Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
base.c
Go to the documentation of this file.
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012 Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <[email protected]>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <[email protected]>
27  *
28  *****************************************************************************/
29 
30 #include "wifi.h"
31 #include "rc.h"
32 #include "base.h"
33 #include "efuse.h"
34 #include "cam.h"
35 #include "ps.h"
36 #include "regd.h"
37 
38 #include <linux/ip.h>
39 #include <linux/module.h>
40 
41 /*
42  *NOTICE!!!: This file will be very big, we should
43  *keep it clear under following roles:
44  *
45  *This file include following parts, so, if you add new
46  *functions into this file, please check which part it
47  *should includes. or check if you should add new part
48  *for this file:
49  *
50  *1) mac80211 init functions
51  *2) tx information functions
52  *3) functions called by core.c
53  *4) wq & timer callback functions
54  *5) frame process functions
55  *6) IOT functions
56  *7) sysfs functions
57  *8) ...
58  */
59 
60 /*********************************************************
61  *
62  * mac80211 init functions
63  *
64  *********************************************************/
65 static struct ieee80211_channel rtl_channeltable_2g[] = {
66  {.center_freq = 2412, .hw_value = 1,},
67  {.center_freq = 2417, .hw_value = 2,},
68  {.center_freq = 2422, .hw_value = 3,},
69  {.center_freq = 2427, .hw_value = 4,},
70  {.center_freq = 2432, .hw_value = 5,},
71  {.center_freq = 2437, .hw_value = 6,},
72  {.center_freq = 2442, .hw_value = 7,},
73  {.center_freq = 2447, .hw_value = 8,},
74  {.center_freq = 2452, .hw_value = 9,},
75  {.center_freq = 2457, .hw_value = 10,},
76  {.center_freq = 2462, .hw_value = 11,},
77  {.center_freq = 2467, .hw_value = 12,},
78  {.center_freq = 2472, .hw_value = 13,},
79  {.center_freq = 2484, .hw_value = 14,},
80 };
81 
82 static struct ieee80211_channel rtl_channeltable_5g[] = {
83  {.center_freq = 5180, .hw_value = 36,},
84  {.center_freq = 5200, .hw_value = 40,},
85  {.center_freq = 5220, .hw_value = 44,},
86  {.center_freq = 5240, .hw_value = 48,},
87  {.center_freq = 5260, .hw_value = 52,},
88  {.center_freq = 5280, .hw_value = 56,},
89  {.center_freq = 5300, .hw_value = 60,},
90  {.center_freq = 5320, .hw_value = 64,},
91  {.center_freq = 5500, .hw_value = 100,},
92  {.center_freq = 5520, .hw_value = 104,},
93  {.center_freq = 5540, .hw_value = 108,},
94  {.center_freq = 5560, .hw_value = 112,},
95  {.center_freq = 5580, .hw_value = 116,},
96  {.center_freq = 5600, .hw_value = 120,},
97  {.center_freq = 5620, .hw_value = 124,},
98  {.center_freq = 5640, .hw_value = 128,},
99  {.center_freq = 5660, .hw_value = 132,},
100  {.center_freq = 5680, .hw_value = 136,},
101  {.center_freq = 5700, .hw_value = 140,},
102  {.center_freq = 5745, .hw_value = 149,},
103  {.center_freq = 5765, .hw_value = 153,},
104  {.center_freq = 5785, .hw_value = 157,},
105  {.center_freq = 5805, .hw_value = 161,},
106  {.center_freq = 5825, .hw_value = 165,},
107 };
108 
109 static struct ieee80211_rate rtl_ratetable_2g[] = {
110  {.bitrate = 10, .hw_value = 0x00,},
111  {.bitrate = 20, .hw_value = 0x01,},
112  {.bitrate = 55, .hw_value = 0x02,},
113  {.bitrate = 110, .hw_value = 0x03,},
114  {.bitrate = 60, .hw_value = 0x04,},
115  {.bitrate = 90, .hw_value = 0x05,},
116  {.bitrate = 120, .hw_value = 0x06,},
117  {.bitrate = 180, .hw_value = 0x07,},
118  {.bitrate = 240, .hw_value = 0x08,},
119  {.bitrate = 360, .hw_value = 0x09,},
120  {.bitrate = 480, .hw_value = 0x0a,},
121  {.bitrate = 540, .hw_value = 0x0b,},
122 };
123 
124 static struct ieee80211_rate rtl_ratetable_5g[] = {
125  {.bitrate = 60, .hw_value = 0x04,},
126  {.bitrate = 90, .hw_value = 0x05,},
127  {.bitrate = 120, .hw_value = 0x06,},
128  {.bitrate = 180, .hw_value = 0x07,},
129  {.bitrate = 240, .hw_value = 0x08,},
130  {.bitrate = 360, .hw_value = 0x09,},
131  {.bitrate = 480, .hw_value = 0x0a,},
132  {.bitrate = 540, .hw_value = 0x0b,},
133 };
134 
135 static const struct ieee80211_supported_band rtl_band_2ghz = {
136  .band = IEEE80211_BAND_2GHZ,
137 
138  .channels = rtl_channeltable_2g,
139  .n_channels = ARRAY_SIZE(rtl_channeltable_2g),
140 
141  .bitrates = rtl_ratetable_2g,
142  .n_bitrates = ARRAY_SIZE(rtl_ratetable_2g),
143 
144  .ht_cap = {0},
145 };
146 
147 static struct ieee80211_supported_band rtl_band_5ghz = {
148  .band = IEEE80211_BAND_5GHZ,
149 
150  .channels = rtl_channeltable_5g,
151  .n_channels = ARRAY_SIZE(rtl_channeltable_5g),
152 
153  .bitrates = rtl_ratetable_5g,
154  .n_bitrates = ARRAY_SIZE(rtl_ratetable_5g),
155 
156  .ht_cap = {0},
157 };
158 
159 static const u8 tid_to_ac[] = {
160  2, /* IEEE80211_AC_BE */
161  3, /* IEEE80211_AC_BK */
162  3, /* IEEE80211_AC_BK */
163  2, /* IEEE80211_AC_BE */
164  1, /* IEEE80211_AC_VI */
165  1, /* IEEE80211_AC_VI */
166  0, /* IEEE80211_AC_VO */
167  0, /* IEEE80211_AC_VO */
168 };
169 
171 {
172  return tid_to_ac[tid];
173 }
174 
175 static void _rtl_init_hw_ht_capab(struct ieee80211_hw *hw,
177 {
178  struct rtl_priv *rtlpriv = rtl_priv(hw);
179  struct rtl_phy *rtlphy = &(rtlpriv->phy);
180 
181  ht_cap->ht_supported = true;
186 
187  if (rtlpriv->rtlhal.disable_amsdu_8k)
188  ht_cap->cap &= ~IEEE80211_HT_CAP_MAX_AMSDU;
189 
190  /*
191  *Maximum length of AMPDU that the STA can receive.
