mask = 0;
2074 #endif
2075 
2076  spin_lock_init(&fs_info->balance_lock);
2077  mutex_init(&fs_info->balance_mutex);
2078  atomic_set(&fs_info->balance_running, 0);
2079  atomic_set(&fs_info->balance_pause_req, 0);
2080  atomic_set(&fs_info->balance_cancel_req, 0);
2081  fs_info->balance_ctl = NULL;
2083 
2084  sb->s_blocksize = 4096;
2085  sb->s_blocksize_bits = blksize_bits(4096);
2086  sb->s_bdi = &fs_info->bdi;
2087 
2088  fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2089  set_nlink(fs_info->btree_inode, 1);
2090  /*
2091  * we set the i_size on the btree inode to the max possible int.
2092  * the real end of the address space is determined by all of
2093  * the devices in the system
2094  */
2095  fs_info->btree_inode->i_size = OFFSET_MAX;
2096  fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2097  fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2098 
2099  RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2100  extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2101  fs_info->btree_inode->i_mapping);
2102  BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2103  extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2104 
2105  BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2106 
2107  BTRFS_I(fs_info->btree_inode)->root = tree_root;
2108  memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2109  sizeof(struct btrfs_key));
2111  &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2112  insert_inode_hash(fs_info->btree_inode);
2113 
2115  fs_info->block_group_cache_tree = RB_ROOT;
2116 
2117  extent_io_tree_init(&fs_info->freed_extents[0],
2118  fs_info->btree_inode->i_mapping);
2119  extent_io_tree_init(&fs_info->freed_extents[1],
2120  fs_info->btree_inode->i_mapping);
2121  fs_info->pinned_extents = &fs_info->freed_extents[0];
2122  fs_info->do_barriers = 1;
2123 
2124 
2126  mutex_init(&fs_info->tree_log_mutex);
2127  mutex_init(&fs_info->chunk_mutex);
2129  mutex_init(&fs_info->cleaner_mutex);
2130  mutex_init(&fs_info->volume_mutex);
2131  init_rwsem(&fs_info->extent_commit_sem);
2132  init_rwsem(&fs_info->cleanup_work_sem);
2133  init_rwsem(&fs_info->subvol_sem);
2134 
2135  spin_lock_init(&fs_info->qgroup_lock);
2136  fs_info->qgroup_tree = RB_ROOT;
2137  INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2138  fs_info->qgroup_seq = 1;
2139  fs_info->quota_enabled = 0;
2140  fs_info->pending_quota_state = 0;
2141 
2144 
2149 
2150  __setup_root(4096, 4096, 4096, 4096, tree_root,
2151  fs_info, BTRFS_ROOT_TREE_OBJECTID);
2152 
2153  invalidate_bdev(fs_devices->latest_bdev);
2154  bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2155  if (!bh) {
2156  err = -EINVAL;
2157  goto fail_alloc;
2158  }
2159 
2160  memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2161  memcpy(fs_info->super_for_commit, fs_info->super_copy,
2162  sizeof(*fs_info->super_for_commit));
2163  brelse(bh);
2164 
2165  memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2166 
2167  disk_super = fs_info->super_copy;
2168  if (!btrfs_super_root(disk_super))
2169  goto fail_alloc;
2170 
2171  /* check FS state, whether FS is broken. */
2172  fs_info->fs_state |= btrfs_super_flags(disk_super);
2173 
2174  ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2175  if (ret) {
2176  printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2177  err = ret;
2178  goto fail_alloc;
2179  }
2180 
2181  /*
2182  * run through our array of backup supers and setup
2183  * our ring pointer to the oldest one
2184  */
2185  generation = btrfs_super_generation(disk_super);
2186  find_oldest_super_backup(fs_info, generation);
2187 
2188  /*
2189  * In the long term, we'll store the compression type in the super
2190  * block, and it'll be used for per file compression control.
2191  */
2193 
2194  ret = btrfs_parse_options(tree_root, options);
2195  if (ret) {
2196  err = ret;
2197  goto fail_alloc;
2198  }
2199 
2200  features = btrfs_super_incompat_flags(disk_super) &
2202  if (features) {
2203  printk(KERN_ERR "BTRFS: couldn't mount because of "
2204  "unsupported optional features (%Lx).\n",
2205  (unsigned long long)features);
2206  err = -EINVAL;
2207  goto fail_alloc;
2208  }
2209 
2210  if (btrfs_super_leafsize(disk_super) !=
2211  btrfs_super_nodesize(disk_super)) {
2212  printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2213  "blocksizes don't match. node %d leaf %d\n",
2214  btrfs_super_nodesize(disk_super),
2215  btrfs_super_leafsize(disk_super));
2216  err = -EINVAL;
2217  goto fail_alloc;
2218  }
2219  if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2220  printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2221  "blocksize (%d) was too large\n",
2222  btrfs_super_leafsize(disk_super));
2223  err = -EINVAL;
2224  goto fail_alloc;
2225  }
2226 
2227  features = btrfs_super_incompat_flags(disk_super);
2229  if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2231 
2232  /*
2233  * flag our filesystem as having big metadata blocks if
2234  * they are bigger than the page size
2235  */
2236  if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2237  if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2238  printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2240  }
2241 
2242  nodesize = btrfs_super_nodesize(disk_super);
2243  leafsize = btrfs_super_leafsize(disk_super);
2244  sectorsize = btrfs_super_sectorsize(disk_super);
2245  stripesize = btrfs_super_stripesize(disk_super);
2246 
2247  /*
2248  * mixed block groups end up with duplicate but slightly offset
2249  * extent buffers for the same range. It leads to corruptions
2250  */
2251  if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2252  (sectorsize != leafsize)) {
2253  printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2254  "are not allowed for mixed block groups on %s\n",
2255  sb->s_id);
2256  goto fail_alloc;
2257  }
2258 
2259  btrfs_set_super_incompat_flags(disk_super, features);
2260 
2261  features = btrfs_super_compat_ro_flags(disk_super) &
2263  if (!(sb->s_flags & MS_RDONLY) && features) {
2264  printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2265  "unsupported option features (%Lx).\n",
2266  (unsigned long long)features);
2267  err = -EINVAL;
2268  goto fail_alloc;
2269  }
2270 
2272  "genwork", 1, NULL);
2273 
2274  btrfs_init_workers(&fs_info->workers, "worker",
2275  fs_info->thread_pool_size,
2276  &fs_info->generic_worker);
2277 
2278  btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2279  fs_info->thread_pool_size,
2280  &fs_info->generic_worker);
2281 
2282  btrfs_init_workers(&fs_info->submit_workers, "submit",
2283  min_t(u64, fs_devices->num_devices,
2284  fs_info->thread_pool_size),
2285  &fs_info->generic_worker);
2286 
2287  btrfs_init_workers(&fs_info->caching_workers, "cache",
2288  2, &fs_info->generic_worker);
2289 
2290  /* a higher idle thresh on the submit workers makes it much more
2291  * likely that bios will be send down in a sane order to the
2292  * devices
2293  */
2294  fs_info->submit_workers.idle_thresh = 64;
2295 
2296  fs_info->workers.idle_thresh = 16;
2297  fs_info->workers.ordered = 1;
2298 
2299  fs_info->delalloc_workers.idle_thresh = 2;
2300  fs_info->delalloc_workers.ordered = 1;
2301 
2302  btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2303  &fs_info->generic_worker);
2304  btrfs_init_workers(&fs_info->endio_workers, "endio",
2305  fs_info->thread_pool_size,
2306  &fs_info->generic_worker);
2307  btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2308  fs_info->thread_pool_size,
2309  &fs_info->generic_worker);
2311  "endio-meta-write", fs_info->thread_pool_size,
2312  &fs_info->generic_worker);
2313  btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2314  fs_info->thread_pool_size,
2315  &fs_info->generic_worker);
2316  btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2317  1, &fs_info->generic_worker);
2318  btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2319  fs_info->thread_pool_size,
2320  &fs_info->generic_worker);
2321  btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2322  fs_info->thread_pool_size,
2323  &fs_info->generic_worker);
2324 
2325  /*
2326  * endios are largely parallel and should have a very
2327  * low idle thresh
2328  */
2329  fs_info->endio_workers.idle_thresh = 4;
2330  fs_info->endio_meta_workers.idle_thresh = 4;
2331 
2332  fs_info->endio_write_workers.idle_thresh = 2;
2333  fs_info->endio_meta_write_workers.idle_thresh = 2;
2334  fs_info->readahead_workers.idle_thresh = 2;
2335 
2336  /*
2337  * btrfs_start_workers can really only fail because of ENOMEM so just
2338  * return -ENOMEM if any of these fail.
