Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
forcedeth.c
Go to the documentation of this file.
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  * engineered documentation written by Carl-Daniel Hailfinger
6  * and Andrew de Quincey.
7  *
8  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9  * trademarks of NVIDIA Corporation in the United States and other
10  * countries.
11  *
12  * Copyright (C) 2003,4,5 Manfred Spraul
13  * Copyright (C) 2004 Andrew de Quincey (wol support)
14  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15  * IRQ rate fixes, bigendian fixes, cleanups, verification)
16  * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * (at your option) any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26  * GNU General Public License for more details.
27  *
28  * You should have received a copy of the GNU General Public License
29  * along with this program; if not, write to the Free Software
30  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31  *
32  * Known bugs:
33  * We suspect that on some hardware no TX done interrupts are generated.
34  * This means recovery from netif_stop_queue only happens if the hw timer
35  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37  * If your hardware reliably generates tx done interrupts, then you can remove
38  * DEV_NEED_TIMERIRQ from the driver_data flags.
39  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40  * superfluous timer interrupts from the nic.
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #define FORCEDETH_VERSION "0.64"
46 #define DRV_NAME "forcedeth"
47 
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/pci.h>
51 #include <linux/interrupt.h>
52 #include <linux/netdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/delay.h>
55 #include <linux/sched.h>
56 #include <linux/spinlock.h>
57 #include <linux/ethtool.h>
58 #include <linux/timer.h>
59 #include <linux/skbuff.h>
60 #include <linux/mii.h>
61 #include <linux/random.h>
62 #include <linux/init.h>
63 #include <linux/if_vlan.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/slab.h>
66 #include <linux/uaccess.h>
67 #include <linux/prefetch.h>
68 #include <linux/u64_stats_sync.h>
69 #include <linux/io.h>
70 
71 #include <asm/irq.h>
72 
73 #define TX_WORK_PER_LOOP 64
74 #define RX_WORK_PER_LOOP 64
75 
76 /*
77  * Hardware access:
78  */
79 
80 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
81 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
82 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
83 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
84 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
85 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
86 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
87 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
88 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
89 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
90 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
91 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
92 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
93 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
94 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
95 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
96 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
97 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
98 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
99 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
100 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
101 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
102 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
103 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
104 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
105 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
106 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
107 
108 enum {
109  NvRegIrqStatus = 0x000,
110 #define NVREG_IRQSTAT_MIIEVENT 0x040
111 #define NVREG_IRQSTAT_MASK 0x83ff
112  NvRegIrqMask = 0x004,
113 #define NVREG_IRQ_RX_ERROR 0x0001
114 #define NVREG_IRQ_RX 0x0002
115 #define NVREG_IRQ_RX_NOBUF 0x0004
116 #define NVREG_IRQ_TX_ERR 0x0008
117 #define NVREG_IRQ_TX_OK 0x0010
118 #define NVREG_IRQ_TIMER 0x0020
119 #define NVREG_IRQ_LINK 0x0040
120 #define NVREG_IRQ_RX_FORCED 0x0080
121 #define NVREG_IRQ_TX_FORCED 0x0100
122 #define NVREG_IRQ_RECOVER_ERROR 0x8200
123 #define NVREG_IRQMASK_THROUGHPUT 0x00df
124 #define NVREG_IRQMASK_CPU 0x0060
125 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
126 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
127 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
128 
130 #define NVREG_UNKSETUP6_VAL 3
131 
132 /*
133  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
134  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
135  */
137 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
138 #define NVREG_POLL_DEFAULT_CPU 13
139  NvRegMSIMap0 = 0x020,
140  NvRegMSIMap1 = 0x024,
142 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
143  NvRegMisc1 = 0x080,
144 #define NVREG_MISC1_PAUSE_TX 0x01
145 #define NVREG_MISC1_HD 0x02
146 #define NVREG_MISC1_FORCE 0x3b0f3c
147 
149 #define NVREG_MAC_RESET_ASSERT 0x0F3
151 #define NVREG_XMITCTL_START 0x01
152 #define NVREG_XMITCTL_MGMT_ST 0x40000000
153 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
154 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
155 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
156 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
157 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
158 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
159 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
160 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
161 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
162 #define NVREG_XMITCTL_DATA_START 0x00100000
163 #define NVREG_XMITCTL_DATA_READY 0x00010000
164 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
166 #define NVREG_XMITSTAT_BUSY 0x01
167 
169 #define NVREG_PFF_PAUSE_RX 0x08
170 #define NVREG_PFF_ALWAYS 0x7F0000
171 #define NVREG_PFF_PROMISC 0x80
172 #define NVREG_PFF_MYADDR 0x20
173 #define NVREG_PFF_LOOPBACK 0x10
174 
176 #define NVREG_OFFLOAD_HOMEPHY 0x601
177 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
179 #define NVREG_RCVCTL_START 0x01
180 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
182 #define NVREG_RCVSTAT_BUSY 0x01
183 
185 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
186 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
187 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
188 #define NVREG_SLOTTIME_HALF 0x0000ff00
189 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
190 #define NVREG_SLOTTIME_MASK 0x000000ff
191 
193 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
194 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
195 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
196 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
197 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
198 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
200 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
204 #define NVREG_MCASTADDRA_FORCE 0x01
207 #define NVREG_MCASTMASKA_NONE 0xffffffff
209 #define NVREG_MCASTMASKB_NONE 0xffff
210 
212 #define PHY_RGMII 0x10000000
214 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
215 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
216 #define NVREG_BKOFFCTRL_SELECT 24
217 #define NVREG_BKOFFCTRL_GEAR 12
218 
221  NvRegRingSizes = 0x108,
222 #define NVREG_RINGSZ_TXSHIFT 0
223 #define NVREG_RINGSZ_RXSHIFT 16
225 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
226  NvRegLinkSpeed = 0x110,
227 #define NVREG_LINKSPEED_FORCE 0x10000
228 #define NVREG_LINKSPEED_10 1000
229 #define NVREG_LINKSPEED_100 100
230 #define NVREG_LINKSPEED_1000 50
231 #define NVREG_LINKSPEED_MASK (0xFFF)
233 #define NVREG_UNKSETUP5_BIT31 (1<<31)
235 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
236 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
237 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
239 #define NVREG_TXRXCTL_KICK 0x0001
240 #define NVREG_TXRXCTL_BIT1 0x0002
241 #define NVREG_TXRXCTL_BIT2 0x0004
242 #define NVREG_TXRXCTL_IDLE 0x0008
243 #define NVREG_TXRXCTL_RESET 0x0010
244 #define NVREG_TXRXCTL_RXCHECK 0x0400
245 #define NVREG_TXRXCTL_DESC_1 0
246 #define NVREG_TXRXCTL_DESC_2 0x002100
247 #define NVREG_TXRXCTL_DESC_3 0xc02200
248 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
249 #define NVREG_TXRXCTL_VLANINS 0x00080
253 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
254 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
255 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
256 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
258 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
259  NvRegMIIStatus = 0x180,
260 #define NVREG_MIISTAT_ERROR 0x0001
261 #define NVREG_MIISTAT_LINKCHANGE 0x0008
262 #define NVREG_MIISTAT_MASK_RW 0x0007
263 #define NVREG_MIISTAT_MASK_ALL 0x000f
264  NvRegMIIMask = 0x184,
265 #define NVREG_MII_LINKCHANGE 0x0008
266 
268 #define NVREG_ADAPTCTL_START 0x02
269 #define NVREG_ADAPTCTL_LINKUP 0x04
270 #define NVREG_ADAPTCTL_PHYVALID 0x40000
271 #define NVREG_ADAPTCTL_RUNNING 0x100000
272 #define NVREG_ADAPTCTL_PHYSHIFT 24
273  NvRegMIISpeed = 0x18c,
274 #define NVREG_MIISPEED_BIT8 (1<<8)
275 #define NVREG_MIIDELAY 5
277 #define NVREG_MIICTL_INUSE 0x08000
278 #define NVREG_MIICTL_WRITE 0x00400
279 #define NVREG_MIICTL_ADDRSHIFT 5
280  NvRegMIIData = 0x194,
281  NvRegTxUnicast = 0x1a0,
285 #define NVREG_WAKEUPFLAGS_VAL 0x7770
286 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
287 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
288 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
289 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
290 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
291 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
292 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
293 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
294 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
295 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
296 
298 #define NVREG_MGMTUNITGETVERSION 0x01
300 #define NVREG_MGMTUNITVERSION 0x08
301  NvRegPowerCap = 0x268,
302 #define NVREG_POWERCAP_D3SUPP (1<<30)
303 #define NVREG_POWERCAP_D2SUPP (1<<26)
304 #define NVREG_POWERCAP_D1SUPP (1<<25)
306 #define NVREG_POWERSTATE_POWEREDUP 0x8000
307 #define NVREG_POWERSTATE_VALID 0x0100
308 #define NVREG_POWERSTATE_MASK 0x0003
309 #define NVREG_POWERSTATE_D0 0x0000
310 #define NVREG_POWERSTATE_D1 0x0001
311 #define NVREG_POWERSTATE_D2 0x0002
312 #define NVREG_POWERSTATE_D3 0x0003
314 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
315  NvRegTxCnt = 0x280,
319  NvRegTxLateCol = 0x290,
326  NvRegRxLateCol = 0x2ac,
327  NvRegRxRunt = 0x2b0,
330  NvRegRxFCSErr = 0x2bc,
332  NvRegRxLenErr = 0x2c4,
333  NvRegRxUnicast = 0x2c8,
336  NvRegTxDef = 0x2d4,
337  NvRegTxFrame = 0x2d8,
338  NvRegRxCnt = 0x2dc,
339  NvRegTxPause = 0x2e0,
340  NvRegRxPause = 0x2e4,
343 #define NVREG_VLANCONTROL_ENABLE 0x2000
344  NvRegMSIXMap0 = 0x3e0,
345  NvRegMSIXMap1 = 0x3e4,
347 
349 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
350 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
351 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
352 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
353 };
354 
355 /* Big endian: should work, but is untested */
356 struct ring_desc {
359 };
360 
361 struct ring_desc_ex {
366 };
367 
368 union ring_type {
369  struct ring_desc *orig;
370  struct ring_desc_ex *ex;
371 };
372 
373 #define FLAG_MASK_V1 0xffff0000
374 #define FLAG_MASK_V2 0xffffc000
375 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
376 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
377 
378 #define NV_TX_LASTPACKET (1<<16)
379 #define NV_TX_RETRYERROR (1<<19)
380 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
381 #define NV_TX_FORCED_INTERRUPT (1<<24)
382 #define NV_TX_DEFERRED (1<<26)
383 #define NV_TX_CARRIERLOST (1<<27)
384 #define NV_TX_LATECOLLISION (1<<28)
385 #define NV_TX_UNDERFLOW (1<<29)
386 #define NV_TX_ERROR (1<<30)
387 #define NV_TX_VALID (1<<31)
388 
389 #define NV_TX2_LASTPACKET (1<<29)
390 #define NV_TX2_RETRYERROR (1<<18)
391 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
392 #define NV_TX2_FORCED_INTERRUPT (1<<30)
393 #define NV_TX2_DEFERRED (1<<25)
394 #define NV_TX2_CARRIERLOST (1<<26)
395 #define NV_TX2_LATECOLLISION (1<<27)
396 #define NV_TX2_UNDERFLOW (1<<28)
397 /* error and valid are the same for both */
398 #define NV_TX2_ERROR (1<<30)
399 #define NV_TX2_VALID (1<<31)
400 #define NV_TX2_TSO (1<<28)
401 #define NV_TX2_TSO_SHIFT 14
402 #define NV_TX2_TSO_MAX_SHIFT 14
403 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
404 #define NV_TX2_CHECKSUM_L3 (1<<27)
405 #define NV_TX2_CHECKSUM_L4 (1<<26)
406 
407 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
408 
409 #define NV_RX_DESCRIPTORVALID (1<<16)
410 #define NV_RX_MISSEDFRAME (1<<17)
411 #define NV_RX_SUBSTRACT1 (1<<18)
412 #define NV_RX_ERROR1 (1<<23)
413 #define NV_RX_ERROR2 (1<<24)
414 #define NV_RX_ERROR3 (1<<25)
415 #define NV_RX_ERROR4 (1<<26)
416 #define NV_RX_CRCERR (1<<27)
417 #define NV_RX_OVERFLOW (1<<28)
418 #define NV_RX_FRAMINGERR (1<<29)
419 #define NV_RX_ERROR (1<<30)
420 #define NV_RX_AVAIL (1<<31)
421 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
422 
423 #define NV_RX2_CHECKSUMMASK (0x1C000000)
424 #define NV_RX2_CHECKSUM_IP (0x10000000)
425 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
426 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
427 #define NV_RX2_DESCRIPTORVALID (1<<29)
428 #define NV_RX2_SUBSTRACT1 (1<<25)
429 #define NV_RX2_ERROR1 (1<<18)
430 #define NV_RX2_ERROR2 (1<<19)
431 #define NV_RX2_ERROR3 (1<<20)
432 #define NV_RX2_ERROR4 (1<<21)
433 #define NV_RX2_CRCERR (1<<22)
434 #define NV_RX2_OVERFLOW (1<<23)
435 #define NV_RX2_FRAMINGERR (1<<24)
436 /* error and avail are the same for both */
437 #define NV_RX2_ERROR (1<<30)
438 #define NV_RX2_AVAIL (1<<31)
439 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
440 
441 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
442 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
443 
444 /* Miscellaneous hardware related defines: */
445 #define NV_PCI_REGSZ_VER1 0x270
446 #define NV_PCI_REGSZ_VER2 0x2d4
447 #define NV_PCI_REGSZ_VER3 0x604
448 #define NV_PCI_REGSZ_MAX 0x604
449 
450 /* various timeout delays: all in usec */
451 #define NV_TXRX_RESET_DELAY 4
452 #define NV_TXSTOP_DELAY1 10
453 #define NV_TXSTOP_DELAY1MAX 500000
454 #define NV_TXSTOP_DELAY2 100
455 #define NV_RXSTOP_DELAY1 10
456 #define NV_RXSTOP_DELAY1MAX 500000
457 #define NV_RXSTOP_DELAY2 100
458 #define NV_SETUP5_DELAY 5
459 #define NV_SETUP5_DELAYMAX 50000
460 #define NV_POWERUP_DELAY 5
461 #define NV_POWERUP_DELAYMAX 5000
462 #define NV_MIIBUSY_DELAY 50
463 #define NV_MIIPHY_DELAY 10
464 #define NV_MIIPHY_DELAYMAX 10000
465 #define NV_MAC_RESET_DELAY 64
466 
467 #define NV_WAKEUPPATTERNS 5
468 #define NV_WAKEUPMASKENTRIES 4
469 
470 /* General driver defaults */
471 #define NV_WATCHDOG_TIMEO (5*HZ)
472 
473 #define RX_RING_DEFAULT 512
474 #define TX_RING_DEFAULT 256
475 #define RX_RING_MIN 128
476 #define TX_RING_MIN 64
477 #define RING_MAX_DESC_VER_1 1024
478 #define RING_MAX_DESC_VER_2_3 16384
479 
480 /* rx/tx mac addr + type + vlan + align + slack*/
481 #define NV_RX_HEADERS (64)
482 /* even more slack. */
483 #define NV_RX_ALLOC_PAD (64)
484 
485 /* maximum mtu size */
486 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
487 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
488 
489 #define OOM_REFILL (1+HZ/20)
490 #define POLL_WAIT (1+HZ/100)
491 #define LINK_TIMEOUT (3*HZ)
492 #define STATS_INTERVAL (10*HZ)
493 
494 /*
495  * desc_ver values:
496  * The nic supports three different descriptor types:
497  * - DESC_VER_1: Original
498  * - DESC_VER_2: support for jumbo frames.