192  *Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
193  */
195 
196  /*Minimum MPDU start spacing , */
198 
199  ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
200 
201  /*
202  *hw->wiphy->bands[IEEE80211_BAND_2GHZ]
203  *base on ant_num
204  *rx_mask: RX mask
205  *if rx_ant =1 rx_mask[0]=0xff;==>MCS0-MCS7
206  *if rx_ant =2 rx_mask[1]=0xff;==>MCS8-MCS15
207  *if rx_ant >=3 rx_mask[2]=0xff;
208  *if BW_40 rx_mask[4]=0x01;
209  *highest supported RX rate
210  */
211  if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_2T2R) {
212 
213  RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T2R or 2T2R\n");
214 
215  ht_cap->mcs.rx_mask[0] = 0xFF;
216  ht_cap->mcs.rx_mask[1] = 0xFF;
217  ht_cap->mcs.rx_mask[4] = 0x01;
218 
219  ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS15);
220  } else if (get_rf_type(rtlphy) == RF_1T1R) {
221 
222  RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T1R\n");
223 
224  ht_cap->mcs.rx_mask[0] = 0xFF;
225  ht_cap->mcs.rx_mask[1] = 0x00;
226  ht_cap->mcs.rx_mask[4] = 0x01;
227 
228  ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS7);
229  }
230 }
231 
232 static void _rtl_init_mac80211(struct ieee80211_hw *hw)
233 {
234  struct rtl_priv *rtlpriv = rtl_priv(hw);
235  struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
236  struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
237  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
238  struct ieee80211_supported_band *sband;
239 
240 
241  if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY && rtlhal->bandset ==
242  BAND_ON_BOTH) {
243  /* 1: 2.4 G bands */
244  /* <1> use mac->bands as mem for hw->wiphy->bands */
245  sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
246 
247  /* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
248  * to default value(1T1R) */
249  memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]), &rtl_band_2ghz,
250  sizeof(struct ieee80211_supported_band));
251 
252  /* <3> init ht cap base on ant_num */
253  _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
254 
255  /* <4> set mac->sband to wiphy->sband */
256  hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
257 
258  /* 2: 5 G bands */
259  /* <1> use mac->bands as mem for hw->wiphy->bands */
260  sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
261 
262  /* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
263  * to default value(1T1R) */
264  memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]), &rtl_band_5ghz,
265  sizeof(struct ieee80211_supported_band));
266 
267  /* <3> init ht cap base on ant_num */
268  _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
269 
270  /* <4> set mac->sband to wiphy->sband */
271  hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
272  } else {
273  if (rtlhal->current_bandtype == BAND_ON_2_4G) {
274  /* <1> use mac->bands as mem for hw->wiphy->bands */
275  sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]);
276 
277  /* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ]
278  * to default value(1T1R) */
279  memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]),
280  &rtl_band_2ghz,
281  sizeof(struct ieee80211_supported_band));
282 
283  /* <3> init ht cap base on ant_num */
284  _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
285 
286  /* <4> set mac->sband to wiphy->sband */
287  hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
288  } else if (rtlhal->current_bandtype == BAND_ON_5G) {
289  /* <1> use mac->bands as mem for hw->wiphy->bands */
290  sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]);
291 
292  /* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ]
293  * to default value(1T1R) */
294  memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]),
295  &rtl_band_5ghz,
296  sizeof(struct ieee80211_supported_band));
297 
298  /* <3> init ht cap base on ant_num */
299  _rtl_init_hw_ht_capab(hw, &sband->ht_cap);
300 
301  /* <4> set mac->sband to wiphy->sband */
302  hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
303  } else {
304  RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Err BAND %d\n",
305  rtlhal->current_bandtype);
306  }
307  }
308  /* <5> set hw caps */
313  /* IEEE80211_HW_SUPPORTS_CQM_RSSI | */
315 
316  /* swlps or hwlps has been set in diff chip in init_sw_vars */
317  if (rtlpriv->psc.swctrl_lps)
320  /* IEEE80211_HW_SUPPORTS_DYNAMIC_PS | */
321  0;
322 
323  hw->wiphy->interface_modes =
327 
328  hw->wiphy->rts_threshold = 2347;
329 
330  hw->queues = AC_MAX;
332 
333  /* TODO: Correct this value for our hw */
334  /* TODO: define these hard code value */
335  hw->channel_change_time = 100;
336  hw->max_listen_interval = 10;
337  hw->max_rate_tries = 4;
338  /* hw->max_rates = 1; */
339  hw->sta_data_size = sizeof(struct rtl_sta_info);
340 
341  /* <6> mac address */
342  if (is_valid_ether_addr(rtlefuse->dev_addr)) {
343  SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr);
344  } else {
345  u8 rtlmac1[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 };
346  get_random_bytes((rtlmac1 + (ETH_ALEN - 1)), 1);
347  SET_IEEE80211_PERM_ADDR(hw, rtlmac1);
348  }
349 
350 }
351 
352 static void _rtl_init_deferred_work(struct ieee80211_hw *hw)
353 {
354  struct rtl_priv *rtlpriv = rtl_priv(hw);
355 
356  /* <1> timer */
357  init_timer(&rtlpriv->works.watchdog_timer);
358  setup_timer(&rtlpriv->works.watchdog_timer,
359  rtl_watch_dog_timer_callback, (unsigned long)hw);
360 
361  /* <2> work queue */
362  rtlpriv->works.hw = hw;
363  rtlpriv->works.rtl_wq = alloc_workqueue(rtlpriv->cfg->name, 0, 0);
364  INIT_DELAYED_WORK(&rtlpriv->works.watchdog_wq,
365  (void *)rtl_watchdog_wq_callback);
366  INIT_DELAYED_WORK(&rtlpriv->works.ips_nic_off_wq,
368  INIT_DELAYED_WORK(&rtlpriv->works.ps_work,
369  (void *)rtl_swlps_wq_callback);
370  INIT_DELAYED_WORK(&rtlpriv->works.ps_rfon_wq,
372 
373 }
374 
376 {
377  struct rtl_priv *rtlpriv = rtl_priv(hw);
378 
379  del_timer_sync(&rtlpriv->works.watchdog_timer);
380 
381  cancel_delayed_work(&rtlpriv->works.watchdog_wq);
382  cancel_delayed_work(&rtlpriv->works.ips_nic_off_wq);
383  cancel_delayed_work(&rtlpriv->works.ps_work);
384  cancel_delayed_work(&rtlpriv->works.ps_rfon_wq);
385 }
386 
388 {
389  struct rtl_priv *rtlpriv = rtl_priv(hw);
390 
391  bool radio_state;
392  bool blocked;
393  u8 valid = 0;
394 
395  /*set init state to on */
396  rtlpriv->rfkill.rfkill_state = true;
398 
399  radio_state = rtlpriv->cfg->ops->radio_onoff_checking(hw, &valid);
400 
401  if (valid) {
402  pr_info("wireless switch is %s\n",
403  rtlpriv->rfkill.rfkill_state ? "on" : "off");
404 
405  rtlpriv->rfkill.rfkill_state = radio_state;
406 
407  blocked = (rtlpriv->rfkill.rfkill_state == 1) ? 0 : 1;
408  wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
409  }
410 
412 }
414 
416 {
418 }
419 
421 {
422  struct rtl_priv *rtlpriv = rtl_priv(hw);
423  struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
424 
425  /* <1> init mac80211 */
426  _rtl_init_mac80211(hw);
427  rtlmac->hw = hw;
428 
429  /* <2> rate control register */
430  hw->rate_control_algorithm = "rtl_rc";
431 
432  /*
433  * <3> init CRDA must come after init
434  * mac80211 hw in _rtl_init_mac80211.