2339  */
2340  ret = btrfs_start_workers(&fs_info->workers);
2341  ret |= btrfs_start_workers(&fs_info->generic_worker);
2342  ret |= btrfs_start_workers(&fs_info->submit_workers);
2343  ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2344  ret |= btrfs_start_workers(&fs_info->fixup_workers);
2345  ret |= btrfs_start_workers(&fs_info->endio_workers);
2346  ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2348  ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2349  ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2350  ret |= btrfs_start_workers(&fs_info->delayed_workers);
2351  ret |= btrfs_start_workers(&fs_info->caching_workers);
2352  ret |= btrfs_start_workers(&fs_info->readahead_workers);
2353  if (ret) {
2354  err = -ENOMEM;
2355  goto fail_sb_buffer;
2356  }
2357 
2358  fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2359  fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2360  4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2361 
2362  tree_root->nodesize = nodesize;
2363  tree_root->leafsize = leafsize;
2364  tree_root->sectorsize = sectorsize;
2365  tree_root->stripesize = stripesize;
2366 
2367  sb->s_blocksize = sectorsize;
2368  sb->s_blocksize_bits = blksize_bits(sectorsize);
2369 
2370  if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2371  sizeof(disk_super->magic))) {
2372  printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2373  goto fail_sb_buffer;
2374  }
2375 
2376  if (sectorsize != PAGE_SIZE) {
2377  printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2378  "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2379  goto fail_sb_buffer;
2380  }
2381 
2382  mutex_lock(&fs_info->chunk_mutex);
2383  ret = btrfs_read_sys_array(tree_root);
2384  mutex_unlock(&fs_info->chunk_mutex);
2385  if (ret) {
2386  printk(KERN_WARNING "btrfs: failed to read the system "
2387  "array on %s\n", sb->s_id);
2388  goto fail_sb_buffer;
2389  }
2390 
2391  blocksize = btrfs_level_size(tree_root,
2392  btrfs_super_chunk_root_level(disk_super));
2393  generation = btrfs_super_chunk_root_generation(disk_super);
2394 
2395  __setup_root(nodesize, leafsize, sectorsize, stripesize,
2396  chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2397 
2398  chunk_root->node = read_tree_block(chunk_root,
2399  btrfs_super_chunk_root(disk_super),
2400  blocksize, generation);
2401  BUG_ON(!chunk_root->node); /* -ENOMEM */
2402  if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2403  printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2404  sb->s_id);
2405  goto fail_tree_roots;
2406  }
2407  btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2408  chunk_root->commit_root = btrfs_root_node(chunk_root);
2409 
2410  read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2411  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2412  BTRFS_UUID_SIZE);
2413 
2414  ret = btrfs_read_chunk_tree(chunk_root);
2415  if (ret) {
2416  printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2417  sb->s_id);
2418  goto fail_tree_roots;
2419  }
2420 
2421  btrfs_close_extra_devices(fs_devices);
2422 
2423  if (!fs_devices->latest_bdev) {
2424  printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2425  sb->s_id);
2426  goto fail_tree_roots;
2427  }
2428 
2429 retry_root_backup:
2430  blocksize = btrfs_level_size(tree_root,
2431  btrfs_super_root_level(disk_super));
2432  generation = btrfs_super_generation(disk_super);
2433 
2434  tree_root->node = read_tree_block(tree_root,
2435  btrfs_super_root(disk_super),
2436  blocksize, generation);
2437  if (!tree_root->node ||
2438  !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2439  printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2440  sb->s_id);
2441 
2442  goto recovery_tree_root;
2443  }
2444 
2445  btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2446  tree_root->commit_root = btrfs_root_node(tree_root);
2447 
2448  ret = find_and_setup_root(tree_root, fs_info,
2449  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2450  if (ret)
2451  goto recovery_tree_root;
2452  extent_root->track_dirty = 1;
2453 
2454  ret = find_and_setup_root(tree_root, fs_info,
2455  BTRFS_DEV_TREE_OBJECTID, dev_root);
2456  if (ret)
2457  goto recovery_tree_root;
2458  dev_root->track_dirty = 1;
2459 
2460  ret = find_and_setup_root(tree_root, fs_info,
2461  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2462  if (ret)
2463  goto recovery_tree_root;
2464  csum_root->track_dirty = 1;
2465 
2466  ret = find_and_setup_root(tree_root, fs_info,
2467  BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2468  if (ret) {
2469  kfree(quota_root);
2470  quota_root = fs_info->quota_root = NULL;
2471  } else {
2472  quota_root->track_dirty = 1;
2473  fs_info->quota_enabled = 1;
2474  fs_info->pending_quota_state = 1;
2475  }
2476 
2477  fs_info->generation = generation;
2478  fs_info->last_trans_committed = generation;
2479 
2480  ret = btrfs_recover_balance(fs_info);
2481  if (ret) {
2482  printk(KERN_WARNING "btrfs: failed to recover balance\n");
2483  goto fail_block_groups;
2484  }
2485 
2486  ret = btrfs_init_dev_stats(fs_info);
2487  if (ret) {
2488  printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2489  ret);
2490  goto fail_block_groups;
2491  }
2492 
2493  ret = btrfs_init_space_info(fs_info);
2494  if (ret) {
2495  printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2496  goto fail_block_groups;
2497  }
2498 
2499  ret = btrfs_read_block_groups(extent_root);
2500  if (ret) {
2501  printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2502  goto fail_block_groups;
2503  }
2506 
2507  fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2508  "btrfs-cleaner");
2509  if (IS_ERR(fs_info->cleaner_kthread))
2510  goto fail_block_groups;
2511 
2512  fs_info->transaction_kthread = kthread_run(transaction_kthread,
2513  tree_root,
2514  "btrfs-transaction");
2515  if (IS_ERR(fs_info->transaction_kthread))
2516  goto fail_cleaner;
2517 
2518  if (!btrfs_test_opt(tree_root, SSD) &&