499  * - DESC_VER_3: 64-bit format.
500  */
501 #define DESC_VER_1 1
502 #define DESC_VER_2 2
503 #define DESC_VER_3 3
504 
505 /* PHY defines */
506 #define PHY_OUI_MARVELL 0x5043
507 #define PHY_OUI_CICADA 0x03f1
508 #define PHY_OUI_VITESSE 0x01c1
509 #define PHY_OUI_REALTEK 0x0732
510 #define PHY_OUI_REALTEK2 0x0020
511 #define PHYID1_OUI_MASK 0x03ff
512 #define PHYID1_OUI_SHFT 6
513 #define PHYID2_OUI_MASK 0xfc00
514 #define PHYID2_OUI_SHFT 10
515 #define PHYID2_MODEL_MASK 0x03f0
516 #define PHY_MODEL_REALTEK_8211 0x0110
517 #define PHY_REV_MASK 0x0001
518 #define PHY_REV_REALTEK_8211B 0x0000
519 #define PHY_REV_REALTEK_8211C 0x0001
520 #define PHY_MODEL_REALTEK_8201 0x0200
521 #define PHY_MODEL_MARVELL_E3016 0x0220
522 #define PHY_MARVELL_E3016_INITMASK 0x0300
523 #define PHY_CICADA_INIT1 0x0f000
524 #define PHY_CICADA_INIT2 0x0e00
525 #define PHY_CICADA_INIT3 0x01000
526 #define PHY_CICADA_INIT4 0x0200
527 #define PHY_CICADA_INIT5 0x0004
528 #define PHY_CICADA_INIT6 0x02000
529 #define PHY_VITESSE_INIT_REG1 0x1f
530 #define PHY_VITESSE_INIT_REG2 0x10
531 #define PHY_VITESSE_INIT_REG3 0x11
532 #define PHY_VITESSE_INIT_REG4 0x12
533 #define PHY_VITESSE_INIT_MSK1 0xc
534 #define PHY_VITESSE_INIT_MSK2 0x0180
535 #define PHY_VITESSE_INIT1 0x52b5
536 #define PHY_VITESSE_INIT2 0xaf8a
537 #define PHY_VITESSE_INIT3 0x8
538 #define PHY_VITESSE_INIT4 0x8f8a
539 #define PHY_VITESSE_INIT5 0xaf86
540 #define PHY_VITESSE_INIT6 0x8f86
541 #define PHY_VITESSE_INIT7 0xaf82
542 #define PHY_VITESSE_INIT8 0x0100
543 #define PHY_VITESSE_INIT9 0x8f82
544 #define PHY_VITESSE_INIT10 0x0
545 #define PHY_REALTEK_INIT_REG1 0x1f
546 #define PHY_REALTEK_INIT_REG2 0x19
547 #define PHY_REALTEK_INIT_REG3 0x13
548 #define PHY_REALTEK_INIT_REG4 0x14
549 #define PHY_REALTEK_INIT_REG5 0x18
550 #define PHY_REALTEK_INIT_REG6 0x11
551 #define PHY_REALTEK_INIT_REG7 0x01
552 #define PHY_REALTEK_INIT1 0x0000
553 #define PHY_REALTEK_INIT2 0x8e00
554 #define PHY_REALTEK_INIT3 0x0001
555 #define PHY_REALTEK_INIT4 0xad17
556 #define PHY_REALTEK_INIT5 0xfb54
557 #define PHY_REALTEK_INIT6 0xf5c7
558 #define PHY_REALTEK_INIT7 0x1000
559 #define PHY_REALTEK_INIT8 0x0003
560 #define PHY_REALTEK_INIT9 0x0008
561 #define PHY_REALTEK_INIT10 0x0005
562 #define PHY_REALTEK_INIT11 0x0200
563 #define PHY_REALTEK_INIT_MSK1 0x0003
564 
565 #define PHY_GIGABIT 0x0100
566 
567 #define PHY_TIMEOUT 0x1
568 #define PHY_ERROR 0x2
569 
570 #define PHY_100 0x1
571 #define PHY_1000 0x2
572 #define PHY_HALF 0x100
573 
574 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
575 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
576 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
577 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
578 #define NV_PAUSEFRAME_RX_REQ 0x0010
579 #define NV_PAUSEFRAME_TX_REQ 0x0020
580 #define NV_PAUSEFRAME_AUTONEG 0x0040
581 
582 /* MSI/MSI-X defines */
583 #define NV_MSI_X_MAX_VECTORS 8
584 #define NV_MSI_X_VECTORS_MASK 0x000f
585 #define NV_MSI_CAPABLE 0x0010
586 #define NV_MSI_X_CAPABLE 0x0020
587 #define NV_MSI_ENABLED 0x0040
588 #define NV_MSI_X_ENABLED 0x0080
589 
590 #define NV_MSI_X_VECTOR_ALL 0x0
591 #define NV_MSI_X_VECTOR_RX 0x0
592 #define NV_MSI_X_VECTOR_TX 0x1
593 #define NV_MSI_X_VECTOR_OTHER 0x2
594 
595 #define NV_MSI_PRIV_OFFSET 0x68
596 #define NV_MSI_PRIV_VALUE 0xffffffff
597 
598 #define NV_RESTART_TX 0x1
599 #define NV_RESTART_RX 0x2
600 
601 #define NV_TX_LIMIT_COUNT 16
602 
603 #define NV_DYNAMIC_THRESHOLD 4
604 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
605 
606 /* statistics */
609 };
610 
611 static const struct nv_ethtool_str nv_estats_str[] = {
612  { "tx_bytes" }, /* includes Ethernet FCS CRC */
613  { "tx_zero_rexmt" },
614  { "tx_one_rexmt" },
615  { "tx_many_rexmt" },
616  { "tx_late_collision" },
617  { "tx_fifo_errors" },
618  { "tx_carrier_errors" },
619  { "tx_excess_deferral" },
620  { "tx_retry_error" },
621  { "rx_frame_error" },
622  { "rx_extra_byte" },
623  { "rx_late_collision" },
624  { "rx_runt" },
625  { "rx_frame_too_long" },
626  { "rx_over_errors" },
627  { "rx_crc_errors" },
628  { "rx_frame_align_error" },
629  { "rx_length_error" },
630  { "rx_unicast" },
631  { "rx_multicast" },
632  { "rx_broadcast" },
633  { "rx_packets" },
634  { "rx_errors_total" },
635  { "tx_errors_total" },
636 
637  /* version 2 stats */
638  { "tx_deferral" },
639  { "tx_packets" },
640  { "rx_bytes" }, /* includes Ethernet FCS CRC */
641  { "tx_pause" },
642  { "rx_pause" },
643  { "rx_drop_frame" },
644 
645  /* version 3 stats */
646  { "tx_unicast" },
647  { "tx_multicast" },
648  { "tx_broadcast" }
649 };
650 
652  u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
673  u64 rx_packets; /* should be ifconfig->rx_packets */
676 
677  /* version 2 stats */
679  u64 tx_packets; /* should be ifconfig->tx_packets */
680  u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */
684 
685  /* version 3 stats */
689 };
690 
691 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
692 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
693 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
694 
695 /* diagnostics */
696 #define NV_TEST_COUNT_BASE 3
697 #define NV_TEST_COUNT_EXTENDED 4
698 
699 static const struct nv_ethtool_str nv_etests_str[] = {
700  { "link (online/offline)" },
701  { "register (offline) " },
702  { "interrupt (offline) " },
703  { "loopback (offline) " }
704 };
705 
709 };
710 
711 static const struct register_test nv_registers_test[] = {
712  { NvRegUnknownSetupReg6, 0x01 },
713  { NvRegMisc1, 0x03c },
714  { NvRegOffloadConfig, 0x03ff },
715  { NvRegMulticastAddrA, 0xffffffff },
716  { NvRegTxWatermark, 0x0ff },
717  { NvRegWakeUpFlags, 0x07777 },
718  { 0, 0 }
719 };
720 
721 struct nv_skb_map {
722  struct sk_buff *skb;
724  unsigned int dma_len:31;
725  unsigned int dma_single:1;
728 };
729 
730 /*
731  * SMP locking:
732  * All hardware access under netdev_priv(dev)->lock, except the performance
733  * critical parts:
734  * - rx is (pseudo-) lockless: it relies on the single-threading provided
735  * by the arch code for interrupts.
736  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
737  * needs netdev_priv(dev)->lock :-(
738  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
739  *
740  * Hardware stats updates are protected by hwstats_lock:
741  * - updated by nv_do_stats_poll (timer). This is meant to avoid
742  * integer wraparound in the NIC stats registers, at low frequency
743  * (0.1 Hz)
744  * - updated by nv_get_ethtool_stats + nv_get_stats64
745  *
746  * Software stats are accessed only through 64b synchronization points
747  * and are not subject to other synchronization techniques (single
748  * update thread on the TX or RX paths).
749  */
750 
751 /* in dev: base, irq */
752 struct fe_priv {
754 
755  struct net_device *dev;
757 
758  /* hardware stats are updated in syscall and timer */
761 
764  int duplex;
765  int autoneg;
767  int phyaddr;
769  unsigned int phy_oui;
770  unsigned int phy_model;
771  unsigned int phy_rev;
776 
777  /* General data: RO fields */
779  struct pci_dev *pci_dev;
792 
793  void __iomem *base;
794 
795  /* rx specific fields.
796  * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
797  */
798  union ring_type get_rx, put_rx, first_rx, last_rx;
802 
804  unsigned int rx_buf_sz;
805  unsigned int pkt_limit;
811 
812  /* RX software stats */
815  u64 stat_rx_bytes; /* not always available in HW */
818 
819  /* media detection workaround.
820  * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
821  */
823  unsigned long link_timeout;
824  /*
825  * tx specific fields.
826  */
827  union ring_type get_tx, put_tx, first_tx, last_tx;
831 
835  int tx_limit;
839  int tx_stop;
840 
841  /* TX software stats */
843  u64 stat_tx_packets; /* not always available in HW */
846 
847  /* msi/msi-x fields */
849  struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
850 
851  /* flow control */
853 
854  /* power saved state */
856 
857  /* for different msi-x irq type */
858  char name_rx[IFNAMSIZ + 3]; /* -rx */
859  char name_tx[IFNAMSIZ + 3]; /* -tx */
860  char name_other[IFNAMSIZ + 6]; /* -other */
861 };
862 
863 /*
864  * Maximum number of loops until we assume that a bit in the irq mask
865  * is stuck. Overridable with module param.
866  */
867 static int max_interrupt_work = 4;
868 
869 /*
870  * Optimization can be either throuput mode or cpu mode
871  *
872  * Throughput Mode: Every tx and rx packet will generate an interrupt.
873  * CPU Mode: Interrupts are controlled by a timer.
874  */
875 enum {
879 };
880 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
881 
882 /*
883  * Poll interval for timer irq
884  *
885  * This interval determines how frequent an interrupt is generated.
886  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
887  * Min = 0, and Max = 65535
888  */
889 static int poll_interval = -1;
890 
891 /*
892  * MSI interrupts
893  */
894 enum {
897 };
898 static int msi = NV_MSI_INT_ENABLED;
899 
900 /*
901  * MSIX interrupts
902  */
903 enum {
906 };
907 static int msix = NV_MSIX_INT_ENABLED;
908 
909 /*
910  * DMA 64bit
911  */
912 enum {
915 };
916 static int dma_64bit = NV_DMA_64BIT_ENABLED;
917 
918 /*
919  * Debug output control for tx_timeout
920  */
921 static bool debug_tx_timeout = false;
922 
923 /*
924  * Crossover Detection
925  * Realtek 8201 phy + some OEM boards do not work properly.