435  */
436  if (rtl_regd_init(hw, rtl_reg_notifier)) {
437  RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "REGD init failed\n");
438  return 1;
439  } else {
440  /* CRDA regd hint must after init CRDA */
441  if (regulatory_hint(hw->wiphy, rtlpriv->regd.alpha2)) {
442  RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
443  "regulatory_hint fail\n");
444  }
445  }
446 
447  /* <4> locks */
448  mutex_init(&rtlpriv->locks.conf_mutex);
449  mutex_init(&rtlpriv->locks.ps_mutex);
450  spin_lock_init(&rtlpriv->locks.ips_lock);
451  spin_lock_init(&rtlpriv->locks.irq_th_lock);
452  spin_lock_init(&rtlpriv->locks.h2c_lock);
453  spin_lock_init(&rtlpriv->locks.rf_ps_lock);
454  spin_lock_init(&rtlpriv->locks.rf_lock);
455  spin_lock_init(&rtlpriv->locks.waitq_lock);
456  spin_lock_init(&rtlpriv->locks.cck_and_rw_pagea_lock);
457 
458  rtlmac->link_state = MAC80211_NOLINK;
459 
460  /* <5> init deferred work */
461  _rtl_init_deferred_work(hw);
462 
463  return 0;
464 }
465 
467 {
468 }
469 
471 {
472  struct rtl_priv *rtlpriv = rtl_priv(hw);
473  struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
474 
475  rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *) (&mac->rx_conf));
476 }
477 
478 /*********************************************************
479  *
480  * tx information functions
481  *
482  *********************************************************/
483 static void _rtl_qurey_shortpreamble_mode(struct ieee80211_hw *hw,
484  struct rtl_tcb_desc *tcb_desc,
485  struct ieee80211_tx_info *info)
486 {
487  struct rtl_priv *rtlpriv = rtl_priv(hw);
488  u8 rate_flag = info->control.rates[0].flags;
489 
490  tcb_desc->use_shortpreamble = false;
491 
492  /* 1M can only use Long Preamble. 11B spec */
493  if (tcb_desc->hw_rate == rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M])
494  return;
495  else if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
496  tcb_desc->use_shortpreamble = true;
497 
498  return;
499 }
500 
501 static void _rtl_query_shortgi(struct ieee80211_hw *hw,
502  struct ieee80211_sta *sta,
503  struct rtl_tcb_desc *tcb_desc,
504  struct ieee80211_tx_info *info)
505 {
506  struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
507  u8 rate_flag = info->control.rates[0].flags;
508  u8 sgi_40 = 0, sgi_20 = 0, bw_40 = 0;
509  tcb_desc->use_shortgi = false;
510 
511  if (sta == NULL)
512  return;
513 
514  sgi_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
516 
517  if (!(sta->ht_cap.ht_supported))
518  return;
519 
520  if (!sgi_40 && !sgi_20)
521  return;
522 
523  if (mac->opmode == NL80211_IFTYPE_STATION)
524  bw_40 = mac->bw_40;
525  else if (mac->opmode == NL80211_IFTYPE_AP ||
528 
529  if (bw_40 && sgi_40)
530  tcb_desc->use_shortgi = true;
531  else if ((bw_40 == false) && sgi_20)
532  tcb_desc->use_shortgi = true;
533 
534  if (!(rate_flag & IEEE80211_TX_RC_SHORT_GI))
535  tcb_desc->use_shortgi = false;
536 }
537 
538 static void _rtl_query_protection_mode(struct ieee80211_hw *hw,
539  struct rtl_tcb_desc *tcb_desc,
540  struct ieee80211_tx_info *info)
541 {
542  struct rtl_priv *rtlpriv = rtl_priv(hw);
543  u8 rate_flag = info->control.rates[0].flags;
544 
545  /* Common Settings */
546  tcb_desc->rts_stbc = false;
547  tcb_desc->cts_enable = false;
548  tcb_desc->rts_sc = 0;
549  tcb_desc->rts_bw = false;
550  tcb_desc->rts_use_shortpreamble = false;
551  tcb_desc->rts_use_shortgi = false;
552 
553  if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) {
554  /* Use CTS-to-SELF in protection mode. */
555  tcb_desc->rts_enable = true;
556  tcb_desc->cts_enable = true;
557  tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
558  } else if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) {
559  /* Use RTS-CTS in protection mode. */
560  tcb_desc->rts_enable = true;
561  tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M];
562  }
563 }
564 
565 static void _rtl_txrate_selectmode(struct ieee80211_hw *hw,
566  struct ieee80211_sta *sta,
567  struct rtl_tcb_desc *tcb_desc)
568 {
569  struct rtl_priv *rtlpriv = rtl_priv(hw);
570  struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
571  struct rtl_sta_info *sta_entry = NULL;
572  u8 ratr_index = 7;
573 
574  if (sta) {
575  sta_entry = (struct rtl_sta_info *) sta->drv_priv;
576  ratr_index = sta_entry->ratr_index;
577  }
578  if (!tcb_desc->disable_ratefallback || !tcb_desc->use_driver_rate) {
579  if (mac->opmode == NL80211_IFTYPE_STATION) {
580  tcb_desc->ratr_index = 0;
581  } else if (mac->opmode == NL80211_IFTYPE_ADHOC) {
582  if (tcb_desc->multicast || tcb_desc->broadcast) {
583  tcb_desc->hw_rate =
584  rtlpriv->cfg->maps[RTL_RC_CCK_RATE2M];
585  tcb_desc->use_driver_rate = 1;
586  } else {
587  /* TODO */
588  }
589  tcb_desc->ratr_index = ratr_index;
590  } else if (mac->opmode == NL80211_IFTYPE_AP) {
591  tcb_desc->ratr_index = ratr_index;
592  }
593  }
594 
595  if (rtlpriv->dm.useramask) {
596  /* TODO we will differentiate adhoc and station futrue */
597  if (mac->opmode == NL80211_IFTYPE_STATION) {
598  tcb_desc->mac_id = 0;
599 
600  if (mac->mode == WIRELESS_MODE_N_24G)
601  tcb_desc->ratr_index = RATR_INX_WIRELESS_NGB;
602  else if (mac->mode == WIRELESS_MODE_N_5G)
603  tcb_desc->ratr_index = RATR_INX_WIRELESS_NG;
604  else if (mac->mode & WIRELESS_MODE_G)
605  tcb_desc->ratr_index = RATR_INX_WIRELESS_GB;
606  else if (mac->mode & WIRELESS_MODE_B)
607  tcb_desc->ratr_index = RATR_INX_WIRELESS_B;
608  else if (mac->mode & WIRELESS_MODE_A)