2519  !btrfs_test_opt(tree_root, NOSSD) &&
2520  !fs_info->fs_devices->rotating) {
2521  printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2522  "mode\n");
2523  btrfs_set_opt(fs_info->mount_opt, SSD);
2524  }
2525 
2526 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2527  if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2528  ret = btrfsic_mount(tree_root, fs_devices,
2529  btrfs_test_opt(tree_root,
2530  CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2531  1 : 0,
2532  fs_info->check_integrity_print_mask);
2533  if (ret)
2534  printk(KERN_WARNING "btrfs: failed to initialize"
2535  " integrity check module %s\n", sb->s_id);
2536  }
2537 #endif
2538  ret = btrfs_read_qgroup_config(fs_info);
2539  if (ret)
2540  goto fail_trans_kthread;
2541 
2542  /* do not make disk changes in broken FS */
2543  if (btrfs_super_log_root(disk_super) != 0) {
2544  u64 bytenr = btrfs_super_log_root(disk_super);
2545 
2546  if (fs_devices->rw_devices == 0) {
2547  printk(KERN_WARNING "Btrfs log replay required "
2548  "on RO media\n");
2549  err = -EIO;
2550  goto fail_qgroup;
2551  }
2552  blocksize =
2553  btrfs_level_size(tree_root,
2554  btrfs_super_log_root_level(disk_super));
2555 
2556  log_tree_root = btrfs_alloc_root(fs_info);
2557  if (!log_tree_root) {
2558  err = -ENOMEM;
2559  goto fail_qgroup;
2560  }
2561 
2562  __setup_root(nodesize, leafsize, sectorsize, stripesize,
2563  log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2564 
2565  log_tree_root->node = read_tree_block(tree_root, bytenr,
2566  blocksize,
2567  generation + 1);
2568  /* returns with log_tree_root freed on success */
2569  ret = btrfs_recover_log_trees(log_tree_root);
2570  if (ret) {
2571  btrfs_error(tree_root->fs_info, ret,
2572  "Failed to recover log tree");
2573  free_extent_buffer(log_tree_root->node);
2574  kfree(log_tree_root);
2575  goto fail_trans_kthread;
2576  }
2577 
2578  if (sb->s_flags & MS_RDONLY) {
2579  ret = btrfs_commit_super(tree_root);
2580  if (ret)
2581  goto fail_trans_kthread;
2582  }
2583  }
2584 
2585  ret = btrfs_find_orphan_roots(tree_root);
2586  if (ret)
2587  goto fail_trans_kthread;
2588 
2589  if (!(sb->s_flags & MS_RDONLY)) {
2590  ret = btrfs_cleanup_fs_roots(fs_info);
2591  if (ret)
2592  goto fail_trans_kthread;
2593 
2594  ret = btrfs_recover_relocation(tree_root);
2595  if (ret < 0) {
2597  "btrfs: failed to recover relocation\n");
2598  err = -EINVAL;
2599  goto fail_qgroup;
2600  }
2601  }
2602 
2603  location.objectid = BTRFS_FS_TREE_OBJECTID;
2604  location.type = BTRFS_ROOT_ITEM_KEY;
2605  location.offset = (u64)-1;
2606 
2607  fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2608  if (!fs_info->fs_root)
2609  goto fail_qgroup;
2610  if (IS_ERR(fs_info->fs_root)) {
2611  err = PTR_ERR(fs_info->fs_root);
2612  goto fail_qgroup;
2613  }
2614 
2615  if (sb->s_flags & MS_RDONLY)
2616  return 0;
2617 
2618  down_read(&fs_info->cleanup_work_sem);
2619  if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2620  (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2621  up_read(&fs_info->cleanup_work_sem);
2622  close_ctree(tree_root);
2623  return ret;
2624  }
2625  up_read(&fs_info->cleanup_work_sem);
2626 
2627  ret = btrfs_resume_balance_async(fs_info);
2628  if (ret) {
2629  printk(KERN_WARNING "btrfs: failed to resume balance\n");
2630  close_ctree(tree_root);
2631  return ret;
2632  }
2633 
2634  return 0;
2635 
2636 fail_qgroup:
2637  btrfs_free_qgroup_config(fs_info);
2638 fail_trans_kthread:
2640 fail_cleaner:
2641  kthread_stop(fs_info->cleaner_kthread);
2642 
2643  /*
2644  * make sure we're done with the btree inode before we stop our
2645  * kthreads
2646  */
2647  filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2648  invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2649 
2650 fail_block_groups:
2651  btrfs_free_block_groups(fs_info);
2652 
2653 fail_tree_roots:
2654  free_root_pointers(fs_info, 1);
2655 
2656 fail_sb_buffer:
2659  btrfs_stop_workers(&fs_info->fixup_workers);
2661  btrfs_stop_workers(&fs_info->workers);
2662  btrfs_stop_workers(&fs_info->endio_workers);
2670 fail_alloc:
2671 fail_iput:
2673 
2674  invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2675  iput(fs_info->btree_inode);
2676 fail_bdi:
2677  bdi_destroy(&fs_info->bdi);
2678 fail_srcu:
2679  cleanup_srcu_struct(&fs_info->subvol_srcu);
2680 fail:
2681  btrfs_close_devices(fs_info->fs_devices);
2682  return err;
2683 
2684 recovery_tree_root:
2685  if (!btrfs_test_opt(tree_root, RECOVERY))
2686  goto fail_tree_roots;
2687 
2688  free_root_pointers(fs_info, 0);
2689 
2690  /* don't use the log in recovery mode, it won't be valid */
2691  btrfs_set_super_log_root(disk_super, 0);
2692 
2693  /* we can't trust the free space cache either */
2694  btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2695 
2696  ret = next_root_backup(fs_info, fs_info->super_copy,
2697  &num_backups_tried, &backup_index);
2698  if (ret == -1)
2699  goto fail_block_groups;
2700  goto retry_root_backup;
2701 }
2702 
2703 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2704 {
2705  if (uptodate) {
2706  set_buffer_uptodate(bh);
2707  } else {
2708  struct btrfs_device *device = (struct btrfs_device *)
2709  bh->b_private;
2710 
2711  printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2712  "I/O error on %s\n",
2713  rcu_str_deref(device->name));
2714  /* note, we dont' set_buffer_write_io_error because we have
2715  * our own ways of dealing with the IO errors
2716  */
2717  clear_buffer_uptodate(bh);
2719  }
2720  unlock_buffer(bh);
2721  put_bh(bh);
2722 }
2723 
2724 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2725 {
2726  struct buffer_head *bh;
2727  struct buffer_head *latest = NULL;
2728  struct btrfs_super_block *super;
2729  int i;
2730  u64 transid = 0;
2731  u64 bytenr;
2732 
2733  /* we would like to check all the supers, but that would make
2734  * a btrfs mount succeed after a mkfs from a different FS.