926  */
927 enum {
930 };
931 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
932 
933 /*
934  * Power down phy when interface is down (persists through reboot;
935  * older Linux and other OSes may not power it up again)
936  */
937 static int phy_power_down;
938 
939 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
940 {
941  return netdev_priv(dev);
942 }
943 
944 static inline u8 __iomem *get_hwbase(struct net_device *dev)
945 {
946  return ((struct fe_priv *)netdev_priv(dev))->base;
947 }
948 
949 static inline void pci_push(u8 __iomem *base)
950 {
951  /* force out pending posted writes */
952  readl(base);
953 }
954 
955 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
956 {
957  return le32_to_cpu(prd->flaglen)
958  & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
959 }
960 
961 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
962 {
963  return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
964 }
965 
966 static bool nv_optimized(struct fe_priv *np)
967 {
968  if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
969  return false;
970  return true;
971 }
972 
973 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
974  int delay, int delaymax)
975 {
976  u8 __iomem *base = get_hwbase(dev);
977 
978  pci_push(base);
979  do {
980  udelay(delay);
981  delaymax -= delay;
982  if (delaymax < 0)
983  return 1;
984  } while ((readl(base + offset) & mask) != target);
985  return 0;
986 }
987 
988 #define NV_SETUP_RX_RING 0x01
989 #define NV_SETUP_TX_RING 0x02
990 
991 static inline u32 dma_low(dma_addr_t addr)
992 {
993  return addr;
994 }
995 
996 static inline u32 dma_high(dma_addr_t addr)
997 {
998  return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
999 }
1000 
1001 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
1002 {
1003  struct fe_priv *np = get_nvpriv(dev);
1004  u8 __iomem *base = get_hwbase(dev);
1005 
1006  if (!nv_optimized(np)) {
1007  if (rxtx_flags & NV_SETUP_RX_RING)
1008  writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1009  if (rxtx_flags & NV_SETUP_TX_RING)
1010  writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1011  } else {
1012  if (rxtx_flags & NV_SETUP_RX_RING) {
1013  writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1014  writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
1015  }
1016  if (rxtx_flags & NV_SETUP_TX_RING) {
1017  writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1018  writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
1019  }
1020  }
1021 }
1022 
1023 static void free_rings(struct net_device *dev)
1024 {
1025  struct fe_priv *np = get_nvpriv(dev);
1026 
1027  if (!nv_optimized(np)) {
1028  if (np->rx_ring.orig)
1029  pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
1030  np->rx_ring.orig, np->ring_addr);
1031  } else {
1032  if (np->rx_ring.ex)
1033  pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
1034  np->rx_ring.ex, np->ring_addr);
1035  }
1036  kfree(np->rx_skb);
1037  kfree(np->tx_skb);
1038 }
1039 
1040 static int using_multi_irqs(struct net_device *dev)
1041 {
1042  struct fe_priv *np = get_nvpriv(dev);
1043 
1044  if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1045  ((np->msi_flags & NV_MSI_X_ENABLED) &&
1046  ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1047  return 0;
1048  else
1049  return 1;
1050 }
1051 
1052 static void nv_txrx_gate(struct net_device *dev, bool gate)
1053 {
1054  struct fe_priv *np = get_nvpriv(dev);
1055  u8 __iomem *base = get_hwbase(dev);
1056  u32 powerstate;
1057 
1058  if (!np->mac_in_use &&
1059  (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1060  powerstate = readl(base + NvRegPowerState2);
1061  if (gate)
1062  powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1063  else
1064  powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1065  writel(powerstate, base + NvRegPowerState2);
1066  }
1067 }
1068 
1069 static void nv_enable_irq(struct net_device *dev)
1070 {
1071  struct fe_priv *np = get_nvpriv(dev);
1072 
1073  if (!using_multi_irqs(dev)) {
1074  if (np->msi_flags & NV_MSI_X_ENABLED)
1076  else
1077  enable_irq(np->pci_dev->irq);
1078  } else {
1082  }
1083 }
1084 
1085 static void nv_disable_irq(struct net_device *dev)
1086 {
1087  struct fe_priv *np = get_nvpriv(dev);
1088 
1089  if (!using_multi_irqs(dev)) {
1090  if (np->msi_flags & NV_MSI_X_ENABLED)
1092  else
1093  disable_irq(np->pci_dev->irq);
1094  } else {
1098  }
1099 }
1100 
1101 /* In MSIX mode, a write to irqmask behaves as XOR */
1102 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1103 {
1104  u8 __iomem *base = get_hwbase(dev);
1105 
1106  writel(mask, base + NvRegIrqMask);
1107 }
1108 
1109 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1110 {
1111  struct fe_priv *np = get_nvpriv(dev);
1112  u8 __iomem *base = get_hwbase(dev);
1113 
1114  if (np->msi_flags & NV_MSI_X_ENABLED) {
1115  writel(mask, base + NvRegIrqMask);
1116  } else {
1117  if (np->msi_flags & NV_MSI_ENABLED)
1118  writel(0, base + NvRegMSIIrqMask);
1119  writel(0, base + NvRegIrqMask);
1120  }
1121 }
1122 
1123 static void nv_napi_enable(struct net_device *dev)
1124 {
1125  struct fe_priv *np = get_nvpriv(dev);
1126 
1127  napi_enable(&np->napi);
1128 }
1129 
1130 static void nv_napi_disable(struct net_device *dev)
1131 {
1132  struct fe_priv *np = get_nvpriv(dev);
1133 
1134  napi_disable(&np->napi);
1135 }
1136 
1137 #define MII_READ (-1)
1138 /* mii_rw: read/write a register on the PHY.
1139  *
1140  * Caller must guarantee serialization
1141  */
1142 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1143 {
1144  u8 __iomem *base = get_hwbase(dev);
1145  u32 reg;
1146  int retval;
1147 
1149 
1150  reg = readl(base + NvRegMIIControl);
1151  if (reg & NVREG_MIICTL_INUSE) {
1152  writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1154  }
1155 
1156  reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1157  if (value != MII_READ) {
1158  writel(value, base + NvRegMIIData);
1159  reg |= NVREG_MIICTL_WRITE;
1160  }
1161  writel(reg, base + NvRegMIIControl);
1162 
1163  if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1165  retval = -1;
1166  } else if (value != MII_READ) {
1167  /* it was a write operation - fewer failures are detectable */
1168  retval = 0;
1169  } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1170  retval = -1;
1171  } else {
1172  retval = readl(base + NvRegMIIData);
1173  }
1174 
1175  return retval;
1176 }
1177 
1178 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1179 {
1180  struct fe_priv *np = netdev_priv(dev);
1181  u32 miicontrol;
1182  unsigned int tries = 0;
1183 
1184  miicontrol = BMCR_RESET | bmcr_setup;
1185  if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
1186  return -1;
1187 
1188  /* wait for 500ms */
1189  msleep(500);
1190 
1191  /* must wait till reset is deasserted */
1192  while (miicontrol & BMCR_RESET) {
1193  usleep_range(10000, 20000);
1194  miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1195  /* FIXME: 100 tries seem excessive */
1196  if (tries++ > 100)
1197  return -1;
1198  }
1199  return 0;
1200 }
1201 
1202 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
1203 {
1204  static const struct {
1205  int reg;
1206  int init;
1207  } ri[] = {
1215  };
1216  int i;
1217 
1218  for (i = 0; i < ARRAY_SIZE(ri); i++) {
1219  if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
1220  return PHY_ERROR;
1221  }
1222 
1223  return 0;
1224 }
1225 
1226 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
1227 {
1228  u32 reg;
1229  u8 __iomem *base = get_hwbase(dev);
1230  u32 powerstate = readl(base + NvRegPowerState2);
1231 
1232  /* need to perform hw phy reset */
1233  powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1234  writel(powerstate, base + NvRegPowerState2);
1235  msleep(25);
1236 
1237  powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1238  writel(powerstate, base + NvRegPowerState2);
1239  msleep(25);
1240 
1241  reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1242  reg |= PHY_REALTEK_INIT9;
1243  if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
1244  return PHY_ERROR;
1245  if (mii_rw(dev, np->phyaddr,
1247  return PHY_ERROR;
1248  reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1249  if (!(reg & PHY_REALTEK_INIT11)) {
1250  reg |= PHY_REALTEK_INIT11;
1251  if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
1252  return PHY_ERROR;
1253  }
1254  if (mii_rw(dev, np->phyaddr,
1256  return PHY_ERROR;
1257 
1258  return 0;
1259 }
1260 
1261 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
1262 {
1263  u32 phy_reserved;
1264 
1265  if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1266  phy_reserved = mii_rw(dev, np->phyaddr,
1268  phy_reserved |= PHY_REALTEK_INIT7;
1269  if (mii_rw(dev, np->phyaddr,
1270  PHY_REALTEK_INIT_REG6, phy_reserved))
1271  return PHY_ERROR;
1272  }
1273 
1274  return 0;
1275 }
1276 
1277 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
1278 {
1279  u32 phy_reserved;
1280 
1281  if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1282  if (mii_rw(dev, np->phyaddr,
1284  return PHY_ERROR;
1285  phy_reserved = mii_rw(dev, np->phyaddr,
1287  phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1288  phy_reserved |= PHY_REALTEK_INIT3;
1289  if (mii_rw(dev, np->phyaddr,
1290  PHY_REALTEK_INIT_REG2, phy_reserved))
1291  return PHY_ERROR;
1292  if (mii_rw(dev, np->phyaddr,
1294  return PHY_ERROR;
1295  }
1296 
1297  return 0;
1298 }
1299 
1300 static int init_cicada(struct net_device *dev, struct fe_priv *np,
1301  u32 phyinterface)
1302 {
1303  u32 phy_reserved;
1304 
1305  if (phyinterface & PHY_RGMII) {
1306  phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1307  phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1308  phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1309  if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
1310  return PHY_ERROR;
1311  phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1312  phy_reserved |= PHY_CICADA_INIT5;
1313  if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
1314  return PHY_ERROR;
1315  }
1316  phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1317  phy_reserved |= PHY_CICADA_INIT6;
1318  if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
1319  return PHY_ERROR;
1320 
1321  return 0;
1322 }
1323 
1324 static int init_vitesse(struct net_device *dev, struct fe_priv *np)
1325 {
1326  u32 phy_reserved;
1327 
1328  if (mii_rw(dev, np->phyaddr,
1330  return PHY_ERROR;
1331  if (mii_rw(dev, np->phyaddr,
1333  return PHY_ERROR;
1334  phy_reserved = mii_rw(dev, np->phyaddr,
1336  if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1337  return PHY_ERROR;
1338  phy_reserved = mii_rw(dev, np->phyaddr,
1340  phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1341  phy_reserved |= PHY_VITESSE_INIT3;
1342  if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1343  return PHY_ERROR;
1344  if (mii_rw(dev, np->phyaddr,
1346  return PHY_ERROR;
1347  if (mii_rw(dev, np->phyaddr,
1349  return PHY_ERROR;
1350  phy_reserved = mii_rw(dev, np->phyaddr,
1352  phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1353  phy_reserved |= PHY_VITESSE_INIT3;
1354  if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1355  return PHY_ERROR;
1356  phy_reserved = mii_rw(dev, np->phyaddr,
1358  if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1359  return PHY_ERROR;
1360  if (mii_rw(dev, np->phyaddr,
1362  return PHY_ERROR;
1363  if (mii_rw(dev, np->phyaddr,
1365  return PHY_ERROR;
1366  phy_reserved = mii_rw(dev, np->phyaddr,
1368  if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1369  return PHY_ERROR;
1370  phy_reserved = mii_rw(dev, np->phyaddr,
1372  phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1373  phy_reserved |= PHY_VITESSE_INIT8;
1374  if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1375  return PHY_ERROR;
1376  if (mii_rw(dev, np->phyaddr,
1378  return PHY_ERROR;
1379  if (mii_rw(dev, np->phyaddr,
1381  return PHY_ERROR;
1382 
1383  return 0;
1384 }
1385 
1386 static int phy_init(struct net_device *dev)
1387 {
1388  struct fe_priv *np = get_nvpriv(dev);
1389  u8 __iomem *base = get_hwbase(dev);
1390  u32 phyinterface;
1391  u32 mii_status, mii_control, mii_control_1000, reg;
1392 
1393  /* phy errata for E3016 phy */
1394  if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1395  reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1397  if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1398  netdev_info(dev, "%s: phy write to errata reg failed\n",
1399  pci_name(np->pci_dev));
1400  return PHY_ERROR;
1401  }
1402  }
1403  if (np->phy_oui == PHY_OUI_REALTEK) {
1404  if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1405  np->phy_rev == PHY_REV_REALTEK_8211B) {
1406  if (init_realtek_8211b(dev, np)) {
1407  netdev_info(dev, "%s: phy init failed\n",
1408  pci_name(np->pci_dev));
1409  return PHY_ERROR;
1410  }
1411  } else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1412  np->phy_rev == PHY_REV_REALTEK_8211C) {