609  tcb_desc->ratr_index = RATR_INX_WIRELESS_G;
610  } else if (mac->opmode == NL80211_IFTYPE_AP ||
611  mac->opmode == NL80211_IFTYPE_ADHOC) {
612  if (NULL != sta) {
613  if (sta->aid > 0)
614  tcb_desc->mac_id = sta->aid + 1;
615  else
616  tcb_desc->mac_id = 1;
617  } else {
618  tcb_desc->mac_id = 0;
619  }
620  }
621  }
622 
623 }
624 
625 static void _rtl_query_bandwidth_mode(struct ieee80211_hw *hw,
626  struct ieee80211_sta *sta,
627  struct rtl_tcb_desc *tcb_desc)
628 {
629  struct rtl_priv *rtlpriv = rtl_priv(hw);
630  struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
631 
632  tcb_desc->packet_bw = false;
633  if (!sta)
634  return;
635  if (mac->opmode == NL80211_IFTYPE_AP ||
636  mac->opmode == NL80211_IFTYPE_ADHOC) {
637  if (!(sta->ht_cap.ht_supported) ||
639  return;
640  } else if (mac->opmode == NL80211_IFTYPE_STATION) {
641  if (!mac->bw_40 || !(sta->ht_cap.ht_supported))
642  return;
643  }
644  if (tcb_desc->multicast || tcb_desc->broadcast)
645  return;
646 
647  /*use legency rate, shall use 20MHz */
648  if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M])
649  return;
650 
651  tcb_desc->packet_bw = true;
652 }
653 
654 static u8 _rtl_get_highest_n_rate(struct ieee80211_hw *hw)
655 {
656  struct rtl_priv *rtlpriv = rtl_priv(hw);
657  struct rtl_phy *rtlphy = &(rtlpriv->phy);
658  u8 hw_rate;
659 
660  if (get_rf_type(rtlphy) == RF_2T2R)
661  hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15];
662  else
663  hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS7];
664 
665  return hw_rate;
666 }
667 
668 /* mac80211's rate_idx is like this:
669  *
670  * 2.4G band:rx_status->band == IEEE80211_BAND_2GHZ
671  *
672  * B/G rate:
673  * (rx_status->flag & RX_FLAG_HT) = 0,
674  * DESC92_RATE1M-->DESC92_RATE54M ==> idx is 0-->11,
675  *
676  * N rate:
677  * (rx_status->flag & RX_FLAG_HT) = 1,
678  * DESC92_RATEMCS0-->DESC92_RATEMCS15 ==> idx is 0-->15
679  *
680  * 5G band:rx_status->band == IEEE80211_BAND_5GHZ
681  * A rate:
682  * (rx_status->flag & RX_FLAG_HT) = 0,
683  * DESC92_RATE6M-->DESC92_RATE54M ==> idx is 0-->7,
684  *
685  * N rate:
686  * (rx_status->flag & RX_FLAG_HT) = 1,
687  * DESC92_RATEMCS0-->DESC92_RATEMCS15 ==> idx is 0-->15
688  */
690  bool isht, u8 desc_rate, bool first_ampdu)
691 {
692  int rate_idx;
693 
694  if (false == isht) {
695  if (IEEE80211_BAND_2GHZ == hw->conf.channel->band) {
696  switch (desc_rate) {
697  case DESC92_RATE1M:
698  rate_idx = 0;
699  break;
700  case DESC92_RATE2M:
701  rate_idx = 1;
702  break;
703  case DESC92_RATE5_5M:
704  rate_idx = 2;
705  break;
706  case DESC92_RATE11M:
707  rate_idx = 3;
708  break;
709  case DESC92_RATE6M:
710  rate_idx = 4;
711  break;
712  case DESC92_RATE9M:
713  rate_idx = 5;
714  break;
715  case DESC92_RATE12M:
716  rate_idx = 6;
717  break;
718  case DESC92_RATE18M:
719  rate_idx = 7;
720  break;
721  case DESC92_RATE24M:
722  rate_idx = 8;
723  break;
724  case DESC92_RATE36M:
725  rate_idx = 9;
726  break;
727  case DESC92_RATE48M:
728  rate_idx = 10;
729  break;
730  case DESC92_RATE54M:
731  rate_idx = 11;
732  break;
733  default:
734  rate_idx = 0;
735  break;
736  }
737  } else {
738  switch (desc_rate) {
739  case DESC92_RATE6M:
740  rate_idx = 0;
741  break;
742  case DESC92_RATE9M:
743  rate_idx = 1;
744  break;
745  case DESC92_RATE12M:
746  rate_idx = 2;
747  break;
748  case DESC92_RATE18M:
749  rate_idx = 3;
750  break;
751  case DESC92_RATE24M:
752  rate_idx = 4;
753  break;
754  case DESC92_RATE36M:
755  rate_idx = 5;
756  break;
757  case DESC92_RATE48M:
758  rate_idx = 6;
759  break;
760  case DESC92_RATE54M:
761  rate_idx = 7;
762  break;
763  default:
764  rate_idx = 0;
765  break;
766  }
767  }
768 
769  } else {
770 
771  switch (desc_rate) {
772  case DESC92_RATEMCS0:
773  rate_idx = 0;
774  break;
775  case DESC92_RATEMCS1:
776  rate_idx = 1;
777  break;
778  case DESC92_RATEMCS2:
779  rate_idx = 2;
780  break;
781  case DESC92_RATEMCS3:
782  rate_idx = 3;
783  break;
784  case DESC92_RATEMCS4:
785  rate_idx = 4;
786  break;
787  case DESC92_RATEMCS5:
788  rate_idx = 5;
789  break;
790  case DESC92_RATEMCS6:
791  rate_idx = 6;
792  break;
793  case DESC92_RATEMCS7:
794  rate_idx = 7;
795  break;
796  case DESC92_RATEMCS8:
797  rate_idx = 8;
798  break;
799  case DESC92_RATEMCS9:
800  rate_idx = 9;
801  break;
802  case DESC92_RATEMCS10:
803  rate_idx = 10;
804  break;
805  case DESC92_RATEMCS11:
806  rate_idx = 11;
807  break;
808  case DESC92_RATEMCS12:
809  rate_idx = 12;
810  break;
811  case DESC92_RATEMCS13:
812  rate_idx = 13;
813  break;
814  case DESC92_RATEMCS14:
815  rate_idx = 14;
816  break;
817  case DESC92_RATEMCS15:
818  rate_idx = 15;
819  break;
820  default:
821  rate_idx = 0;
822  break;
823  }
824  }
825  return rate_idx;
826 }
828 
830  struct ieee80211_tx_info *info,
831  struct ieee80211_sta *sta,
832  struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc)
833 {
834  struct rtl_priv *rtlpriv = rtl_priv(hw);
835  struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
836  struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
837  struct ieee80211_rate *txrate;
838  __le16 fc = hdr->frame_control;
839 
840  txrate = ieee80211_get_tx_rate(hw, info);
841  if (txrate)
842  tcb_desc->hw_rate = txrate->hw_value;
843  else
844  tcb_desc->hw_rate = 0;
845 
846  if (ieee80211_is_data(fc)) {
847  /*
848  *we set data rate INX 0
849  *in rtl_rc.c if skb is special data or
850  *mgt which need low data rate.