2735  * So, we need to add a special mount option to scan for
2736  * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2737  */
2738  for (i = 0; i < 1; i++) {
2739  bytenr = btrfs_sb_offset(i);
2740  if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2741  break;
2742  bh = __bread(bdev, bytenr / 4096, 4096);
2743  if (!bh)
2744  continue;
2745 
2746  super = (struct btrfs_super_block *)bh->b_data;
2747  if (btrfs_super_bytenr(super) != bytenr ||
2748  strncmp((char *)(&super->magic), BTRFS_MAGIC,
2749  sizeof(super->magic))) {
2750  brelse(bh);
2751  continue;
2752  }
2753 
2754  if (!latest || btrfs_super_generation(super) > transid) {
2755  brelse(latest);
2756  latest = bh;
2757  transid = btrfs_super_generation(super);
2758  } else {
2759  brelse(bh);
2760  }
2761  }
2762  return latest;
2763 }
2764 
2765 /*
2766  * this should be called twice, once with wait == 0 and
2767  * once with wait == 1. When wait == 0 is done, all the buffer heads
2768  * we write are pinned.
2769  *
2770  * They are released when wait == 1 is done.
2771  * max_mirrors must be the same for both runs, and it indicates how
2772  * many supers on this one device should be written.
2773  *
2774  * max_mirrors == 0 means to write them all.
2775  */
2776 static int write_dev_supers(struct btrfs_device *device,
2777  struct btrfs_super_block *sb,
2778  int do_barriers, int wait, int max_mirrors)
2779 {
2780  struct buffer_head *bh;
2781  int i;
2782  int ret;
2783  int errors = 0;
2784  u32 crc;
2785  u64 bytenr;
2786 
2787  if (max_mirrors == 0)
2788  max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2789 
2790  for (i = 0; i < max_mirrors; i++) {
2791  bytenr = btrfs_sb_offset(i);
2792  if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2793  break;
2794 
2795  if (wait) {
2796  bh = __find_get_block(device->bdev, bytenr / 4096,
2798  BUG_ON(!bh);
2799  wait_on_buffer(bh);
2800  if (!buffer_uptodate(bh))
2801  errors++;
2802 
2803  /* drop our reference */
2804  brelse(bh);
2805 
2806  /* drop the reference from the wait == 0 run */
2807  brelse(bh);
2808  continue;
2809  } else {
2810  btrfs_set_super_bytenr(sb, bytenr);
2811 
2812  crc = ~(u32)0;
2813  crc = btrfs_csum_data(NULL, (char *)sb +
2814  BTRFS_CSUM_SIZE, crc,
2816  BTRFS_CSUM_SIZE);
2817  btrfs_csum_final(crc, sb->csum);
2818 
2819  /*
2820  * one reference for us, and we leave it for the
2821  * caller
2822  */
2823  bh = __getblk(device->bdev, bytenr / 4096,
2825  memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2826 
2827  /* one reference for submit_bh */
2828  get_bh(bh);
2829 
2830  set_buffer_uptodate(bh);
2831  lock_buffer(bh);
2832  bh->b_end_io = btrfs_end_buffer_write_sync;
2833  bh->b_private = device;
2834  }
2835 
2836  /*
2837  * we fua the first super. The others we allow
2838  * to go down lazy.
2839  */
2840  ret = btrfsic_submit_bh(WRITE_FUA, bh);
2841  if (ret)
2842  errors++;
2843  }
2844  return errors < i ? 0 : -1;
2845 }
2846 
2847 /*
2848  * endio for the write_dev_flush, this will wake anyone waiting
2849  * for the barrier when it is done
2850  */
2851 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2852 {
2853  if (err) {
2854  if (err == -EOPNOTSUPP)
2855  set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2856  clear_bit(BIO_UPTODATE, &bio->bi_flags);
2857  }
2858  if (bio->bi_private)
2859  complete(bio->bi_private);
2860  bio_put(bio);
2861 }
2862 
2863 /*
2864  * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2865  * sent down. With wait == 1, it waits for the previous flush.