1413  if (init_realtek_8211c(dev, np)) {
1414  netdev_info(dev, "%s: phy init failed\n",
1415  pci_name(np->pci_dev));
1416  return PHY_ERROR;
1417  }
1418  } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1419  if (init_realtek_8201(dev, np)) {
1420  netdev_info(dev, "%s: phy init failed\n",
1421  pci_name(np->pci_dev));
1422  return PHY_ERROR;
1423  }
1424  }
1425  }
1426 
1427  /* set advertise register */
1428  reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1432  if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1433  netdev_info(dev, "%s: phy write to advertise failed\n",
1434  pci_name(np->pci_dev));
1435  return PHY_ERROR;
1436  }
1437 
1438  /* get phy interface type */
1439  phyinterface = readl(base + NvRegPhyInterface);
1440 
1441  /* see if gigabit phy */
1442  mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1443  if (mii_status & PHY_GIGABIT) {
1444  np->gigabit = PHY_GIGABIT;
1445  mii_control_1000 = mii_rw(dev, np->phyaddr,
1447  mii_control_1000 &= ~ADVERTISE_1000HALF;
1448  if (phyinterface & PHY_RGMII)
1449  mii_control_1000 |= ADVERTISE_1000FULL;
1450  else
1451  mii_control_1000 &= ~ADVERTISE_1000FULL;
1452 
1453  if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1454  netdev_info(dev, "%s: phy init failed\n",
1455  pci_name(np->pci_dev));
1456  return PHY_ERROR;
1457  }
1458  } else
1459  np->gigabit = 0;
1460 
1461  mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1462  mii_control |= BMCR_ANENABLE;
1463 
1464  if (np->phy_oui == PHY_OUI_REALTEK &&
1466  np->phy_rev == PHY_REV_REALTEK_8211C) {
1467  /* start autoneg since we already performed hw reset above */
1468  mii_control |= BMCR_ANRESTART;
1469  if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1470  netdev_info(dev, "%s: phy init failed\n",
1471  pci_name(np->pci_dev));
1472  return PHY_ERROR;
1473  }
1474  } else {
1475  /* reset the phy
1476  * (certain phys need bmcr to be setup with reset)
1477  */
1478  if (phy_reset(dev, mii_control)) {
1479  netdev_info(dev, "%s: phy reset failed\n",
1480  pci_name(np->pci_dev));
1481  return PHY_ERROR;
1482  }
1483  }
1484 
1485  /* phy vendor specific configuration */
1486  if ((np->phy_oui == PHY_OUI_CICADA)) {
1487  if (init_cicada(dev, np, phyinterface)) {
1488  netdev_info(dev, "%s: phy init failed\n",
1489  pci_name(np->pci_dev));
1490  return PHY_ERROR;
1491  }
1492  } else if (np->phy_oui == PHY_OUI_VITESSE) {
1493  if (init_vitesse(dev, np)) {
1494  netdev_info(dev, "%s: phy init failed\n",
1495  pci_name(np->pci_dev));
1496  return PHY_ERROR;
1497  }
1498  } else if (np->phy_oui == PHY_OUI_REALTEK) {
1499  if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1500  np->phy_rev == PHY_REV_REALTEK_8211B) {
1501  /* reset could have cleared these out, set them back */
1502  if (init_realtek_8211b(dev, np)) {
1503  netdev_info(dev, "%s: phy init failed\n",
1504  pci_name(np->pci_dev));
1505  return PHY_ERROR;
1506  }
1507  } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1508  if (init_realtek_8201(dev, np) ||
1509  init_realtek_8201_cross(dev, np)) {
1510  netdev_info(dev, "%s: phy init failed\n",
1511  pci_name(np->pci_dev));
1512  return PHY_ERROR;
1513  }
1514  }
1515  }
1516 
1517  /* some phys clear out pause advertisement on reset, set it back */
1518  mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1519 
1520  /* restart auto negotiation, power down phy */
1521  mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1522  mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1523  if (phy_power_down)
1524  mii_control |= BMCR_PDOWN;
1525  if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
1526  return PHY_ERROR;
1527 
1528  return 0;
1529 }
1530 
1531 static void nv_start_rx(struct net_device *dev)
1532 {
1533  struct fe_priv *np = netdev_priv(dev);
1534  u8 __iomem *base = get_hwbase(dev);
1535  u32 rx_ctrl = readl(base + NvRegReceiverControl);
1536 
1537  /* Already running? Stop it. */
1538  if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1539  rx_ctrl &= ~NVREG_RCVCTL_START;
1540  writel(rx_ctrl, base + NvRegReceiverControl);
1541  pci_push(base);
1542  }
1543  writel(np->linkspeed, base + NvRegLinkSpeed);
1544  pci_push(base);
1545  rx_ctrl |= NVREG_RCVCTL_START;
1546  if (np->mac_in_use)
1547  rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1548  writel(rx_ctrl, base + NvRegReceiverControl);
1549  pci_push(base);
1550 }
1551 
1552 static void nv_stop_rx(struct net_device *dev)
1553 {
1554  struct fe_priv *np = netdev_priv(dev);
1555  u8 __iomem *base = get_hwbase(dev);
1556  u32 rx_ctrl = readl(base + NvRegReceiverControl);
1557 
1558  if (!np->mac_in_use)
1559  rx_ctrl &= ~NVREG_RCVCTL_START;
1560  else
1561  rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1562  writel(rx_ctrl, base + NvRegReceiverControl);
1563  if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1565  netdev_info(dev, "%s: ReceiverStatus remained busy\n",
1566  __func__);
1567 
1569  if (!np->mac_in_use)
1570  writel(0, base + NvRegLinkSpeed);
1571 }
1572 
1573 static void nv_start_tx(struct net_device *dev)
1574 {
1575  struct fe_priv *np = netdev_priv(dev);
1576  u8 __iomem *base = get_hwbase(dev);
1577  u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1578 
1579  tx_ctrl |= NVREG_XMITCTL_START;
1580  if (np->mac_in_use)
1581  tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1582  writel(tx_ctrl, base + NvRegTransmitterControl);
1583  pci_push(base);
1584 }
1585 
1586 static void nv_stop_tx(struct net_device *dev)
1587 {
1588  struct fe_priv *np = netdev_priv(dev);
1589  u8 __iomem *base = get_hwbase(dev);
1590  u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1591 
1592  if (!np->mac_in_use)
1593  tx_ctrl &= ~NVREG_XMITCTL_START;
1594  else
1595  tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1596  writel(tx_ctrl, base + NvRegTransmitterControl);
1597  if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1599  netdev_info(dev, "%s: TransmitterStatus remained busy\n",
1600  __func__);
1601 
1603  if (!np->mac_in_use)
1605  base + NvRegTransmitPoll);
1606 }
1607 
1608 static void nv_start_rxtx(struct net_device *dev)
1609 {
1610  nv_start_rx(dev);
1611  nv_start_tx(dev);
1612 }
1613 
1614 static void nv_stop_rxtx(struct net_device *dev)
1615 {
1616  nv_stop_rx(dev);
1617  nv_stop_tx(dev);
1618 }
1619 
1620 static void nv_txrx_reset(struct net_device *dev)
1621 {
1622  struct fe_priv *np = netdev_priv(dev);
1623  u8 __iomem *base = get_hwbase(dev);
1624 
1626  pci_push(base);
1629  pci_push(base);
1630 }
1631 
1632 static void nv_mac_reset(struct net_device *dev)
1633 {
1634  struct fe_priv *np = netdev_priv(dev);
1635  u8 __iomem *base = get_hwbase(dev);
1636  u32 temp1, temp2, temp3;
1637 
1639  pci_push(base);
1640 
1641  /* save registers since they will be cleared on reset */
1642  temp1 = readl(base + NvRegMacAddrA);
1643  temp2 = readl(base + NvRegMacAddrB);
1644  temp3 = readl(base + NvRegTransmitPoll);
1645 
1647  pci_push(base);
1649  writel(0, base + NvRegMacReset);
1650  pci_push(base);
1652 
1653  /* restore saved registers */
1654  writel(temp1, base + NvRegMacAddrA);
1655  writel(temp2, base + NvRegMacAddrB);
1656  writel(temp3, base + NvRegTransmitPoll);
1657 
1659  pci_push(base);
1660 }
1661 
1662 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */
1663 static void nv_update_stats(struct net_device *dev)
1664 {
1665  struct fe_priv *np = netdev_priv(dev);
1666  u8 __iomem *base = get_hwbase(dev);
1667 
1668  /* If it happens that this is run in top-half context, then
1669  * replace the spin_lock of hwstats_lock with
1670  * spin_lock_irqsave() in calling functions. */
1671  WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half");
1673 
1674  /* query hardware */
1675  np->estats.tx_bytes += readl(base + NvRegTxCnt);
1676  np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1677  np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1678  np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1679  np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1680  np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1681  np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1682  np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1683  np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1684  np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1685  np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1686  np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1687  np->estats.rx_runt += readl(base + NvRegRxRunt);
1688  np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1689  np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1690  np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1691  np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1692  np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1693  np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1694  np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1695  np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1696  np->estats.rx_packets =
1697  np->estats.rx_unicast +
1698  np->estats.rx_multicast +
1699  np->estats.rx_broadcast;
1700  np->estats.rx_errors_total =
1701  np->estats.rx_crc_errors +
1702  np->estats.rx_over_errors +
1703  np->estats.rx_frame_error +
1704  (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1705  np->estats.rx_late_collision +
1706  np->estats.rx_runt +
1707  np->estats.rx_frame_too_long;
1708  np->estats.tx_errors_total =
1709  np->estats.tx_late_collision +
1710  np->estats.tx_fifo_errors +
1711  np->estats.tx_carrier_errors +
1712  np->estats.tx_excess_deferral +
1713  np->estats.tx_retry_error;
1714 
1716  np->estats.tx_deferral += readl(base + NvRegTxDef);
1717  np->estats.tx_packets += readl(base + NvRegTxFrame);
1718  np->estats.rx_bytes += readl(base + NvRegRxCnt);
1719  np->estats.tx_pause += readl(base + NvRegTxPause);
1720  np->estats.rx_pause += readl(base + NvRegRxPause);
1721  np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1722  np->estats.rx_errors_total += np->estats.rx_drop_frame;
1723  }
1724 
1725  if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1726  np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1727  np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1728  np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1729  }
1730 }
1731 
1732 /*
1733  * nv_get_stats64: dev->ndo_get_stats64 function
1734  * Get latest stats value from the nic.
1735  * Called with read_lock(&dev_base_lock) held for read -
1736  * only synchronized against unregister_netdevice.
1737  */
1738 static struct rtnl_link_stats64*
1739 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
1740  __acquires(&netdev_priv(dev)->hwstats_lock)
1741  __releases(&netdev_priv(dev)->hwstats_lock)
1742 {
1743  struct fe_priv *np = netdev_priv(dev);
1744  unsigned int syncp_start;
1745 
1746  /*
1747  * Note: because HW stats are not always available and for
1748  * consistency reasons, the following ifconfig stats are
1749  * managed by software: rx_bytes, tx_bytes, rx_packets and
1750  * tx_packets. The related hardware stats reported by ethtool
1751  * should be equivalent to these ifconfig stats, with 4
1752  * additional bytes per packet (Ethernet FCS CRC), except for
1753  * tx_packets when TSO kicks in.
1754  */
1755 
1756  /* software stats */
1757  do {
1758  syncp_start = u64_stats_fetch_begin_bh(&np->swstats_rx_syncp);
1759  storage->rx_packets = np->stat_rx_packets;
1760  storage->rx_bytes = np->stat_rx_bytes;
1761  storage->rx_dropped = np->stat_rx_dropped;
1762  storage->rx_missed_errors = np->stat_rx_missed_errors;
1763  } while (u64_stats_fetch_retry_bh(&np->swstats_rx_syncp, syncp_start));
1764 
1765  do {
1766  syncp_start = u64_stats_fetch_begin_bh(&np->swstats_tx_syncp);
1767  storage->tx_packets = np->stat_tx_packets;
1768  storage->tx_bytes = np->stat_tx_bytes;
1769  storage->tx_dropped = np->stat_tx_dropped;
1770  } while (u64_stats_fetch_retry_bh(&np->swstats_tx_syncp, syncp_start));
1771 
1772  /* If the nic supports hw counters then retrieve latest values */
1774  spin_lock_bh(&np->hwstats_lock);
1775 
1776  nv_update_stats(dev);
1777 
1778  /* generic stats */
1779  storage->rx_errors = np->estats.rx_errors_total;
1780  storage->tx_errors = np->estats.tx_errors_total;
1781 
1782  /* meaningful only when NIC supports stats v3 */
1783  storage->multicast = np->estats.rx_multicast;
1784 
1785  /* detailed rx_errors */
1786  storage->rx_length_errors = np->estats.rx_length_error;
1787  storage->rx_over_errors = np->estats.rx_over_errors;
1788  storage->rx_crc_errors = np->estats.rx_crc_errors;
1789  storage->rx_frame_errors = np->estats.rx_frame_align_error;
1790  storage->rx_fifo_errors = np->estats.rx_drop_frame;
1791 
1792  /* detailed tx_errors */
1793  storage->tx_carrier_errors = np->estats.tx_carrier_errors;
1794  storage->tx_fifo_errors = np->estats.tx_fifo_errors;
1795 
1796  spin_unlock_bh(&np->hwstats_lock);
1797  }
1798 
1799  return storage;
1800 }
1801 
1802 /*
1803  * nv_alloc_rx: fill rx ring entries.