851  */
852 
853  /*
854  *So tcb_desc->hw_rate is just used for
855  *special data and mgt frames
856  */
857  if (info->control.rates[0].idx == 0 ||
858  ieee80211_is_nullfunc(fc)) {
859  tcb_desc->use_driver_rate = true;
860  tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
861 
862  tcb_desc->disable_ratefallback = 1;
863  } else {
864  /*
865  *because hw will nerver use hw_rate
866  *when tcb_desc->use_driver_rate = false
867  *so we never set highest N rate here,
868  *and N rate will all be controlled by FW
869  *when tcb_desc->use_driver_rate = false
870  */
871  if (sta && (sta->ht_cap.ht_supported)) {
872  tcb_desc->hw_rate = _rtl_get_highest_n_rate(hw);
873  } else {
874  if (rtlmac->mode == WIRELESS_MODE_B) {
875  tcb_desc->hw_rate =
876  rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M];
877  } else {
878  tcb_desc->hw_rate =
879  rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M];
880  }
881  }
882  }
883 
884  if (is_multicast_ether_addr(ieee80211_get_DA(hdr)))
885  tcb_desc->multicast = 1;
886  else if (is_broadcast_ether_addr(ieee80211_get_DA(hdr)))
887  tcb_desc->broadcast = 1;
888 
889  _rtl_txrate_selectmode(hw, sta, tcb_desc);
890  _rtl_query_bandwidth_mode(hw, sta, tcb_desc);
891  _rtl_qurey_shortpreamble_mode(hw, tcb_desc, info);
892  _rtl_query_shortgi(hw, sta, tcb_desc, info);
893  _rtl_query_protection_mode(hw, tcb_desc, info);
894  } else {
895  tcb_desc->use_driver_rate = true;
896  tcb_desc->ratr_index = RATR_INX_WIRELESS_MC;
897  tcb_desc->disable_ratefallback = 1;
898  tcb_desc->mac_id = 0;
899  tcb_desc->packet_bw = false;
900  }
901 }
903 
904 bool rtl_action_proc(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
905 {
906  struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
907  struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
908  struct rtl_priv *rtlpriv = rtl_priv(hw);
909  __le16 fc = hdr->frame_control;
910  u8 *act = (u8 *)skb->data + MAC80211_3ADDR_LEN;
911  u8 category;
912 
913  if (!ieee80211_is_action(fc))
914  return true;
915 
916  category = *act;
917  act++;
918  switch (category) {
919  case ACT_CAT_BA:
920  switch (*act) {
921  case ACT_ADDBAREQ:
922  if (mac->act_scanning)
923  return false;
924 
925  RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
926  "%s ACT_ADDBAREQ From :%pM\n",
927  is_tx ? "Tx" : "Rx", hdr->addr2);
928  break;
929  case ACT_ADDBARSP:
930  RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
931  "%s ACT_ADDBARSP From :%pM\n",
932  is_tx ? "Tx" : "Rx", hdr->addr2);
933  break;
934  case ACT_DELBA:
935  RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
936  "ACT_ADDBADEL From :%pM\n", hdr->addr2);
937  break;
938  }
939  break;
940  default:
941  break;
942  }
943 
944  return true;
945 }
946 
947 /*should call before software enc*/
948 u8 rtl_is_special_data(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx)
949 {
950  struct rtl_priv *rtlpriv = rtl_priv(hw);
951  struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
952  __le16 fc = rtl_get_fc(skb);
953  u16 ether_type;
954  u8 mac_hdr_len = ieee80211_get_hdrlen_from_skb(skb);
955  const struct iphdr *ip;
956 
957  if (!ieee80211_is_data(fc))
958  return false;
959 
960 
961  ip = (struct iphdr *)((u8 *) skb->data + mac_hdr_len +
963  ether_type = *(u16 *) ((u8 *) skb->data + mac_hdr_len + SNAP_SIZE);
964  /* ether_type = ntohs(ether_type); */
965 
966  if (ETH_P_IP == ether_type) {
967  if (IPPROTO_UDP == ip->protocol) {
968  struct udphdr *udp = (struct udphdr *)((u8 *) ip +
969  (ip->ihl << 2));
970  if (((((u8 *) udp)[1] == 68) &&
971  (((u8 *) udp)[3] == 67)) ||
972  ((((u8 *) udp)[1] == 67) &&
973  (((u8 *) udp)[3] == 68))) {
974  /*
975  * 68 : UDP BOOTP client
976  * 67 : UDP BOOTP server
977  */
978  RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV),
979  DBG_DMESG, "dhcp %s !!\n",
980  is_tx ? "Tx" : "Rx");
981 
982  if (is_tx) {
983  rtl_lps_leave(hw);
985  jiffies;
986  }
987 
988  return true;
989  }
990  }
991  } else if (ETH_P_ARP == ether_type) {
992  if (is_tx) {
993  rtl_lps_leave(hw);
995  }
996 
997  return true;
998  } else if (ETH_P_PAE == ether_type) {
999  RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG,
1000  "802.1X %s EAPOL pkt!!\n", is_tx ? "Tx" : "Rx");
1001 
1002  if (is_tx) {
1003  rtl_lps_leave(hw);
1005  }
1006 
1007  return true;
1008  } else if (ETH_P_IPV6 == ether_type) {
1009  /* IPv6 */
1010  return true;
1011  }
1012 
1013  return false;
1014 }
1015 
1016 /*********************************************************
1017  *
1018  * functions called by core.c
1019  *
1020  *********************************************************/
1022  struct ieee80211_sta *sta, u16 tid, u16 *ssn)
1023 {
1024  struct rtl_priv *rtlpriv = rtl_priv(hw);
1025  struct rtl_tid_data *tid_data;
1026  struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1027  struct rtl_sta_info *sta_entry = NULL;
1028 
1029  if (sta == NULL)
1030  return -EINVAL;
1031 
1032  if (unlikely(tid >= MAX_TID_COUNT))
1033  return -EINVAL;
1034 
1035  sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1036  if (!sta_entry)
1037  return -ENXIO;
1038  tid_data = &sta_entry->tids[tid];
1039 
1040  RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d seq:%d\n",
1041  sta->addr, tid, tid_data->seq_number);
1042 
1043  *ssn = tid_data->seq_number;
1044  tid_data->agg.agg_state = RTL_AGG_START;
1045 
1046  ieee80211_start_tx_ba_cb_irqsafe(mac->vif, sta->addr, tid);
1047 
1048  return 0;
1049 }
1050 
1052  struct ieee80211_sta *sta, u16 tid)
1053 {