2866  *
2867  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2868  * capable
2869  */
2870 static int write_dev_flush(struct btrfs_device *device, int wait)
2871 {
2872  struct bio *bio;
2873  int ret = 0;
2874 
2875  if (device->nobarriers)
2876  return 0;
2877 
2878  if (wait) {
2879  bio = device->flush_bio;
2880  if (!bio)
2881  return 0;
2882 
2883  wait_for_completion(&device->flush_wait);
2884 
2885  if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2886  printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2887  rcu_str_deref(device->name));
2888  device->nobarriers = 1;
2889  } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2890  ret = -EIO;
2893  }
2894 
2895  /* drop the reference from the wait == 0 run */
2896  bio_put(bio);
2897  device->flush_bio = NULL;
2898 
2899  return ret;
2900  }
2901 
2902  /*
2903  * one reference for us, and we leave it for the
2904  * caller
2905  */
2906  device->flush_bio = NULL;
2907  bio = bio_alloc(GFP_NOFS, 0);
2908  if (!bio)
2909  return -ENOMEM;
2910 
2911  bio->bi_end_io = btrfs_end_empty_barrier;
2912  bio->bi_bdev = device->bdev;
2913  init_completion(&device->flush_wait);
2914  bio->bi_private = &device->flush_wait;
2915  device->flush_bio = bio;
2916 
2917  bio_get(bio);
2919 
2920  return 0;
2921 }
2922 
2923 /*
2924  * send an empty flush down to each device in parallel,
2925  * then wait for them
2926  */
2927 static int barrier_all_devices(struct btrfs_fs_info *info)
2928 {
2929  struct list_head *head;
2930  struct btrfs_device *dev;
2931  int errors_send = 0;
2932  int errors_wait = 0;
2933  int ret;
2934 
2935  /* send down all the barriers */
2936  head = &info->fs_devices->devices;
2937  list_for_each_entry_rcu(dev, head, dev_list) {
2938  if (!dev->bdev) {
2939  errors_send++;
2940  continue;
2941  }
2942  if (!dev->in_fs_metadata || !dev->writeable)
2943  continue;
2944 
2945  ret = write_dev_flush(dev, 0);
2946  if (ret)
2947  errors_send++;
2948  }
2949 
2950  /* wait for all the barriers */
2951  list_for_each_entry_rcu(dev, head, dev_list) {
2952  if (!dev->bdev) {
2953  errors_wait++;
2954  continue;
2955  }
2956  if (!dev->in_fs_metadata || !dev->writeable)
2957  continue;
2958 
2959  ret = write_dev_flush(dev, 1);
2960  if (ret)
2961  errors_wait++;
2962  }
2963  if (errors_send > info->num_tolerated_disk_barrier_failures ||
2964  errors_wait > info->num_tolerated_disk_barrier_failures)
2965  return -EIO;
2966  return 0;
2967 }
2968 
2970  struct btrfs_fs_info *fs_info)
2971 {
2972  struct btrfs_ioctl_space_info space;
2973  struct btrfs_space_info *sinfo;
2974  u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2977  BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2978  int num_types = 4;
2979  int i;
2980  int c;
2981  int num_tolerated_disk_barrier_failures =
2982  (int)fs_info->fs_devices->num_devices;
2983 
2984  for (i = 0; i < num_types; i++) {
2985  struct btrfs_space_info *tmp;
2986 
2987  sinfo = NULL;
2988  rcu_read_lock();
2989  list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
2990  if (tmp->flags == types[i]) {
2991  sinfo = tmp;
2992  break;
2993  }
2994  }
2995  rcu_read_unlock();
2996 
2997  if (!sinfo)
2998  continue;
2999 
3000  down_read(&sinfo->groups_sem);
3001  for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3002  if (!list_empty(&sinfo->block_groups[c])) {
3003  u64 flags;
3004 
3006  &sinfo->block_groups[c], &space);
3007  if (space.total_bytes == 0 ||
3008  space.used_bytes == 0)
3009  continue;
3010  flags = space.flags;
3011  /*
3012  * return
3013  * 0: if dup, single or RAID0 is configured for
3014  * any of metadata, system or data, else
3015  * 1: if RAID5 is configured, or if RAID1 or
3016  * RAID10 is configured and only two mirrors
3017  * are used, else
3018  * 2: if RAID6 is configured, else
3019  * num_mirrors - 1: if RAID1 or RAID10 is
3020  * configured and more than
3021  * 2 mirrors are used.
3022  */
3023  if (num_tolerated_disk_barrier_failures > 0 &&
3024  ((flags & (BTRFS_BLOCK_GROUP_DUP |
3027  == 0)))
3028  num_tolerated_disk_barrier_failures = 0;
3029  else if (num_tolerated_disk_barrier_failures > 1
3030  &&
3031  (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3033  num_tolerated_disk_barrier_failures = 1;
3034  }
3035  }
3036  up_read(&sinfo->groups_sem);
3037  }
3038 
3039  return num_tolerated_disk_barrier_failures;
3040 }
3041 
3042 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3043 {
3044  struct list_head *head;
3045  struct btrfs_device *dev;
3046  struct btrfs_super_block *sb;
3047  struct btrfs_dev_item *dev_item;
3048  int ret;
3049  int do_barriers;
3050  int max_errors;
3051  int total_errors = 0;
3052  u64 flags;
3053 
3054  max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3055  do_barriers = !btrfs_test_opt(root, NOBARRIER);
3056  backup_super_roots(root->fs_info);
3057 
3058  sb = root->fs_info->super_for_commit;
3059  dev_item = &sb->dev_item;
3060 
3061  mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3062  head = &root->fs_info->fs_devices->devices;
3063 
3064  if (do_barriers) {
3065  ret = barrier_all_devices(root->fs_info);
3066  if (ret) {
3067  mutex_unlock(
3068  &root->fs_info->fs_devices->device_list_mutex);
3069  btrfs_error(root->fs_info, ret,
3070  "errors while submitting device barriers.");
3071  return ret;
3072  }
3073  }
3074 
3075  list_for_each_entry_rcu(dev, head, dev_list) {
3076  if (!dev->bdev) {
3077  total_errors++;
3078  continue;
3079  }
3080  if (!dev->in_fs_metadata || !dev->writeable)
3081  continue;
3082 
3083  btrfs_set_stack_device_generation(dev_item, 0);
3084  btrfs_set_stack_device_type(dev_item, dev->type);
3085  btrfs_set_stack_device_id(dev_item, dev->devid);
3086  btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3087  btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3088  btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3089  btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3090  btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3091  memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3092  memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3093 
3094  flags = btrfs_super_flags(sb);
3095  btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3096 
3097  ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3098  if (ret)
3099  total_errors++;
3100  }
3101  if (total_errors > max_errors) {
3102  printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3103  total_errors);
3104 