1804  * Return 1 if the allocations for the skbs failed and the
1805  * rx engine is without Available descriptors
1806  */
1807 static int nv_alloc_rx(struct net_device *dev)
1808 {
1809  struct fe_priv *np = netdev_priv(dev);
1810  struct ring_desc *less_rx;
1811 
1812  less_rx = np->get_rx.orig;
1813  if (less_rx-- == np->first_rx.orig)
1814  less_rx = np->last_rx.orig;
1815 
1816  while (np->put_rx.orig != less_rx) {
1817  struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1818  if (skb) {
1819  np->put_rx_ctx->skb = skb;
1820  np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1821  skb->data,
1822  skb_tailroom(skb),
1824  np->put_rx_ctx->dma_len = skb_tailroom(skb);
1825  np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1826  wmb();
1827  np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1828  if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1829  np->put_rx.orig = np->first_rx.orig;
1830  if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1831  np->put_rx_ctx = np->first_rx_ctx;
1832  } else {
1833  u64_stats_update_begin(&np->swstats_rx_syncp);
1834  np->stat_rx_dropped++;
1835  u64_stats_update_end(&np->swstats_rx_syncp);
1836  return 1;
1837  }
1838  }
1839  return 0;
1840 }
1841 
1842 static int nv_alloc_rx_optimized(struct net_device *dev)
1843 {
1844  struct fe_priv *np = netdev_priv(dev);
1845  struct ring_desc_ex *less_rx;
1846 
1847  less_rx = np->get_rx.ex;
1848  if (less_rx-- == np->first_rx.ex)
1849  less_rx = np->last_rx.ex;
1850 
1851  while (np->put_rx.ex != less_rx) {
1852  struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1853  if (skb) {
1854  np->put_rx_ctx->skb = skb;
1855  np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1856  skb->data,
1857  skb_tailroom(skb),
1859  np->put_rx_ctx->dma_len = skb_tailroom(skb);
1860  np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1861  np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1862  wmb();
1863  np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1864  if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1865  np->put_rx.ex = np->first_rx.ex;
1866  if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1867  np->put_rx_ctx = np->first_rx_ctx;
1868  } else {
1869  u64_stats_update_begin(&np->swstats_rx_syncp);
1870  np->stat_rx_dropped++;
1871  u64_stats_update_end(&np->swstats_rx_syncp);
1872  return 1;
1873  }
1874  }
1875  return 0;
1876 }
1877 
1878 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1879 static void nv_do_rx_refill(unsigned long data)
1880 {
1881  struct net_device *dev = (struct net_device *) data;
1882  struct fe_priv *np = netdev_priv(dev);
1883 
1884  /* Just reschedule NAPI rx processing */
1885  napi_schedule(&np->napi);
1886 }
1887 
1888 static void nv_init_rx(struct net_device *dev)
1889 {
1890  struct fe_priv *np = netdev_priv(dev);
1891  int i;
1892 
1893  np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1894 
1895  if (!nv_optimized(np))
1896  np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1897  else
1898  np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1899  np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1900  np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1901 
1902  for (i = 0; i < np->rx_ring_size; i++) {
1903  if (!nv_optimized(np)) {
1904  np->rx_ring.orig[i].flaglen = 0;
1905  np->rx_ring.orig[i].buf = 0;
1906  } else {
1907  np->rx_ring.ex[i].flaglen = 0;
1908  np->rx_ring.ex[i].txvlan = 0;
1909  np->rx_ring.ex[i].bufhigh = 0;
1910  np->rx_ring.ex[i].buflow = 0;
1911  }
1912  np->rx_skb[i].skb = NULL;
1913  np->rx_skb[i].dma = 0;
1914  }
1915 }
1916 
1917 static void nv_init_tx(struct net_device *dev)
1918 {
1919  struct fe_priv *np = netdev_priv(dev);
1920  int i;
1921 
1922  np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1923 
1924  if (!nv_optimized(np))
1925  np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1926  else
1927  np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1928  np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1929  np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1930  netdev_reset_queue(np->dev);
1931  np->tx_pkts_in_progress = 0;
1932  np->tx_change_owner = NULL;
1933  np->tx_end_flip = NULL;
1934  np->tx_stop = 0;
1935 
1936  for (i = 0; i < np->tx_ring_size; i++) {
1937  if (!nv_optimized(np)) {
1938  np->tx_ring.orig[i].flaglen = 0;
1939  np->tx_ring.orig[i].buf = 0;
1940  } else {
1941  np->tx_ring.ex[i].flaglen = 0;
1942  np->tx_ring.ex[i].txvlan = 0;
1943  np->tx_ring.ex[i].bufhigh = 0;
1944  np->tx_ring.ex[i].buflow = 0;
1945  }
1946  np->tx_skb[i].skb = NULL;
1947  np->tx_skb[i].dma = 0;
1948  np->tx_skb[i].dma_len = 0;
1949  np->tx_skb[i].dma_single = 0;
1950  np->tx_skb[i].first_tx_desc = NULL;
1951  np->tx_skb[i].next_tx_ctx = NULL;
1952  }
1953 }
1954 
1955 static int nv_init_ring(struct net_device *dev)
1956 {
1957  struct fe_priv *np = netdev_priv(dev);
1958 
1959  nv_init_tx(dev);
1960  nv_init_rx(dev);
1961 
1962  if (!nv_optimized(np))
1963  return nv_alloc_rx(dev);
1964  else
1965  return nv_alloc_rx_optimized(dev);
1966 }
1967 
1968 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1969 {
1970  if (tx_skb->dma) {
1971  if (tx_skb->dma_single)
1972  pci_unmap_single(np->pci_dev, tx_skb->dma,
1973  tx_skb->dma_len,
1975  else
1976  pci_unmap_page(np->pci_dev, tx_skb->dma,
1977  tx_skb->dma_len,
1979  tx_skb->dma = 0;
1980  }
1981 }
1982 
1983 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1984 {
1985  nv_unmap_txskb(np, tx_skb);
1986  if (tx_skb->skb) {
1987  dev_kfree_skb_any(tx_skb->skb);
1988  tx_skb->skb = NULL;
1989  return 1;
1990  }
1991  return 0;
1992 }
1993 
1994 static void nv_drain_tx(struct net_device *dev)
1995 {
1996  struct fe_priv *np = netdev_priv(dev);
1997  unsigned int i;
1998 
1999  for (i = 0; i < np->tx_ring_size; i++) {
2000  if (!nv_optimized(np)) {
2001  np->tx_ring.orig[i].flaglen = 0;
2002  np->tx_ring.orig[i].buf = 0;
2003  } else {
2004  np->tx_ring.ex[i].flaglen = 0;
2005  np->tx_ring.ex[i].txvlan = 0;
2006  np->tx_ring.ex[i].bufhigh = 0;
2007  np->tx_ring.ex[i].buflow = 0;
2008  }
2009  if (nv_release_txskb(np, &np->tx_skb[i])) {
2010  u64_stats_update_begin(&np->swstats_tx_syncp);
2011  np->stat_tx_dropped++;
2012  u64_stats_update_end(&np->swstats_tx_syncp);
2013  }
2014  np->tx_skb[i].dma = 0;
2015  np->tx_skb[i].dma_len = 0;
2016  np->tx_skb[i].dma_single = 0;
2017  np->tx_skb[i].first_tx_desc = NULL;
2018  np->tx_skb[i].next_tx_ctx = NULL;
2019  }
2020  np->tx_pkts_in_progress = 0;
2021  np->tx_change_owner = NULL;
2022  np->tx_end_flip = NULL;
2023 }
2024 
2025 static void nv_drain_rx(struct net_device *dev)
2026 {
2027  struct fe_priv *np = netdev_priv(dev);
2028  int i;
2029 
2030  for (i = 0; i < np->rx_ring_size; i++) {
2031  if (!nv_optimized(np)) {
2032  np->rx_ring.orig[i].flaglen = 0;
2033  np->rx_ring.orig[i].buf = 0;
2034  } else {
2035  np->rx_ring.ex[i].flaglen = 0;
2036  np->rx_ring.ex[i].txvlan = 0;
2037  np->rx_ring.ex[i].bufhigh = 0;
2038  np->rx_ring.ex[i].buflow = 0;
2039  }
2040  wmb();
2041  if (np->rx_skb[i].skb) {
2042  pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
2043  (skb_end_pointer(np->rx_skb[i].skb) -
2044  np->rx_skb[i].skb->data),
2046  dev_kfree_skb(np->rx_skb[i].skb);
2047  np->rx_skb[i].skb = NULL;
2048  }
2049  }
2050 }
2051 
2052 static void nv_drain_rxtx(struct net_device *dev)
2053 {
2054  nv_drain_tx(dev);
2055  nv_drain_rx(dev);
2056 }
2057 
2058 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2059 {
2060  return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2061 }
2062 
2063 static void nv_legacybackoff_reseed(struct net_device *dev)
2064 {
2065  u8 __iomem *base = get_hwbase(dev);
2066  u32 reg;
2067  u32 low;
2068  int tx_status = 0;
2069 
2070  reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2071  get_random_bytes(&low, sizeof(low));
2072  reg |= low & NVREG_SLOTTIME_MASK;
2073 
2074  /* Need to stop tx before change takes effect.
2075  * Caller has already gained np->lock.
2076  */
2077  tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2078  if (tx_status)
2079  nv_stop_tx(dev);
2080  nv_stop_rx(dev);
2081  writel(reg, base + NvRegSlotTime);
2082  if (tx_status)
2083  nv_start_tx(dev);
2084  nv_start_rx(dev);
2085 }
2086 
2087 /* Gear Backoff Seeds */
2088 #define BACKOFF_SEEDSET_ROWS 8
2089 #define BACKOFF_SEEDSET_LFSRS 15
2090 
2091 /* Known Good seed sets */
2092 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2093  {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2094  {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2095  {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2096  {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2097  {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2098  {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2099  {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2100  {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
2101 
2102 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2103  {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2104  {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2105  {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2106  {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2107  {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2108  {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2109  {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2110  {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
2111 
2112 static void nv_gear_backoff_reseed(struct net_device *dev)
2113 {
2114  u8 __iomem *base = get_hwbase(dev);
2115  u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2116  u32 temp, seedset, combinedSeed;
2117  int i;
2118 
2119  /* Setup seed for free running LFSR */
2120  /* We are going to read the time stamp counter 3 times
2121  and swizzle bits around to increase randomness */
2122  get_random_bytes(&miniseed1, sizeof(miniseed1));
2123  miniseed1 &= 0x0fff;
2124  if (miniseed1 == 0)
2125  miniseed1 = 0xabc;
2126 
2127  get_random_bytes(&miniseed2, sizeof(miniseed2));
2128  miniseed2 &= 0x0fff;
2129  if (miniseed2 == 0)
2130  miniseed2 = 0xabc;
2131  miniseed2_reversed =
2132  ((miniseed2 & 0xF00) >> 8) |
2133  (miniseed2 & 0x0F0) |
2134  ((miniseed2 & 0x00F) << 8);
2135 
2136  get_random_bytes(&miniseed3, sizeof(miniseed3));
2137  miniseed3 &= 0x0fff;
2138  if (miniseed3 == 0)
2139  miniseed3 = 0xabc;
2140  miniseed3_reversed =
2141  ((miniseed3 & 0xF00) >> 8) |
2142  (miniseed3 & 0x0F0) |
2143  ((miniseed3 & 0x00F) << 8);
2144 
2145  combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2146  (miniseed2 ^ miniseed3_reversed);
2147 
2148  /* Seeds can not be zero */
2149  if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2150  combinedSeed |= 0x08;
2151  if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2152  combinedSeed |= 0x8000;
2153 
2154  /* No need to disable tx here */
2156  temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2157  temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2158  writel(temp, base + NvRegBackOffControl);
2159 
2160  /* Setup seeds for all gear LFSRs. */
2161  get_random_bytes(&seedset, sizeof(seedset));
2162  seedset = seedset % BACKOFF_SEEDSET_ROWS;
2163  for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
2165  temp |= main_seedset[seedset][i-1] & 0x3ff;
2166  temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2167  writel(temp, base + NvRegBackOffControl);
2168  }
2169 }
2170 
2171 /*
2172  * nv_start_xmit: dev->hard_start_xmit function
2173  * Called with netif_tx_lock held.