1054  struct rtl_priv *rtlpriv = rtl_priv(hw);
1055  struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1056  struct rtl_sta_info *sta_entry = NULL;
1057 
1058  if (sta == NULL)
1059  return -EINVAL;
1060 
1061  if (!sta->addr) {
1062  RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ra = NULL\n");
1063  return -EINVAL;
1064  }
1065 
1066  RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n",
1067  sta->addr, tid);
1068 
1069  if (unlikely(tid >= MAX_TID_COUNT))
1070  return -EINVAL;
1071 
1072  sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1073  sta_entry->tids[tid].agg.agg_state = RTL_AGG_STOP;
1074 
1075  ieee80211_stop_tx_ba_cb_irqsafe(mac->vif, sta->addr, tid);
1076 
1077  return 0;
1078 }
1079 
1081  struct ieee80211_sta *sta, u16 tid)
1082 {
1083  struct rtl_priv *rtlpriv = rtl_priv(hw);
1084  struct rtl_sta_info *sta_entry = NULL;
1085 
1086  if (sta == NULL)
1087  return -EINVAL;
1088 
1089  if (!sta->addr) {
1090  RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "ra = NULL\n");
1091  return -EINVAL;
1092  }
1093 
1094  RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n",
1095  sta->addr, tid);
1096 
1097  if (unlikely(tid >= MAX_TID_COUNT))
1098  return -EINVAL;
1099 
1100  sta_entry = (struct rtl_sta_info *)sta->drv_priv;
1101  sta_entry->tids[tid].agg.agg_state = RTL_AGG_OPERATIONAL;
1102 
1103  return 0;
1104 }
1105 
1106 /*********************************************************
1107  *
1108  * wq & timer callback functions
1109  *
1110  *********************************************************/
1112 {
1113  struct rtl_works *rtlworks = container_of_dwork_rtl(data,
1114  struct rtl_works,
1115  watchdog_wq);
1116  struct ieee80211_hw *hw = rtlworks->hw;
1117  struct rtl_priv *rtlpriv = rtl_priv(hw);
1118  struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1119  struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1120  bool busytraffic = false;
1121  bool higher_busytraffic = false;
1122  bool higher_busyrxtraffic = false;
1123  u8 idx, tid;
1124  u32 rx_cnt_inp4eriod = 0;
1125  u32 tx_cnt_inp4eriod = 0;
1126  u32 aver_rx_cnt_inperiod = 0;
1127  u32 aver_tx_cnt_inperiod = 0;
1128  u32 aver_tidtx_inperiod[MAX_TID_COUNT] = {0};
1129  u32 tidtx_inp4eriod[MAX_TID_COUNT] = {0};
1130  bool enter_ps = false;
1131 
1132  if (is_hal_stop(rtlhal))
1133  return;
1134 
1135  /* <1> Determine if action frame is allowed */
1136  if (mac->link_state > MAC80211_NOLINK) {
1137  if (mac->cnt_after_linked < 20)
1138  mac->cnt_after_linked++;
1139  } else {
1140  mac->cnt_after_linked = 0;
1141  }
1142 
1143  /*
1144  *<2> to check if traffic busy, if
1145  * busytraffic we don't change channel
1146  */
1147  if (mac->link_state >= MAC80211_LINKED) {
1148 
1149  /* (1) get aver_rx_cnt_inperiod & aver_tx_cnt_inperiod */
1150  for (idx = 0; idx <= 2; idx++) {
1151  rtlpriv->link_info.num_rx_in4period[idx] =
1152  rtlpriv->link_info.num_rx_in4period[idx + 1];
1153  rtlpriv->link_info.num_tx_in4period[idx] =
1154  rtlpriv->link_info.num_tx_in4period[idx + 1];
1155  }
1156  rtlpriv->link_info.num_rx_in4period[3] =
1157  rtlpriv->link_info.num_rx_inperiod;
1158  rtlpriv->link_info.num_tx_in4period[3] =
1159  rtlpriv->link_info.num_tx_inperiod;
1160  for (idx = 0; idx <= 3; idx++) {
1161  rx_cnt_inp4eriod +=
1162  rtlpriv->link_info.num_rx_in4period[idx];
1163  tx_cnt_inp4eriod +=
1164  rtlpriv->link_info.num_tx_in4period[idx];
1165  }
1166  aver_rx_cnt_inperiod = rx_cnt_inp4eriod / 4;
1167  aver_tx_cnt_inperiod = tx_cnt_inp4eriod / 4;
1168 
1169  /* (2) check traffic busy */
1170  if (aver_rx_cnt_inperiod > 100 || aver_tx_cnt_inperiod > 100)
1171  busytraffic = true;
1172 
1173  /* Higher Tx/Rx data. */
1174  if (aver_rx_cnt_inperiod > 4000 ||
1175  aver_tx_cnt_inperiod > 4000) {
1176  higher_busytraffic = true;
1177 
1178  /* Extremely high Rx data. */
1179  if (aver_rx_cnt_inperiod > 5000)
1180  higher_busyrxtraffic = true;
1181  }
1182 
1183  /* check every tid's tx traffic */
1184  for (tid = 0; tid <= 7; tid++) {
1185  for (idx = 0; idx <= 2; idx++)
1186  rtlpriv->link_info.tidtx_in4period[tid][idx] =
1187  rtlpriv->link_info.tidtx_in4period[tid]
1188  [idx + 1];
1189  rtlpriv->link_info.tidtx_in4period[tid][3] =
1190  rtlpriv->link_info.tidtx_inperiod[tid];
1191 
1192  for (idx = 0; idx <= 3; idx++)
1193  tidtx_inp4eriod[tid] +=
1194  rtlpriv->link_info.tidtx_in4period[tid][idx];
1195  aver_tidtx_inperiod[tid] = tidtx_inp4eriod[tid] / 4;
1196  if (aver_tidtx_inperiod[tid] > 5000)
1197  rtlpriv->link_info.higher_busytxtraffic[tid] =
1198  true;
1199  else
1200  rtlpriv->link_info.higher_busytxtraffic[tid] =
1201  false;
1202  }
1203 
1204  if (((rtlpriv->link_info.num_rx_inperiod +
1205  rtlpriv->link_info.num_tx_inperiod) > 8) ||
1206  (rtlpriv->link_info.num_rx_inperiod > 2))
1207  enter_ps = false;
1208  else
1209  enter_ps = true;
1210 
1211  /* LeisurePS only work in infra mode. */
1212  if (enter_ps)
1213  rtl_lps_enter(hw);
1214  else
1215  rtl_lps_leave(hw);
1216  }
1217 
1218  rtlpriv->link_info.num_rx_inperiod = 0;
1219  rtlpriv->link_info.num_tx_inperiod = 0;
1220  for (tid = 0; tid <= 7; tid++)
1221  rtlpriv->link_info.tidtx_inperiod[tid] = 0;
1222 
1223  rtlpriv->link_info.busytraffic = busytraffic;
1224  rtlpriv->link_info.higher_busytraffic = higher_busytraffic;
1225  rtlpriv->link_info.higher_busyrxtraffic = higher_busyrxtraffic;
1226 
1227  /* <3> DM */
1228  rtlpriv->cfg->ops->dm_watchdog(hw);
1229 }
1230 
1232 {
1233  struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
1234  struct rtl_priv *rtlpriv = rtl_priv(hw);