3105  /* This shouldn't happen. FUA is masked off if unsupported */
3106  BUG();
3107  }
3108 
3109  total_errors = 0;
3110  list_for_each_entry_rcu(dev, head, dev_list) {
3111  if (!dev->bdev)
3112  continue;
3113  if (!dev->in_fs_metadata || !dev->writeable)
3114  continue;
3115 
3116  ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3117  if (ret)
3118  total_errors++;
3119  }
3120  mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3121  if (total_errors > max_errors) {
3122  btrfs_error(root->fs_info, -EIO,
3123  "%d errors while writing supers", total_errors);
3124  return -EIO;
3125  }
3126  return 0;
3127 }
3128 
3130  struct btrfs_root *root, int max_mirrors)
3131 {
3132  int ret;
3133 
3134  ret = write_all_supers(root, max_mirrors);
3135  return ret;
3136 }
3137 
3138 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3139 {
3140  spin_lock(&fs_info->fs_roots_radix_lock);
3142  (unsigned long)root->root_key.objectid);
3143  spin_unlock(&fs_info->fs_roots_radix_lock);
3144 
3145  if (btrfs_root_refs(&root->root_item) == 0)
3146  synchronize_srcu(&fs_info->subvol_srcu);
3147 
3150  free_fs_root(root);
3151 }
3152 
3153 static void free_fs_root(struct btrfs_root *root)
3154 {
3155  iput(root->cache_inode);
3156  WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3157  if (root->anon_dev)
3158  free_anon_bdev(root->anon_dev);
3159  free_extent_buffer(root->node);
3161  kfree(root->free_ino_ctl);
3162  kfree(root->free_ino_pinned);
3163  kfree(root->name);
3164  kfree(root);
3165 }
3166 
3167 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3168 {
3169  int ret;
3170  struct btrfs_root *gang[8];
3171  int i;
3172 
3173  while (!list_empty(&fs_info->dead_roots)) {
3174  gang[0] = list_entry(fs_info->dead_roots.next,
3175  struct btrfs_root, root_list);
3176  list_del(&gang[0]->root_list);
3177 
3178  if (gang[0]->in_radix) {
3179  btrfs_free_fs_root(fs_info, gang[0]);
3180  } else {
3181  free_extent_buffer(gang[0]->node);
3182  free_extent_buffer(gang[0]->commit_root);
3183  kfree(gang[0]);
3184  }
3185  }
3186 
3187  while (1) {
3188  ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3189  (void **)gang, 0,
3190  ARRAY_SIZE(gang));
3191  if (!ret)
3192  break;
3193  for (i = 0; i < ret; i++)
3194  btrfs_free_fs_root(fs_info, gang[i]);
3195  }
3196 }
3197 
3199 {
3200  u64 root_objectid = 0;
3201  struct btrfs_root *gang[8];
3202  int i;
3203  int ret;
3204 
3205  while (1) {
3206  ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3207  (void **)gang, root_objectid,
3208  ARRAY_SIZE(gang));
3209  if (!ret)
3210  break;
3211 
3212  root_objectid = gang[ret - 1]->root_key.objectid + 1;
3213  for (i = 0; i < ret; i++) {
3214  int err;
3215 
3216  root_objectid = gang[i]->root_key.objectid;
3217  err = btrfs_orphan_cleanup(gang[i]);
3218  if (err)
3219  return err;
3220  }
3221  root_objectid++;
3222  }
3223  return 0;
3224 }
3225 
3227 {
3228  struct btrfs_trans_handle *trans;
3229  int ret;
3230 
3231  mutex_lock(&root->fs_info->cleaner_mutex);
3234  mutex_unlock(&root->fs_info->cleaner_mutex);
3235 
3236  /* wait until ongoing cleanup work done */
3237  down_write(&root->fs_info->cleanup_work_sem);
3238  up_write(&root->fs_info->cleanup_work_sem);
3239 
3240  trans = btrfs_join_transaction(root);
3241  if (IS_ERR(trans))
3242  return PTR_ERR(trans);
3243  ret = btrfs_commit_transaction(trans, root);
3244  if (ret)
3245  return ret;
3246  /* run commit again to drop the original snapshot */
3247  trans = btrfs_join_transaction(root);
3248  if (IS_ERR(trans))
3249  return PTR_ERR(trans);
3250  ret = btrfs_commit_transaction(trans, root);
3251  if (ret)
3252  return ret;
3254  if (ret) {
3255  btrfs_error(root->fs_info, ret,
3256  "Failed to sync btree inode to disk.");
3257  return ret;
3258  }
3259 
3260  ret = write_ctree_super(NULL, root, 0);
3261  return ret;
3262 }
3263 
3264 int close_ctree(struct btrfs_root *root)
3265 {
3266  struct btrfs_fs_info *fs_info = root->fs_info;
3267  int ret;
3268 
3269  fs_info->closing = 1;
3270  smp_mb();
3271 
3272  /* pause restriper - we want to resume on mount */
3274 
3275  btrfs_scrub_cancel(root);
3276 
3277  /* wait for any defraggers to finish */
3278  wait_event(fs_info->transaction_wait,
3279  (atomic_read(&fs_info->defrag_running) == 0));
3280 
3281  /* clear out the rbtree of defraggable inodes */
3282  btrfs_run_defrag_inodes(fs_info);
3283 
3284  if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3285  ret = btrfs_commit_super(root);
3286  if (ret)
3287  printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3288  }
3289 
3290  if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3292 
3293  btrfs_put_block_group_cache(fs_info);
3294 
3296  kthread_stop(fs_info->cleaner_kthread);
3297 
3298  fs_info->closing = 2;
3299  smp_mb();
3300 
3302 
3303  if (fs_info->delalloc_bytes) {
3304  printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3305  (unsigned long long)fs_info->delalloc_bytes);
3306  }
3307 
3308  free_extent_buffer(fs_info->extent_root->node);
3309  free_extent_buffer(fs_info->extent_root->commit_root);
3310  free_extent_buffer(fs_info->tree_root->node);
3311  free_extent_buffer(fs_info->tree_root->commit_root);
3312  free_extent_buffer(fs_info->chunk_root->node);
3313  free_extent_buffer(fs_info->chunk_root->commit_root);
3314  free_extent_buffer(fs_info->dev_root->node);
3315  free_extent_buffer(fs_info->dev_root->commit_root);
3316  free_extent_buffer(fs_info->csum_root->node);
3317  free_extent_buffer(fs_info->csum_root->commit_root);
3318  if (fs_info->quota_root) {
3319  free_extent_buffer(fs_info->quota_root->node);
3320  free_extent_buffer(fs_info->quota_root->commit_root);
3321  }
3322 
3323  btrfs_free_block_groups(fs_info);
3324 
3325  del_fs_roots(fs_info);
3326 
3327  iput(fs_info->btree_inode);
3328 
3330  btrfs_stop_workers(&fs_info->fixup_workers);
3332  btrfs_stop_workers(&fs_info->workers);
3333  btrfs_stop_workers(&fs_info->endio_workers);
3342 
3343 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3344  if (btrfs_test_opt(root, CHECK_INTEGRITY))
3345  btrfsic_unmount(root, fs_info->fs_devices);
3346 #endif
3347 
3348  btrfs_close_devices(fs_info->fs_devices);
3350 
3351  bdi_destroy(&fs_info->bdi);
3352  cleanup_srcu_struct(&fs_info->subvol_srcu);
3353 
3354  return 0;
3355 }
3356 
3357 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3358  int atomic)
3359 {
3360  int ret;
3361  struct inode *btree_inode = buf->pages[0]->mapping->host;
3362 