2174  */
2175 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2176 {
2177  struct fe_priv *np = netdev_priv(dev);
2178  u32 tx_flags = 0;
2179  u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2180  unsigned int fragments = skb_shinfo(skb)->nr_frags;
2181  unsigned int i;
2182  u32 offset = 0;
2183  u32 bcnt;
2184  u32 size = skb_headlen(skb);
2185  u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2186  u32 empty_slots;
2187  struct ring_desc *put_tx;
2188  struct ring_desc *start_tx;
2189  struct ring_desc *prev_tx;
2190  struct nv_skb_map *prev_tx_ctx;
2191  unsigned long flags;
2192 
2193  /* add fragments to entries count */
2194  for (i = 0; i < fragments; i++) {
2195  u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2196 
2197  entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2198  ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2199  }
2200 
2201  spin_lock_irqsave(&np->lock, flags);
2202  empty_slots = nv_get_empty_tx_slots(np);
2203  if (unlikely(empty_slots <= entries)) {
2204  netif_stop_queue(dev);
2205  np->tx_stop = 1;
2206  spin_unlock_irqrestore(&np->lock, flags);
2207  return NETDEV_TX_BUSY;
2208  }
2209  spin_unlock_irqrestore(&np->lock, flags);
2210 
2211  start_tx = put_tx = np->put_tx.orig;
2212 
2213  /* setup the header buffer */
2214  do {
2215  prev_tx = put_tx;
2216  prev_tx_ctx = np->put_tx_ctx;
2217  bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2218  np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2220  np->put_tx_ctx->dma_len = bcnt;
2221  np->put_tx_ctx->dma_single = 1;
2222  put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2223  put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2224 
2225  tx_flags = np->tx_flags;
2226  offset += bcnt;
2227  size -= bcnt;
2228  if (unlikely(put_tx++ == np->last_tx.orig))
2229  put_tx = np->first_tx.orig;
2230  if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2231  np->put_tx_ctx = np->first_tx_ctx;
2232  } while (size);
2233 
2234  /* setup the fragments */
2235  for (i = 0; i < fragments; i++) {
2236  const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2237  u32 frag_size = skb_frag_size(frag);
2238  offset = 0;
2239 
2240  do {
2241  prev_tx = put_tx;
2242  prev_tx_ctx = np->put_tx_ctx;
2243  bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2244  np->put_tx_ctx->dma = skb_frag_dma_map(
2245  &np->pci_dev->dev,
2246  frag, offset,
2247  bcnt,
2248  DMA_TO_DEVICE);
2249  np->put_tx_ctx->dma_len = bcnt;
2250  np->put_tx_ctx->dma_single = 0;
2251  put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2252  put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2253 
2254  offset += bcnt;
2255  frag_size -= bcnt;
2256  if (unlikely(put_tx++ == np->last_tx.orig))
2257  put_tx = np->first_tx.orig;
2258  if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2259  np->put_tx_ctx = np->first_tx_ctx;
2260  } while (frag_size);
2261  }
2262 
2263  /* set last fragment flag */
2264  prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2265 
2266  /* save skb in this slot's context area */
2267  prev_tx_ctx->skb = skb;
2268 
2269  if (skb_is_gso(skb))
2270  tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2271  else
2272  tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2274 
2275  spin_lock_irqsave(&np->lock, flags);
2276 
2277  /* set tx flags */
2278  start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2279 
2280  netdev_sent_queue(np->dev, skb->len);
2281 
2282  skb_tx_timestamp(skb);
2283 
2284  np->put_tx.orig = put_tx;
2285 
2286  spin_unlock_irqrestore(&np->lock, flags);
2287 
2288  writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2289  return NETDEV_TX_OK;
2290 }
2291 
2292 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
2293  struct net_device *dev)
2294 {
2295  struct fe_priv *np = netdev_priv(dev);
2296  u32 tx_flags = 0;
2297  u32 tx_flags_extra;
2298  unsigned int fragments = skb_shinfo(skb)->nr_frags;
2299  unsigned int i;
2300  u32 offset = 0;
2301  u32 bcnt;
2302  u32 size = skb_headlen(skb);
2303  u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2304  u32 empty_slots;
2305  struct ring_desc_ex *put_tx;
2306  struct ring_desc_ex *start_tx;
2307  struct ring_desc_ex *prev_tx;
2308  struct nv_skb_map *prev_tx_ctx;
2309  struct nv_skb_map *start_tx_ctx;
2310  unsigned long flags;
2311 
2312  /* add fragments to entries count */
2313  for (i = 0; i < fragments; i++) {
2314  u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2315 
2316  entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2317  ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2318  }
2319 
2320  spin_lock_irqsave(&np->lock, flags);
2321  empty_slots = nv_get_empty_tx_slots(np);
2322  if (unlikely(empty_slots <= entries)) {
2323  netif_stop_queue(dev);
2324  np->tx_stop = 1;
2325  spin_unlock_irqrestore(&np->lock, flags);
2326  return NETDEV_TX_BUSY;
2327  }
2328  spin_unlock_irqrestore(&np->lock, flags);
2329 
2330  start_tx = put_tx = np->put_tx.ex;
2331  start_tx_ctx = np->put_tx_ctx;
2332 
2333  /* setup the header buffer */
2334  do {
2335  prev_tx = put_tx;
2336  prev_tx_ctx = np->put_tx_ctx;
2337  bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2338  np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2340  np->put_tx_ctx->dma_len = bcnt;
2341  np->put_tx_ctx->dma_single = 1;
2342  put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2343  put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2344  put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2345 
2346  tx_flags = NV_TX2_VALID;
2347  offset += bcnt;
2348  size -= bcnt;
2349  if (unlikely(put_tx++ == np->last_tx.ex))
2350  put_tx = np->first_tx.ex;
2351  if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2352  np->put_tx_ctx = np->first_tx_ctx;
2353  } while (size);
2354 
2355  /* setup the fragments */
2356  for (i = 0; i < fragments; i++) {
2357  skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2358  u32 frag_size = skb_frag_size(frag);
2359  offset = 0;
2360 
2361  do {
2362  prev_tx = put_tx;
2363  prev_tx_ctx = np->put_tx_ctx;
2364  bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2365  np->put_tx_ctx->dma = skb_frag_dma_map(
2366  &np->pci_dev->dev,
2367  frag, offset,
2368  bcnt,
2369  DMA_TO_DEVICE);
2370  np->put_tx_ctx->dma_len = bcnt;
2371  np->put_tx_ctx->dma_single = 0;
2372  put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2373  put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2374  put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2375 
2376  offset += bcnt;
2377  frag_size -= bcnt;
2378  if (unlikely(put_tx++ == np->last_tx.ex))
2379  put_tx = np->first_tx.ex;
2380  if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2381  np->put_tx_ctx = np->first_tx_ctx;
2382  } while (frag_size);
2383  }
2384 
2385  /* set last fragment flag */
2386  prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2387 
2388  /* save skb in this slot's context area */
2389  prev_tx_ctx->skb = skb;
2390 
2391  if (skb_is_gso(skb))
2392  tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2393  else
2394  tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2396 
2397  /* vlan tag */
2398  if (vlan_tx_tag_present(skb))
2400  vlan_tx_tag_get(skb));
2401  else
2402  start_tx->txvlan = 0;
2403 
2404  spin_lock_irqsave(&np->lock, flags);
2405 
2406  if (np->tx_limit) {
2407  /* Limit the number of outstanding tx. Setup all fragments, but
2408  * do not set the VALID bit on the first descriptor. Save a pointer
2409  * to that descriptor and also for next skb_map element.
2410  */
2411 
2413  if (!np->tx_change_owner)
2414  np->tx_change_owner = start_tx_ctx;
2415 
2416  /* remove VALID bit */
2417  tx_flags &= ~NV_TX2_VALID;
2418  start_tx_ctx->first_tx_desc = start_tx;
2419  start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2420  np->tx_end_flip = np->put_tx_ctx;
2421  } else {
2422  np->tx_pkts_in_progress++;
2423  }
2424  }
2425 
2426  /* set tx flags */
2427  start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2428 
2429  netdev_sent_queue(np->dev, skb->len);
2430 
2431  skb_tx_timestamp(skb);
2432 
2433  np->put_tx.ex = put_tx;
2434 
2435  spin_unlock_irqrestore(&np->lock, flags);
2436 
2437  writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2438  return NETDEV_TX_OK;
2439 }
2440 
2441 static inline void nv_tx_flip_ownership(struct net_device *dev)
2442 {
2443  struct fe_priv *np = netdev_priv(dev);
2444 
2445  np->tx_pkts_in_progress--;
2446  if (np->tx_change_owner) {
2447  np->tx_change_owner->first_tx_desc->flaglen |=
2449  np->tx_pkts_in_progress++;
2450 
2451  np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2452  if (np->tx_change_owner == np->tx_end_flip)
2453  np->tx_change_owner = NULL;
2454 
2455  writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2456  }
2457 }
2458 
2459 /*
2460  * nv_tx_done: check for completed packets, release the skbs.
2461  *
2462  * Caller must own np->lock.
2463  */
2464 static int nv_tx_done(struct net_device *dev, int limit)
2465 {
2466  struct fe_priv *np = netdev_priv(dev);
2467  u32 flags;
2468  int tx_work = 0;
2469  struct ring_desc *orig_get_tx = np->get_tx.orig;
2470  unsigned int bytes_compl = 0;
2471 
2472  while ((np->get_tx.orig != np->put_tx.orig) &&
2473  !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2474  (tx_work < limit)) {
2475 
2476  nv_unmap_txskb(np, np->get_tx_ctx);
2477 
2478  if (np->desc_ver == DESC_VER_1) {
2479  if (flags & NV_TX_LASTPACKET) {
2480  if (flags & NV_TX_ERROR) {
2481  if ((flags & NV_TX_RETRYERROR)
2482  && !(flags & NV_TX_RETRYCOUNT_MASK))
2483  nv_legacybackoff_reseed(dev);
2484  } else {
2485  u64_stats_update_begin(&np->swstats_tx_syncp);
2486  np->stat_tx_packets++;
2487  np->stat_tx_bytes += np->get_tx_ctx->skb->len;
2488  u64_stats_update_end(&np->swstats_tx_syncp);
2489  }
2490  bytes_compl += np->get_tx_ctx->skb->len;
2491  dev_kfree_skb_any(np->get_tx_ctx->skb);
2492  np->get_tx_ctx->skb = NULL;
2493  tx_work++;
2494  }
2495  } else {
2496  if (flags & NV_TX2_LASTPACKET) {
2497  if (flags & NV_TX2_ERROR) {
2498  if ((flags & NV_TX2_RETRYERROR)
2499  && !(flags & NV_TX2_RETRYCOUNT_MASK))
2500  nv_legacybackoff_reseed(dev);
2501  } else {
2502  u64_stats_update_begin(&np->swstats_tx_syncp);
2503  np->stat_tx_packets++;
2504  np->stat_tx_bytes += np->get_tx_ctx->skb->len;
2505  u64_stats_update_end(&np->swstats_tx_syncp);
2506  }
2507  bytes_compl += np->get_tx_ctx->skb->len;
2508  dev_kfree_skb_any(np->get_tx_ctx->skb);
2509  np->get_tx_ctx->skb = NULL;
2510  tx_work++;
2511  }
2512  }
2513  if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2514  np->get_tx.orig = np->first_tx.orig;
2515  if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2516  np->get_tx_ctx = np->first_tx_ctx;
2517  }
2518 
2519  netdev_completed_queue(np->dev, tx_work, bytes_compl);
2520 
2521  if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2522  np->tx_stop = 0;
2523  netif_wake_queue(dev);
2524  }
2525  return tx_work;
2526 }
2527 
2528 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2529 {
2530  struct fe_priv *np = netdev_priv(dev);
2531  u32 flags;
2532  int tx_work = 0;
2533  struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
2534  unsigned long bytes_cleaned = 0;
2535 
2536  while ((np->get_tx.ex != np->put_tx.ex) &&
2537  !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
2538  (tx_work < limit)) {
2539 
2540  nv_unmap_txskb(np, np->get_tx_ctx);
2541 
2542  if (flags & NV_TX2_LASTPACKET) {
2543  if (flags & NV_TX2_ERROR) {
2544  if ((flags & NV_TX2_RETRYERROR)
2545  && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2546  if (np->driver_data & DEV_HAS_GEAR_MODE)
2547  nv_gear_backoff_reseed(dev);
2548  else
2549  nv_legacybackoff_reseed(dev);
2550  }
2551  } else {
2552  u64_stats_update_begin(&np->swstats_tx_syncp);
2553  np->stat_tx_packets++;
2554  np->stat_tx_bytes += np->get_tx_ctx->skb->len;
2555  u64_stats_update_end(&np->swstats_tx_syncp);
2556  }
2557 
2558  bytes_cleaned += np->get_tx_ctx->skb->len;
2559  dev_kfree_skb_any(np->get_tx_ctx->skb);
2560  np->get_tx_ctx->skb = NULL;
2561  tx_work++;
2562 
2563  if (np->tx_limit)
2564  nv_tx_flip_ownership(dev);
2565  }
2566 
2567  if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2568  np->get_tx.ex = np->first_tx.ex;
2569  if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2570  np->get_tx_ctx = np->first_tx_ctx;
2571  }
2572 
2573  netdev_completed_queue(np->dev, tx_work, bytes_cleaned);
2574 
2575  if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2576  np->tx_stop = 0;
2577  netif_wake_queue(dev);
2578  }
2579  return tx_work;
2580 }
2581 
2582 /*
2583  * nv_tx_timeout: dev->tx_timeout function
2584  * Called with netif_tx_lock held.
2585  */
2586 static void nv_tx_timeout(struct net_device *dev)
2587 {
2588  struct fe_priv *np = netdev_priv(dev);
2589  u8 __iomem *base = get_hwbase(dev);
2590  u32 status;
2591  union ring_type put_tx;
2592  int saved_tx_limit;
2593 
2594  if (np->msi_flags & NV_MSI_X_ENABLED)
2595  status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2596  else
2597  status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2598 
2599  netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);
2600 
2601  if (unlikely(debug_tx_timeout)) {
2602  int i;
2603 
2604  netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
2605  netdev_info(dev, "Dumping tx registers\n");
2606  for (i = 0; i <= np->register_size; i += 32) {
2607  netdev_info(dev,
2608  "%3x: %08x %08x %08x %08x "
2609  "%08x %08x %08x %08x\n",
2610  i,
2611  readl(base + i + 0), readl(base + i + 4),
2612  readl(base + i + 8), readl(base + i + 12),
2613  readl(base + i + 16), readl(base + i + 20),
2614  readl(base + i + 24), readl(base + i + 28));
2615  }
2616  netdev_info(dev, "Dumping tx ring\n");
2617  for (i = 0; i < np->tx_ring_size; i += 4) {
2618  if (!nv_optimized(np)) {
2619  netdev_info(dev,
2620  "%03x: %08x %08x // %08x %08x "
2621  "// %08x %08x // %08x %08x\n",
2622  i,
2623  le32_to_cpu(np->tx_ring.orig[i].buf),
2624  le32_to_cpu(np->tx_ring.orig[i].flaglen),
2625  le32_to_cpu(np->tx_ring.orig[i+1].buf),
2626  le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2627  le32_to_cpu(np->tx_ring.orig[i+2].buf),
2628  le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2629  le32_to_cpu(np->tx_ring.orig[i+3].buf),
2630  le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2631  } else {
2632  netdev_info(dev,
2633  "%03x: %08x %08x %08x "
2634  "// %08x %08x %08x "
2635  "// %08x %08x %08x "
2636  "// %08x %08x %08x\n",
2637  i,
2638  le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2639  le32_to_cpu(np->tx_ring.ex[i].buflow),
2640  le32_to_cpu(np->tx_ring.ex[i].flaglen),
2641  le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2642  le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2643  le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2644  le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2645  le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2646  le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2647  le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2648  le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2649  le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2650  }
2651  }
2652  }
2653 
2654  spin_lock_irq(&np->lock);
2655 
2656  /* 1) stop tx engine */
2657  nv_stop_tx(dev);
2658 
2659  /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2660  saved_tx_limit = np->tx_limit;
2661  np->tx_limit = 0; /* prevent giving HW any limited pkts */
2662  np->tx_stop = 0; /* prevent waking tx queue */
2663  if (!nv_optimized(np))
2664  nv_tx_done(dev, np->tx_ring_size);
2665  else
2666  nv_tx_done_optimized(dev, np->tx_ring_size);
2667 
2668  /* save current HW position */
2669  if (np->tx_change_owner)
2670  put_tx.ex = np->tx_change_owner->first_tx_desc;
2671  else
2672  put_tx = np->put_tx;
2673 
2674  /* 3) clear all tx state */
2675  nv_drain_tx(dev);
2676  nv_init_tx(dev);
2677 
2678  /* 4) restore state to current HW position */
2679  np->get_tx = np->put_tx = put_tx;
2680  np->tx_limit = saved_tx_limit;
2681 
2682  /* 5) restart tx engine */
2683  nv_start_tx(dev);
2684  netif_wake_queue(dev);
2685  spin_unlock_irq(&np->lock);
2686 }
2687 
2688 /*
2689  * Called when the nic notices a mismatch between the actual data len on the
2690  * wire and the len indicated in the 802 header
2691  */
2692 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2693 {
2694  int hdrlen; /* length of the 802 header */
2695  int protolen; /* length as stored in the proto field */
2696 
2697  /* 1) calculate len according to header */
2698  if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2699  protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
2700  hdrlen = VLAN_HLEN;
2701  } else {
2702  protolen = ntohs(((struct ethhdr *)packet)->h_proto);
2703  hdrlen = ETH_HLEN;
2704  }
2705  if (protolen > ETH_DATA_LEN)
2706  return datalen; /* Value in proto field not a len, no checks possible */
2707 
2708  protolen += hdrlen;
2709  /* consistency checks: */
2710  if (datalen > ETH_ZLEN) {
2711  if (datalen >= protolen) {
2712  /* more data on wire than in 802 header, trim of
2713  * additional data.