1235 
1236  queue_delayed_work(rtlpriv->works.rtl_wq,
1237  &rtlpriv->works.watchdog_wq, 0);
1238 
1239  mod_timer(&rtlpriv->works.watchdog_timer,
1241 }
1242 
1243 /*********************************************************
1244  *
1245  * frame process functions
1246  *
1247  *********************************************************/
1248 u8 *rtl_find_ie(u8 *data, unsigned int len, u8 ie)
1249 {
1250  struct ieee80211_mgmt *mgmt = (void *)data;
1251  u8 *pos, *end;
1252 
1253  pos = (u8 *)mgmt->u.beacon.variable;
1254  end = data + len;
1255  while (pos < end) {
1256  if (pos + 2 + pos[1] > end)
1257  return NULL;
1258 
1259  if (pos[0] == ie)
1260  return pos;
1261 
1262  pos += 2 + pos[1];
1263  }
1264  return NULL;
1265 }
1266 
1267 /* when we use 2 rx ants we send IEEE80211_SMPS_OFF */
1268 /* when we use 1 rx ant we send IEEE80211_SMPS_STATIC */
1269 static struct sk_buff *rtl_make_smps_action(struct ieee80211_hw *hw,
1270  enum ieee80211_smps_mode smps, u8 *da, u8 *bssid)
1271 {
1272  struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1273  struct sk_buff *skb;
1274  struct ieee80211_mgmt *action_frame;
1275 
1276  /* 27 = header + category + action + smps mode */
1277  skb = dev_alloc_skb(27 + hw->extra_tx_headroom);
1278  if (!skb)
1279  return NULL;
1280 
1281  skb_reserve(skb, hw->extra_tx_headroom);
1282  action_frame = (void *)skb_put(skb, 27);
1283  memset(action_frame, 0, 27);
1284  memcpy(action_frame->da, da, ETH_ALEN);
1285  memcpy(action_frame->sa, rtlefuse->dev_addr, ETH_ALEN);
1286  memcpy(action_frame->bssid, bssid, ETH_ALEN);
1289  action_frame->u.action.category = WLAN_CATEGORY_HT;
1290  action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS;
1291  switch (smps) {
1292  case IEEE80211_SMPS_AUTOMATIC:/* 0 */
1293  case IEEE80211_SMPS_NUM_MODES:/* 4 */
1294  WARN_ON(1);
1295  case IEEE80211_SMPS_OFF:/* 1 */ /*MIMO_PS_NOLIMIT*/
1296  action_frame->u.action.u.ht_smps.smps_control =
1298  break;
1299  case IEEE80211_SMPS_STATIC:/* 2 */ /*MIMO_PS_STATIC*/
1300  action_frame->u.action.u.ht_smps.smps_control =
1302  break;
1303  case IEEE80211_SMPS_DYNAMIC:/* 3 */ /*MIMO_PS_DYNAMIC*/
1304  action_frame->u.action.u.ht_smps.smps_control =
1306  break;
1307  }
1308 
1309  return skb;
1310 }
1311 
1313  struct ieee80211_sta *sta, u8 *da, u8 *bssid,
1314  enum ieee80211_smps_mode smps)
1315 {
1316  struct rtl_priv *rtlpriv = rtl_priv(hw);
1317  struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1318  struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1319  struct sk_buff *skb = rtl_make_smps_action(hw, smps, da, bssid);
1320  struct rtl_tcb_desc tcb_desc;
1321  memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
1322 
1323  if (rtlpriv->mac80211.act_scanning)
1324  goto err_free;
1325 
1326  if (!sta)
1327  goto err_free;
1328 
1329  if (unlikely(is_hal_stop(rtlhal) || ppsc->rfpwr_state != ERFON))
1330  goto err_free;
1331 
1332  if (!test_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status))
1333  goto err_free;
1334 
1335  /* this is a type = mgmt * stype = action frame */
1336  if (skb) {
1337  struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1338  struct rtl_sta_info *sta_entry =
1339  (struct rtl_sta_info *) sta->drv_priv;
1340  sta_entry->mimo_ps = smps;
1341  rtlpriv->cfg->ops->update_rate_tbl(hw, sta, 0);
1342 
1343  info->control.rates[0].idx = 0;
1344  info->band = hw->conf.channel->band;
1345  rtlpriv->intf_ops->adapter_tx(hw, sta, skb, &tcb_desc);
1346  }
1347 err_free:
1348  return 0;
1349 }
1350 
1351 /*********************************************************
1352  *
1353  * IOT functions
1354  *
1355  *********************************************************/
1356 static bool rtl_chk_vendor_ouisub(struct ieee80211_hw *hw,
1357  struct octet_string vendor_ie)
1358 {
1359  struct rtl_priv *rtlpriv = rtl_priv(hw);
1360  bool matched = false;
1361  static u8 athcap_1[] = { 0x00, 0x03, 0x7F };
1362  static u8 athcap_2[] = { 0x00, 0x13, 0x74 };
1363  static u8 broadcap_1[] = { 0x00, 0x10, 0x18 };
1364  static u8 broadcap_2[] = { 0x00, 0x0a, 0xf7 };
1365  static u8 broadcap_3[] = { 0x00, 0x05, 0xb5 };
1366  static u8 racap[] = { 0x00, 0x0c, 0x43 };
1367  static u8 ciscocap[] = { 0x00, 0x40, 0x96 };
1368  static u8 marvcap[] = { 0x00, 0x50, 0x43 };
1369 
1370  if (memcmp(vendor_ie.octet, athcap_1, 3) == 0 ||
1371  memcmp(vendor_ie.octet, athcap_2, 3) == 0) {
1372  rtlpriv->mac80211.vendor = PEER_ATH;
1373  matched = true;
1374  } else if (memcmp(vendor_ie.octet, broadcap_1, 3) == 0 ||
1375  memcmp(vendor_ie.octet, broadcap_2, 3) == 0 ||
1376  memcmp(vendor_ie.octet, broadcap_3, 3) == 0) {
1377  rtlpriv->mac80211.vendor = PEER_BROAD;
1378  matched = true;
1379  } else if (memcmp(vendor_ie.octet, racap, 3) == 0) {
1380  rtlpriv->mac80211.vendor = PEER_RAL;
1381  matched = true;
1382  } else if (memcmp(vendor_ie.octet, ciscocap, 3) == 0) {
1383  rtlpriv->mac80211.vendor = PEER_CISCO;
1384  matched = true;
1385  } else if (memcmp(vendor_ie.octet, marvcap, 3) == 0) {
1386  rtlpriv->mac80211.vendor = PEER_MARV;
1387  matched = true;
1388  }
1389 
1390  return matched;
1391 }
1392 
1393 static bool rtl_find_221_ie(struct ieee80211_hw *hw, u8 *data,
1394  unsigned int len)
1395 {
1396  struct ieee80211_mgmt *mgmt = (void *)data;
1397  struct octet_string vendor_ie;
1398  u8 *pos, *end;
1399 
1400  pos = (u8 *)mgmt->u.beacon.variable;
1401  end = data + len;
1402  while (pos < end) {
1403  if (pos[0] == 221) {
1404  vendor_ie.length = pos[1];
1405  vendor_ie.octet = &pos[2];