3363  ret = extent_buffer_uptodate(buf);
3364  if (!ret)
3365  return ret;
3366 
3367  ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3368  parent_transid, atomic);
3369  if (ret == -EAGAIN)
3370  return ret;
3371  return !ret;
3372 }
3373 
3375 {
3376  return set_extent_buffer_uptodate(buf);
3377 }
3378 
3380 {
3381  struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3382  u64 transid = btrfs_header_generation(buf);
3383  int was_dirty;
3384 
3386  if (transid != root->fs_info->generation) {
3387  printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3388  "found %llu running %llu\n",
3389  (unsigned long long)buf->start,
3390  (unsigned long long)transid,
3391  (unsigned long long)root->fs_info->generation);
3392  WARN_ON(1);
3393  }
3394  was_dirty = set_extent_buffer_dirty(buf);
3395  if (!was_dirty) {
3396  spin_lock(&root->fs_info->delalloc_lock);
3397  root->fs_info->dirty_metadata_bytes += buf->len;
3398  spin_unlock(&root->fs_info->delalloc_lock);
3399  }
3400 }
3401 
3402 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3403 {
3404  /*
3405  * looks as though older kernels can get into trouble with
3406  * this code, they end up stuck in balance_dirty_pages forever
3407  */
3408  u64 num_dirty;
3409  unsigned long thresh = 32 * 1024 * 1024;
3410 
3411  if (current->flags & PF_MEMALLOC)
3412  return;
3413 
3415 
3416  num_dirty = root->fs_info->dirty_metadata_bytes;
3417 
3418  if (num_dirty > thresh) {
3420  root->fs_info->btree_inode->i_mapping, 1);
3421  }
3422  return;
3423 }
3424 
3425 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3426 {
3427  /*
3428  * looks as though older kernels can get into trouble with
3429  * this code, they end up stuck in balance_dirty_pages forever
3430  */
3431  u64 num_dirty;
3432  unsigned long thresh = 32 * 1024 * 1024;
3433 
3434  if (current->flags & PF_MEMALLOC)
3435  return;
3436 
3437  num_dirty = root->fs_info->dirty_metadata_bytes;
3438 
3439  if (num_dirty > thresh) {
3441  root->fs_info->btree_inode->i_mapping, 1);
3442  }
3443  return;
3444 }
3445 
3446 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3447 {
3448  struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3449  return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3450 }
3451 
3452 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3453  int read_only)
3454 {
3455  if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3456  printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3457  return -EINVAL;
3458  }
3459 
3460  if (read_only)
3461  return 0;
3462 
3463  return 0;
3464 }
3465 
3467 {
3468  mutex_lock(&root->fs_info->cleaner_mutex);
3470  mutex_unlock(&root->fs_info->cleaner_mutex);
3471 
3472  down_write(&root->fs_info->cleanup_work_sem);
3473  up_write(&root->fs_info->cleanup_work_sem);
3474 
3475  /* cleanup FS via transaction */
3477 }
3478 
3479 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3480 {
3481  struct btrfs_inode *btrfs_inode;
3482  struct list_head splice;
3483 
3484  INIT_LIST_HEAD(&splice);
3485 
3486  mutex_lock(&root->fs_info->ordered_operations_mutex);
3487  spin_lock(&root->fs_info->ordered_extent_lock);
3488 
3489  list_splice_init(&root->fs_info->ordered_operations, &splice);
3490  while (!list_empty(&splice)) {
3491  btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3492  ordered_operations);
3493 
3494  list_del_init(&btrfs_inode->ordered_operations);
3495 
3496  btrfs_invalidate_inodes(btrfs_inode->root);
3497  }
3498 
3499  spin_unlock(&root->fs_info->ordered_extent_lock);
3500  mutex_unlock(&root->fs_info->ordered_operations_mutex);
3501 }
3502 
3503 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3504 {
3505  struct list_head splice;
3506  struct btrfs_ordered_extent *ordered;
3507  struct inode *inode;
3508 
3509  INIT_LIST_HEAD(&splice);
3510 
3511  spin_lock(&root->fs_info->ordered_extent_lock);
3512 
3513  list_splice_init(&root->fs_info->ordered_extents, &splice);
3514  while (!list_empty(&splice)) {
3515  ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3516  root_extent_list);
3517 
3518  list_del_init(&ordered->root_extent_list);
3519  atomic_inc(&ordered->refs);
3520 
3521  /* the inode may be getting freed (in sys_unlink path). */
3522  inode = igrab(ordered->inode);
3523 
3524  spin_unlock(&root->fs_info->ordered_extent_lock);
3525  if (inode)
3526  iput(inode);
3527 
3528  atomic_set(&ordered->refs, 1);
3529  btrfs_put_ordered_extent(ordered);
3530 
3531  spin_lock(&root->fs_info->ordered_extent_lock);
3532  }
3533 
3534  spin_unlock(&root->fs_info->ordered_extent_lock);
3535 }
3536 
3537 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3538  struct btrfs_root *root)
3539 {
3540  struct rb_node *node;
3541  struct btrfs_delayed_ref_root *delayed_refs;
3542  struct btrfs_delayed_ref_node *ref;
3543  int ret = 0;
3544 
3545  delayed_refs = &trans->delayed_refs;
3546 
3547  spin_lock(&delayed_refs->lock);
3548  if (delayed_refs->num_entries == 0) {
3549  spin_unlock(&delayed_refs->lock);
3550  printk(KERN_INFO "delayed_refs has NO entry\n");
3551  return ret;
3552  }
3553 
3554  while ((node = rb_first(&delayed_refs->root)) != NULL) {
3555  ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3556 
3557  atomic_set(&ref->refs, 1);
3558  if (btrfs_delayed_ref_is_head(ref)) {
3559  struct btrfs_delayed_ref_head *head;
3560 
3561  head = btrfs_delayed_node_to_head(ref);
3562  if (!mutex_trylock(&head->mutex)) {
3563  atomic_inc(&ref->refs);
3564  spin_unlock(&delayed_refs->lock);
3565 
3566  /* Need to wait for the delayed ref to run */
3567  mutex_lock(&head->mutex);
3568  mutex_unlock(&head->mutex);
3569  btrfs_put_delayed_ref(ref);
3570 
3571  spin_lock(&delayed_refs->lock);
3572  continue;
3573  }
3574 
3575  kfree(head->extent_op);
3576  delayed_refs->num_heads--;
3577  if (list_empty(&head->cluster))
3578  delayed_refs->num_heads_ready--;
3579  list_del_init(&head->cluster);
3580  }
3581  ref->in_tree = 0;
3582  rb_erase(&ref->rb_node, &delayed_refs->root);
3583  delayed_refs->num_entries--;
3584 
3585  spin_unlock(&delayed_refs->lock);
3586  btrfs_put_delayed_ref(ref);
3587 
3588  cond_resched();
3589  spin_lock(&delayed_refs->lock);
3590  }
3591 
3592  spin_unlock(&delayed_refs->lock);
3593 
3594  return ret;
3595 }
3596 
3597 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3598 {
3599  struct btrfs_pending_snapshot *snapshot;
3600  struct list_head splice;
3601 
3602  INIT_LIST_HEAD(&splice);
3603 
3604  list_splice_init(&t->pending_snapshots, &splice);