2714  */
2715  return protolen;
2716  } else {
2717  /* less data on wire than mentioned in header.
2718  * Discard the packet.
2719  */
2720  return -1;
2721  }
2722  } else {
2723  /* short packet. Accept only if 802 values are also short */
2724  if (protolen > ETH_ZLEN) {
2725  return -1;
2726  }
2727  return datalen;
2728  }
2729 }
2730 
2731 static int nv_rx_process(struct net_device *dev, int limit)
2732 {
2733  struct fe_priv *np = netdev_priv(dev);
2734  u32 flags;
2735  int rx_work = 0;
2736  struct sk_buff *skb;
2737  int len;
2738 
2739  while ((np->get_rx.orig != np->put_rx.orig) &&
2740  !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2741  (rx_work < limit)) {
2742 
2743  /*
2744  * the packet is for us - immediately tear down the pci mapping.
2745  * TODO: check if a prefetch of the first cacheline improves
2746  * the performance.
2747  */
2748  pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2749  np->get_rx_ctx->dma_len,
2751  skb = np->get_rx_ctx->skb;
2752  np->get_rx_ctx->skb = NULL;
2753 
2754  /* look at what we actually got: */
2755  if (np->desc_ver == DESC_VER_1) {
2756  if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2757  len = flags & LEN_MASK_V1;
2758  if (unlikely(flags & NV_RX_ERROR)) {
2759  if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2760  len = nv_getlen(dev, skb->data, len);
2761  if (len < 0) {
2762  dev_kfree_skb(skb);
2763  goto next_pkt;
2764  }
2765  }
2766  /* framing errors are soft errors */
2767  else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2768  if (flags & NV_RX_SUBSTRACT1)
2769  len--;
2770  }
2771  /* the rest are hard errors */
2772  else {
2773  if (flags & NV_RX_MISSEDFRAME) {
2774  u64_stats_update_begin(&np->swstats_rx_syncp);
2775  np->stat_rx_missed_errors++;
2776  u64_stats_update_end(&np->swstats_rx_syncp);
2777  }
2778  dev_kfree_skb(skb);
2779  goto next_pkt;
2780  }
2781  }
2782  } else {
2783  dev_kfree_skb(skb);
2784  goto next_pkt;
2785  }
2786  } else {
2787  if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2788  len = flags & LEN_MASK_V2;
2789  if (unlikely(flags & NV_RX2_ERROR)) {
2790  if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2791  len = nv_getlen(dev, skb->data, len);
2792  if (len < 0) {
2793  dev_kfree_skb(skb);
2794  goto next_pkt;
2795  }
2796  }
2797  /* framing errors are soft errors */
2798  else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2799  if (flags & NV_RX2_SUBSTRACT1)
2800  len--;
2801  }
2802  /* the rest are hard errors */
2803  else {
2804  dev_kfree_skb(skb);
2805  goto next_pkt;
2806  }
2807  }
2808  if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2809  ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2811  } else {
2812  dev_kfree_skb(skb);
2813  goto next_pkt;
2814  }
2815  }
2816  /* got a valid packet - forward it to the network core */
2817  skb_put(skb, len);
2818  skb->protocol = eth_type_trans(skb, dev);
2819  napi_gro_receive(&np->napi, skb);
2820  u64_stats_update_begin(&np->swstats_rx_syncp);
2821  np->stat_rx_packets++;
2822  np->stat_rx_bytes += len;
2823  u64_stats_update_end(&np->swstats_rx_syncp);
2824 next_pkt:
2825  if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2826  np->get_rx.orig = np->first_rx.orig;
2827  if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2828  np->get_rx_ctx = np->first_rx_ctx;
2829 
2830  rx_work++;
2831  }
2832 
2833  return rx_work;
2834 }
2835 
2836 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2837 {
2838  struct fe_priv *np = netdev_priv(dev);
2839  u32 flags;
2840  u32 vlanflags = 0;
2841  int rx_work = 0;
2842  struct sk_buff *skb;
2843  int len;
2844 
2845  while ((np->get_rx.ex != np->put_rx.ex) &&
2846  !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2847  (rx_work < limit)) {
2848 
2849  /*
2850  * the packet is for us - immediately tear down the pci mapping.
2851  * TODO: check if a prefetch of the first cacheline improves
2852  * the performance.
2853  */
2854  pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2855  np->get_rx_ctx->dma_len,
2857  skb = np->get_rx_ctx->skb;
2858  np->get_rx_ctx->skb = NULL;
2859 
2860  /* look at what we actually got: */
2861  if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2862  len = flags & LEN_MASK_V2;
2863  if (unlikely(flags & NV_RX2_ERROR)) {
2864  if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2865  len = nv_getlen(dev, skb->data, len);
2866  if (len < 0) {
2867  dev_kfree_skb(skb);
2868  goto next_pkt;
2869  }
2870  }
2871  /* framing errors are soft errors */
2872  else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2873  if (flags & NV_RX2_SUBSTRACT1)
2874  len--;
2875  }
2876  /* the rest are hard errors */
2877  else {
2878  dev_kfree_skb(skb);
2879  goto next_pkt;
2880  }
2881  }
2882 
2883  if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2884  ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2886 
2887  /* got a valid packet - forward it to the network core */
2888  skb_put(skb, len);
2889  skb->protocol = eth_type_trans(skb, dev);
2890  prefetch(skb->data);
2891 
2892  vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2893 
2894  /*
2895  * There's need to check for NETIF_F_HW_VLAN_RX here.
2896  * Even if vlan rx accel is disabled,
2897  * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
2898  */
2899  if (dev->features & NETIF_F_HW_VLAN_RX &&
2900  vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2901  u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;
2902 
2903  __vlan_hwaccel_put_tag(skb, vid);
2904  }
2905  napi_gro_receive(&np->napi, skb);
2906  u64_stats_update_begin(&np->swstats_rx_syncp);
2907  np->stat_rx_packets++;
2908  np->stat_rx_bytes += len;
2909  u64_stats_update_end(&np->swstats_rx_syncp);
2910  } else {
2911  dev_kfree_skb(skb);
2912  }
2913 next_pkt:
2914  if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2915  np->get_rx.ex = np->first_rx.ex;
2916  if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2917  np->get_rx_ctx = np->first_rx_ctx;
2918 
2919  rx_work++;
2920  }
2921 
2922  return rx_work;
2923 }
2924 
2925 static void set_bufsize(struct net_device *dev)
2926 {
2927  struct fe_priv *np = netdev_priv(dev);
2928 
2929  if (dev->mtu <= ETH_DATA_LEN)
2931  else
2932  np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2933 }
2934 
2935 /*
2936  * nv_change_mtu: dev->change_mtu function
2937  * Called with dev_base_lock held for read.
2938  */
2939 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2940 {
2941  struct fe_priv *np = netdev_priv(dev);
2942  int old_mtu;
2943 
2944  if (new_mtu < 64 || new_mtu > np->pkt_limit)
2945  return -EINVAL;
2946 
2947  old_mtu = dev->mtu;
2948  dev->mtu = new_mtu;
2949 
2950  /* return early if the buffer sizes will not change */
2951  if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2952  return 0;
2953  if (old_mtu == new_mtu)
2954  return 0;
2955 
2956  /* synchronized against open : rtnl_lock() held by caller */
2957  if (netif_running(dev)) {
2958  u8 __iomem *base = get_hwbase(dev);
2959  /*
2960  * It seems that the nic preloads valid ring entries into an
2961  * internal buffer. The procedure for flushing everything is
2962  * guessed, there is probably a simpler approach.
2963  * Changing the MTU is a rare event, it shouldn't matter.
2964  */
2965  nv_disable_irq(dev);
2966  nv_napi_disable(dev);
2967  netif_tx_lock_bh(dev);
2968  netif_addr_lock(dev);
2969  spin_lock(&np->lock);
2970  /* stop engines */
2971  nv_stop_rxtx(dev);
2972  nv_txrx_reset(dev);
2973  /* drain rx queue */
2974  nv_drain_rxtx(dev);
2975  /* reinit driver view of the rx queue */
2976  set_bufsize(dev);
2977  if (nv_init_ring(dev)) {
2978  if (!np->in_shutdown)
2979  mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2980  }
2981  /* reinit nic view of the rx queue */
2982  writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2983  setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2985  base + NvRegRingSizes);
2986  pci_push(base);
2987  writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2988  pci_push(base);
2989 
2990  /* restart rx engine */
2991  nv_start_rxtx(dev);
2992  spin_unlock(&np->lock);
2993  netif_addr_unlock(dev);
2994  netif_tx_unlock_bh(dev);
2995  nv_napi_enable(dev);
2996  nv_enable_irq(dev);
2997  }
2998  return 0;
2999 }
3000 
3001 static void nv_copy_mac_to_hw(struct net_device *dev)
3002 {
3003  u8 __iomem *base = get_hwbase(dev);
3004  u32 mac[2];
3005 
3006  mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3007  (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3008  mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3009 
3010  writel(mac[0], base + NvRegMacAddrA);
3011  writel(mac[1], base + NvRegMacAddrB);
3012 }
3013 
3014 /*
3015  * nv_set_mac_address: dev->set_mac_address function
3016  * Called with rtnl_lock() held.
3017  */
3018 static int nv_set_mac_address(struct net_device *dev, void *addr)
3019 {
3020  struct fe_priv *np = netdev_priv(dev);
3021  struct sockaddr *macaddr = (struct sockaddr *)addr;
3022 
3023  if (!is_valid_ether_addr(macaddr->sa_data))
3024  return -EADDRNOTAVAIL;
3025 
3026  /* synchronized against open : rtnl_lock() held by caller */
3027  memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3029 
3030  if (netif_running(dev)) {
3031  netif_tx_lock_bh(dev);
3032  netif_addr_lock(dev);
3033  spin_lock_irq(&np->lock);
3034 
3035  /* stop rx engine */
3036  nv_stop_rx(dev);
3037 
3038  /* set mac address */
3039  nv_copy_mac_to_hw(dev);
3040 
3041  /* restart rx engine */
3042  nv_start_rx(dev);
3043  spin_unlock_irq(&np->lock);
3044  netif_addr_unlock(dev);
3045  netif_tx_unlock_bh(dev);
3046  } else {
3047  nv_copy_mac_to_hw(dev);
3048  }
3049  return 0;
3050 }
3051 
3052 /*
3053  * nv_set_multicast: dev->set_multicast function
3054  * Called with netif_tx_lock held.