1406  if (rtl_chk_vendor_ouisub(hw, vendor_ie))
1407  return true;
1408  }
1409 
1410  if (pos + 2 + pos[1] > end)
1411  return false;
1412 
1413  pos += 2 + pos[1];
1414  }
1415  return false;
1416 }
1417 
1418 void rtl_recognize_peer(struct ieee80211_hw *hw, u8 *data, unsigned int len)
1419 {
1420  struct rtl_priv *rtlpriv = rtl_priv(hw);
1421  struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1422  struct ieee80211_hdr *hdr = (void *)data;
1424 
1425  static u8 ap3_1[3] = { 0x00, 0x14, 0xbf };
1426  static u8 ap3_2[3] = { 0x00, 0x1a, 0x70 };
1427  static u8 ap3_3[3] = { 0x00, 0x1d, 0x7e };
1428  static u8 ap4_1[3] = { 0x00, 0x90, 0xcc };
1429  static u8 ap4_2[3] = { 0x00, 0x0e, 0x2e };
1430  static u8 ap4_3[3] = { 0x00, 0x18, 0x02 };
1431  static u8 ap4_4[3] = { 0x00, 0x17, 0x3f };
1432  static u8 ap4_5[3] = { 0x00, 0x1c, 0xdf };
1433  static u8 ap5_1[3] = { 0x00, 0x1c, 0xf0 };
1434  static u8 ap5_2[3] = { 0x00, 0x21, 0x91 };
1435  static u8 ap5_3[3] = { 0x00, 0x24, 0x01 };
1436  static u8 ap5_4[3] = { 0x00, 0x15, 0xe9 };
1437  static u8 ap5_5[3] = { 0x00, 0x17, 0x9A };
1438  static u8 ap5_6[3] = { 0x00, 0x18, 0xE7 };
1439  static u8 ap6_1[3] = { 0x00, 0x17, 0x94 };
1440  static u8 ap7_1[3] = { 0x00, 0x14, 0xa4 };
1441 
1442  if (mac->opmode != NL80211_IFTYPE_STATION)
1443  return;
1444 
1445  if (mac->link_state == MAC80211_NOLINK) {
1446  mac->vendor = PEER_UNKNOWN;
1447  return;
1448  }
1449 
1450  if (mac->cnt_after_linked > 2)
1451  return;
1452 
1453  /* check if this really is a beacon */
1454  if (!ieee80211_is_beacon(hdr->frame_control))
1455  return;
1456 
1457  /* min. beacon length + FCS_LEN */
1458  if (len <= 40 + FCS_LEN)
1459  return;
1460 
1461  /* and only beacons from the associated BSSID, please */
1462  if (!ether_addr_equal(hdr->addr3, rtlpriv->mac80211.bssid))
1463  return;
1464 
1465  if (rtl_find_221_ie(hw, data, len))
1466  vendor = mac->vendor;
1467 
1468  if ((memcmp(mac->bssid, ap5_1, 3) == 0) ||
1469  (memcmp(mac->bssid, ap5_2, 3) == 0) ||
1470  (memcmp(mac->bssid, ap5_3, 3) == 0) ||
1471  (memcmp(mac->bssid, ap5_4, 3) == 0) ||
1472  (memcmp(mac->bssid, ap5_5, 3) == 0) ||
1473  (memcmp(mac->bssid, ap5_6, 3) == 0) ||
1474  vendor == PEER_ATH) {
1475  vendor = PEER_ATH;
1476  RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ath find\n");
1477  } else if ((memcmp(mac->bssid, ap4_4, 3) == 0) ||
1478  (memcmp(mac->bssid, ap4_5, 3) == 0) ||
1479  (memcmp(mac->bssid, ap4_1, 3) == 0) ||
1480  (memcmp(mac->bssid, ap4_2, 3) == 0) ||
1481  (memcmp(mac->bssid, ap4_3, 3) == 0) ||
1482  vendor == PEER_RAL) {
1483  RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ral find\n");
1484  vendor = PEER_RAL;
1485  } else if (memcmp(mac->bssid, ap6_1, 3) == 0 ||
1486  vendor == PEER_CISCO) {
1487  vendor = PEER_CISCO;
1488  RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>cisco find\n");
1489  } else if ((memcmp(mac->bssid, ap3_1, 3) == 0) ||
1490  (memcmp(mac->bssid, ap3_2, 3) == 0) ||
1491  (memcmp(mac->bssid, ap3_3, 3) == 0) ||
1492  vendor == PEER_BROAD) {
1493  RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>broad find\n");
1494  vendor = PEER_BROAD;
1495  } else if (memcmp(mac->bssid, ap7_1, 3) == 0 ||
1496  vendor == PEER_MARV) {
1497  vendor = PEER_MARV;
1498  RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>marv find\n");
1499  }
1500 
1501  mac->vendor = vendor;
1502 }
1503 
1504 /*********************************************************
1505  *
1506  * sysfs functions
1507  *
1508  *********************************************************/
1509 static ssize_t rtl_show_debug_level(struct device *d,
1510  struct device_attribute *attr, char *buf)
1511 {
1512  struct ieee80211_hw *hw = dev_get_drvdata(d);
1513  struct rtl_priv *rtlpriv = rtl_priv(hw);
1514 
1515  return sprintf(buf, "0x%08X\n", rtlpriv->dbg.global_debuglevel);
1516 }
1517 
1518 static ssize_t rtl_store_debug_level(struct device *d,
1519  struct device_attribute *attr,
1520  const char *buf, size_t count)
1521 {
1522  struct ieee80211_hw *hw = dev_get_drvdata(d);
1523  struct rtl_priv *rtlpriv = rtl_priv(hw);
1524  unsigned long val;
1525  int ret;
1526 
1527  ret = strict_strtoul(buf, 0, &val);
1528  if (ret) {
1529  printk(KERN_DEBUG "%s is not in hex or decimal form.\n", buf);
1530  } else {
1531  rtlpriv->dbg.global_debuglevel = val;
1532  printk(KERN_DEBUG "debuglevel:%x\n",
1533  rtlpriv->dbg.global_debuglevel);
1534  }
1535 
1536  return strnlen(buf, count);
1537 }
1538 
1539 static DEVICE_ATTR(debug_level, S_IWUSR | S_IRUGO,
1540  rtl_show_debug_level, rtl_store_debug_level);
1541 
1542 static struct attribute *rtl_sysfs_entries[] = {
1543 
1544  &dev_attr_debug_level.attr,
1545 
1546  NULL
1547 };
1548 
1549 /*
1550  * "name" is folder name witch will be
1551  * put in device directory like :
1552  * sys/devices/pci0000:00/0000:00:1c.4/
1553  * 0000:06:00.0/rtl_sysfs
1554  */
1556  .name = "rtlsysfs",
1557  .attrs = rtl_sysfs_entries,
1558 };
1559 
1560 MODULE_AUTHOR("lizhaoming <[email protected]>");
1561 MODULE_AUTHOR("Realtek WlanFAE <[email protected]>");
1562 MODULE_AUTHOR("Larry Finger <[email protected]>");
1563 MODULE_LICENSE("GPL");
1564 MODULE_DESCRIPTION("Realtek 802.11n PCI wireless core");
1565 
1566 static int __init rtl_core_module_init(void)
1567 {
1569  pr_err("Unable to register rtl_rc, use default RC !!\n");
1570 
1571  return 0;
1572 }
1573 
1574 static void __exit rtl_core_module_exit(void)
1575 {
1576  /*RC*/
1578 }
1579 
1580 module_init(rtl_core_module_init);
1581 module_exit(rtl_core_module_exit);