3605 
3606  while (!list_empty(&splice)) {
3607  snapshot = list_entry(splice.next,
3608  struct btrfs_pending_snapshot,
3609  list);
3610 
3611  list_del_init(&snapshot->list);
3612 
3613  kfree(snapshot);
3614  }
3615 }
3616 
3617 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3618 {
3619  struct btrfs_inode *btrfs_inode;
3620  struct list_head splice;
3621 
3622  INIT_LIST_HEAD(&splice);
3623 
3624  spin_lock(&root->fs_info->delalloc_lock);
3625  list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3626 
3627  while (!list_empty(&splice)) {
3628  btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3629  delalloc_inodes);
3630 
3631  list_del_init(&btrfs_inode->delalloc_inodes);
3632 
3633  btrfs_invalidate_inodes(btrfs_inode->root);
3634  }
3635 
3636  spin_unlock(&root->fs_info->delalloc_lock);
3637 }
3638 
3639 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3640  struct extent_io_tree *dirty_pages,
3641  int mark)
3642 {
3643  int ret;
3644  struct page *page;
3645  struct inode *btree_inode = root->fs_info->btree_inode;
3646  struct extent_buffer *eb;
3647  u64 start = 0;
3648  u64 end;
3649  u64 offset;
3650  unsigned long index;
3651 
3652  while (1) {
3653  ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3654  mark, NULL);
3655  if (ret)
3656  break;
3657 
3658  clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3659  while (start <= end) {
3660  index = start >> PAGE_CACHE_SHIFT;
3661  start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3662  page = find_get_page(btree_inode->i_mapping, index);
3663  if (!page)
3664  continue;
3665  offset = page_offset(page);
3666 
3667  spin_lock(&dirty_pages->buffer_lock);
3668  eb = radix_tree_lookup(
3669  &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3670  offset >> PAGE_CACHE_SHIFT);
3671  spin_unlock(&dirty_pages->buffer_lock);
3672  if (eb)
3674  &eb->bflags);
3675  if (PageWriteback(page))
3676  end_page_writeback(page);
3677 
3678  lock_page(page);
3679  if (PageDirty(page)) {
3681  spin_lock_irq(&page->mapping->tree_lock);
3682  radix_tree_tag_clear(&page->mapping->page_tree,
3683  page_index(page),
3685  spin_unlock_irq(&page->mapping->tree_lock);
3686  }
3687 
3688  unlock_page(page);
3689  page_cache_release(page);
3690  }
3691  }
3692 
3693  return ret;
3694 }
3695 
3696 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3697  struct extent_io_tree *pinned_extents)
3698 {
3699  struct extent_io_tree *unpin;
3700  u64 start;
3701  u64 end;
3702  int ret;
3703  bool loop = true;
3704 
3705  unpin = pinned_extents;
3706 again:
3707  while (1) {
3708  ret = find_first_extent_bit(unpin, 0, &start, &end,
3709  EXTENT_DIRTY, NULL);
3710  if (ret)
3711  break;
3712 
3713  /* opt_discard */
3714  if (btrfs_test_opt(root, DISCARD))
3715  ret = btrfs_error_discard_extent(root, start,
3716  end + 1 - start,
3717  NULL);
3718 
3719  clear_extent_dirty(unpin, start, end, GFP_NOFS);
3720  btrfs_error_unpin_extent_range(root, start, end);
3721  cond_resched();
3722  }
3723 
3724  if (loop) {
3725  if (unpin == &root->fs_info->freed_extents[0])
3726  unpin = &root->fs_info->freed_extents[1];
3727  else
3728  unpin = &root->fs_info->freed_extents[0];
3729  loop = false;
3730  goto again;
3731  }
3732 
3733  return 0;
3734 }
3735 
3737  struct btrfs_root *root)
3738 {
3739  btrfs_destroy_delayed_refs(cur_trans, root);
3740  btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3741  cur_trans->dirty_pages.dirty_bytes);
3742 
3743  /* FIXME: cleanup wait for commit */
3744  cur_trans->in_commit = 1;
3745  cur_trans->blocked = 1;
3746  wake_up(&root->fs_info->transaction_blocked_wait);
3747 
3748  cur_trans->blocked = 0;
3749  wake_up(&root->fs_info->transaction_wait);
3750 
3751  cur_trans->commit_done = 1;
3752  wake_up(&cur_trans->commit_wait);
3753 
3756 
3757  btrfs_destroy_pending_snapshots(cur_trans);
3758 
3759  btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3760  EXTENT_DIRTY);
3761  btrfs_destroy_pinned_extent(root,
3762  root->fs_info->pinned_extents);
3763 
3764  /*
3765  memset(cur_trans, 0, sizeof(*cur_trans));
3766  kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3767  */
3768 }
3769 
3771 {
3772  struct btrfs_transaction *t;
3773  LIST_HEAD(list);
3774 
3775  mutex_lock(&root->fs_info->transaction_kthread_mutex);
3776 
3777  spin_lock(&root->fs_info->trans_lock);
3778  list_splice_init(&root->fs_info->trans_list, &list);
3779  root->fs_info->trans_no_join = 1;
3780  spin_unlock(&root->fs_info->trans_lock);
3781 
3782  while (!list_empty(&list)) {
3783  t = list_entry(list.next, struct btrfs_transaction, list);
3784  if (!t)
3785  break;
3786 
3787  btrfs_destroy_ordered_operations(root);
3788 
3789  btrfs_destroy_ordered_extents(root);
3790 
3791  btrfs_destroy_delayed_refs(t, root);
3792 
3794  &root->fs_info->trans_block_rsv,
3795  t->dirty_pages.dirty_bytes);
3796 
3797  /* FIXME: cleanup wait for commit */
3798  t->in_commit = 1;
3799  t->blocked = 1;
3800  smp_mb();
3801  if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3802  wake_up(&root->fs_info->transaction_blocked_wait);
3803 
3804  t->blocked = 0;
3805  smp_mb();
3806  if (waitqueue_active(&root->fs_info->transaction_wait))
3807  wake_up(&root->fs_info->transaction_wait);
3808 
3809  t->commit_done = 1;
3810  smp_mb();
3811  if (waitqueue_active(&t->commit_wait))
3812  wake_up(&t->commit_wait);
3813 
3816 
3817  btrfs_destroy_pending_snapshots(t);
3818 
3819  btrfs_destroy_delalloc_inodes(root);
3820 
3821  spin_lock(&root->fs_info->trans_lock);
3822  root->fs_info->running_transaction = NULL;
3823  spin_unlock(&root->fs_info->trans_lock);
3824 
3825  btrfs_destroy_marked_extents(root, &t->dirty_pages,
3826  EXTENT_DIRTY);
3827 
3828  btrfs_destroy_pinned_extent(root,
3829  root->fs_info->pinned_extents);
3830 
3831  atomic_set(&t->use_count, 0);
3832  list_del_init(&t->list);
3833  memset(t, 0, sizeof(*t));
3835  }
3836 
3837  spin_lock(&root->fs_info->trans_lock);
3838  root->fs_info->trans_no_join = 0;
3839  spin_unlock(&root->fs_info->trans_lock);
3840  mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3841 
3842  return 0;
3843 }
3844 
3845 static struct extent_io_ops btree_extent_io_ops = {
3846  .readpage_end_io_hook = btree_readpage_end_io_hook,
3847  .readpage_io_failed_hook = btree_io_failed_hook,
3848  .submit_bio_hook = btree_submit_bio_hook,
3849  /* note we're sharing with inode.c for the merge bio hook */
3850  .merge_bio_hook = btrfs_merge_bio_hook,
3851 };