3055  */
3056 static void nv_set_multicast(struct net_device *dev)
3057 {
3058  struct fe_priv *np = netdev_priv(dev);
3059  u8 __iomem *base = get_hwbase(dev);
3060  u32 addr[2];
3061  u32 mask[2];
3063 
3064  memset(addr, 0, sizeof(addr));
3065  memset(mask, 0, sizeof(mask));
3066 
3067  if (dev->flags & IFF_PROMISC) {
3068  pff |= NVREG_PFF_PROMISC;
3069  } else {
3070  pff |= NVREG_PFF_MYADDR;
3071 
3072  if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
3073  u32 alwaysOff[2];
3074  u32 alwaysOn[2];
3075 
3076  alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3077  if (dev->flags & IFF_ALLMULTI) {
3078  alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3079  } else {
3080  struct netdev_hw_addr *ha;
3081 
3082  netdev_for_each_mc_addr(ha, dev) {
3083  unsigned char *hw_addr = ha->addr;
3084  u32 a, b;
3085 
3086  a = le32_to_cpu(*(__le32 *) hw_addr);
3087  b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
3088  alwaysOn[0] &= a;
3089  alwaysOff[0] &= ~a;
3090  alwaysOn[1] &= b;
3091  alwaysOff[1] &= ~b;
3092  }
3093  }
3094  addr[0] = alwaysOn[0];
3095  addr[1] = alwaysOn[1];
3096  mask[0] = alwaysOn[0] | alwaysOff[0];
3097  mask[1] = alwaysOn[1] | alwaysOff[1];
3098  } else {
3099  mask[0] = NVREG_MCASTMASKA_NONE;
3100  mask[1] = NVREG_MCASTMASKB_NONE;
3101  }
3102  }
3103  addr[0] |= NVREG_MCASTADDRA_FORCE;
3104  pff |= NVREG_PFF_ALWAYS;
3105  spin_lock_irq(&np->lock);
3106  nv_stop_rx(dev);
3107  writel(addr[0], base + NvRegMulticastAddrA);
3108  writel(addr[1], base + NvRegMulticastAddrB);
3109  writel(mask[0], base + NvRegMulticastMaskA);
3110  writel(mask[1], base + NvRegMulticastMaskB);
3111  writel(pff, base + NvRegPacketFilterFlags);
3112  nv_start_rx(dev);
3113  spin_unlock_irq(&np->lock);
3114 }
3115 
3116 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3117 {
3118  struct fe_priv *np = netdev_priv(dev);
3119  u8 __iomem *base = get_hwbase(dev);
3120 
3122 
3125  if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3128  } else {
3129  writel(pff, base + NvRegPacketFilterFlags);
3130  }
3131  }
3133  u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3134  if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3135  u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3137  pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3139  pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3140  /* limit the number of tx pause frames to a default of 8 */
3142  }
3143  writel(pause_enable, base + NvRegTxPauseFrame);
3144  writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3146  } else {
3148  writel(regmisc, base + NvRegMisc1);
3149  }
3150  }
3151 }
3152 
3153 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
3154 {
3155  struct fe_priv *np = netdev_priv(dev);
3156  u8 __iomem *base = get_hwbase(dev);
3157  u32 phyreg, txreg;
3158  int mii_status;
3159 
3160  np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
3161  np->duplex = duplex;
3162 
3163  /* see if gigabit phy */
3164  mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3165  if (mii_status & PHY_GIGABIT) {
3166  np->gigabit = PHY_GIGABIT;
3167  phyreg = readl(base + NvRegSlotTime);
3168  phyreg &= ~(0x3FF00);
3169  if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
3170  phyreg |= NVREG_SLOTTIME_10_100_FULL;
3171  else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
3172  phyreg |= NVREG_SLOTTIME_10_100_FULL;
3173  else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3174  phyreg |= NVREG_SLOTTIME_1000_FULL;
3175  writel(phyreg, base + NvRegSlotTime);
3176  }
3177 
3178  phyreg = readl(base + NvRegPhyInterface);
3179  phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3180  if (np->duplex == 0)
3181  phyreg |= PHY_HALF;
3183  phyreg |= PHY_100;
3184  else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3186  phyreg |= PHY_1000;
3187  writel(phyreg, base + NvRegPhyInterface);
3188 
3189  if (phyreg & PHY_RGMII) {
3190  if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3193  else
3195  } else {
3196  txreg = NVREG_TX_DEFERRAL_DEFAULT;
3197  }
3198  writel(txreg, base + NvRegTxDeferral);
3199 
3200  if (np->desc_ver == DESC_VER_1) {
3201  txreg = NVREG_TX_WM_DESC1_DEFAULT;
3202  } else {
3203  if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3205  txreg = NVREG_TX_WM_DESC2_3_1000;
3206  else
3208  }
3209  writel(txreg, base + NvRegTxWatermark);
3210 
3212  base + NvRegMisc1);
3213  pci_push(base);
3214  writel(np->linkspeed, base + NvRegLinkSpeed);
3215  pci_push(base);
3216 
3217  return;
3218 }
3219 
3231 static int nv_update_linkspeed(struct net_device *dev)
3232 {
3233  struct fe_priv *np = netdev_priv(dev);
3234  u8 __iomem *base = get_hwbase(dev);
3235  int adv = 0;
3236  int lpa = 0;
3237  int adv_lpa, adv_pause, lpa_pause;
3238  int newls = np->linkspeed;
3239  int newdup = np->duplex;
3240  int mii_status;
3241  u32 bmcr;
3242  int retval = 0;
3243  u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3244  u32 txrxFlags = 0;
3245  u32 phy_exp;
3246 
3247  /* If device loopback is enabled, set carrier on and enable max link
3248  * speed.
3249  */
3250  bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3251  if (bmcr & BMCR_LOOPBACK) {
3252  if (netif_running(dev)) {
3253  nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
3254  if (!netif_carrier_ok(dev))
3255  netif_carrier_on(dev);
3256  }
3257  return 1;
3258  }
3259 
3260  /* BMSR_LSTATUS is latched, read it twice:
3261  * we want the current value.
3262  */
3263  mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3264  mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3265 
3266  if (!(mii_status & BMSR_LSTATUS)) {
3268  newdup = 0;
3269  retval = 0;
3270  goto set_speed;
3271  }
3272 
3273  if (np->autoneg == 0) {
3274  if (np->fixed_mode & LPA_100FULL) {
3276  newdup = 1;
3277  } else if (np->fixed_mode & LPA_100HALF) {
3279  newdup = 0;
3280  } else if (np->fixed_mode & LPA_10FULL) {
3282  newdup = 1;
3283  } else {
3285  newdup = 0;
3286  }
3287  retval = 1;
3288  goto set_speed;
3289  }
3290  /* check auto negotiation is complete */
3291  if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3292  /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3294  newdup = 0;
3295  retval = 0;
3296  goto set_speed;
3297  }
3298 
3299  adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3300  lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3301 
3302  retval = 1;
3303  if (np->gigabit == PHY_GIGABIT) {
3304  control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3305  status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3306 
3307  if ((control_1000 & ADVERTISE_1000FULL) &&
3308  (status_1000 & LPA_1000FULL)) {
3310  newdup = 1;
3311  goto set_speed;
3312  }
3313  }
3314 
3315  /* FIXME: handle parallel detection properly */
3316  adv_lpa = lpa & adv;
3317  if (adv_lpa & LPA_100FULL) {
3319  newdup = 1;
3320  } else if (adv_lpa & LPA_100HALF) {
3322  newdup = 0;
3323  } else if (adv_lpa & LPA_10FULL) {
3325  newdup = 1;
3326  } else if (adv_lpa & LPA_10HALF) {
3328  newdup = 0;
3329  } else {
3331  newdup = 0;
3332  }
3333 
3334 set_speed:
3335  if (np->duplex == newdup && np->linkspeed == newls)
3336  return retval;
3337 
3338  np->duplex = newdup;
3339  np->linkspeed = newls;
3340 
3341  /* The transmitter and receiver must be restarted for safe update */
3343  txrxFlags |= NV_RESTART_TX;
3344  nv_stop_tx(dev);
3345  }
3346  if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3347  txrxFlags |= NV_RESTART_RX;
3348  nv_stop_rx(dev);
3349  }
3350 
3351  if (np->gigabit == PHY_GIGABIT) {
3352  phyreg = readl(base + NvRegSlotTime);
3353  phyreg &= ~(0x3FF00);
3354  if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3355  ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3356  phyreg |= NVREG_SLOTTIME_10_100_FULL;
3357  else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3358  phyreg |= NVREG_SLOTTIME_1000_FULL;
3359  writel(phyreg, base + NvRegSlotTime);
3360  }
3361 
3362  phyreg = readl(base + NvRegPhyInterface);
3363  phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3364  if (np->duplex == 0)
3365  phyreg |= PHY_HALF;
3367  phyreg |= PHY_100;
3369  phyreg |= PHY_1000;
3370  writel(phyreg, base + NvRegPhyInterface);
3371 
3372  phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3373  if (phyreg & PHY_RGMII) {
3376  } else {
3377  if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3380  else
3382  } else {
3384  }
3385  }
3386  } else {
3387  if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3389  else
3390  txreg = NVREG_TX_DEFERRAL_DEFAULT;
3391  }
3392  writel(txreg, base + NvRegTxDeferral);
3393 
3394  if (np->desc_ver == DESC_VER_1) {
3395  txreg = NVREG_TX_WM_DESC1_DEFAULT;
3396  } else {
3398  txreg = NVREG_TX_WM_DESC2_3_1000;
3399  else
3401  }
3402  writel(txreg, base + NvRegTxWatermark);
3403 
3405  base + NvRegMisc1);
3406  pci_push(base);
3407  writel(np->linkspeed, base + NvRegLinkSpeed);
3408  pci_push(base);
3409 
3410  pause_flags = 0;
3411  /* setup pause frame */
3412  if (netif_running(dev) && (np->duplex != 0)) {
3413  if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3414  adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3415  lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
3416 
3417  switch (adv_pause) {
3418  case ADVERTISE_PAUSE_CAP:
3419  if (lpa_pause & LPA_PAUSE_CAP) {
3420  pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3422  pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3423  }
3424  break;
3425  case ADVERTISE_PAUSE_ASYM:
3426  if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
3427  pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3428  break;
3430  if (lpa_pause & LPA_PAUSE_CAP) {
3431  pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3433  pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3434  }
3435  if (lpa_pause == LPA_PAUSE_ASYM)
3436  pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3437  break;
3438  }
3439  } else {
3440  pause_flags = np->pause_flags;
3441  }
3442  }
3443  nv_update_pause(dev, pause_flags);
3444 
3445  if (txrxFlags & NV_RESTART_TX)
3446  nv_start_tx(dev);
3447  if (txrxFlags & NV_RESTART_RX)
3448  nv_start_rx(dev);
3449 
3450  return retval;
3451 }
3452 
3453 static void nv_linkchange(struct net_device *dev)
3454 {
3455  if (nv_update_linkspeed(dev)) {
3456  if (!netif_carrier_ok(dev)) {
3457  netif_carrier_on(dev);
3458  netdev_info(dev, "link up\n");
3459  nv_txrx_gate(dev, false);
3460  nv_start_rx(dev);
3461  }
3462  } else {
3463  if (netif_carrier_ok(dev)) {
3464  netif_carrier_off(dev);
3465  netdev_info(dev, "link down\n");
3466  nv_txrx_gate(dev, true);
3467  nv_stop_rx(dev);
3468  }
3469  }
3470 }
3471 
3472 static void nv_link_irq(struct net_device *dev)
3473 {
3474  u8 __iomem *base = get_hwbase(dev);
3475  u32 miistat;
3476 
3477  miistat = readl(base + NvRegMIIStatus);
3479 
3480  if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3481  nv_linkchange(dev);
3482 }
3483 
3484 static void nv_msi_workaround(struct fe_priv *np)
3485 {
3486 
3487  /* Need to toggle the msi irq mask within the ethernet device,
3488  * otherwise, future interrupts will not be detected.
3489  */
3490  if (np->msi_flags & NV_MSI_ENABLED) {
3491  u8 __iomem *base = np->base;
3492 
3493  writel(0, base + NvRegMSIIrqMask);
3495  }
3496 }
3497 
3498 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3499 {
3500  struct fe_priv *np = netdev_priv(dev);
3501 
3502  if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3503  if (total_work > NV_DYNAMIC_THRESHOLD) {
3504  /* transition to poll based interrupts */
3505  np->quiet_count = 0;
3506  if (np->irqmask != NVREG_IRQMASK_CPU) {
3507  np->irqmask = NVREG_IRQMASK_CPU;
3508  return 1;
3509  }
3510  } else {
3512  np->quiet_count++;
3513  } else {
3514  /* reached a period of low activity, switch
3515  to per tx/rx packet interrupts */
3516  if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3518  return 1;
3519  }
3520  }
3521  }
3522  }
3523  return 0;
3524 }
3525 
3526 static irqreturn_t nv_nic_irq(int foo, void *data)
3527 {
3528  struct net_device *dev = (struct net_device *) data;
3529  struct fe_priv *np = netdev_priv(dev);
3530  u8 __iomem *base = get_hwbase(dev);
3531 
3532  if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3533  np->events = readl(base + NvRegIrqStatus);
3534  writel(np->events, base + NvRegIrqStatus);
3535  } else {
3536  np->events = readl(base + NvRegMSIXIrqStatus);
3537  writel(np->events, base + NvRegMSIXIrqStatus);
3538  }
3539  if (!(np->events & np->irqmask))
3540  return IRQ_NONE;
3541 
3542  nv_msi_workaround(np);
3543 
3544  if (napi_schedule_prep(&np->napi)) {
3545  /*
3546  * Disable further irq's (msix not enabled with napi)
3547  */
3548  writel(0, base + NvRegIrqMask);
3549  __napi_schedule(&np->napi);
3550  }
3551 
3552  return IRQ_HANDLED;
3553 }
3554 
3555 /* All _optimized functions are used to help increase performance
3556  * (reduce CPU and increase throughput). They use descripter version 3,
3557  * compiler directives, and reduce memory accesses.
3558  */
3559 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3560 {
3561  struct net_device *dev = (struct net_device *) data;
3562  struct fe_priv *np = netdev_priv(dev);
3563  u8 __iomem *base = get_hwbase(dev);
3564 
3565  if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3566  np->events = readl(base + NvRegIrqStatus);
3567  writel(np->events, base + NvRegIrqStatus);
3568  } else {
3569  np->events = readl(base + NvRegMSIXIrqStatus);
3570  writel(np->events, base + NvRegMSIXIrqStatus);
3571  }
3572  if (!(np->events & np->irqmask))
3573  return IRQ_NONE;
3574 
3575  nv_msi_workaround(np);
3576 
3577  if (napi_schedule_prep(&np->napi)) {
3578  /*
3579  * Disable further irq's (msix not enabled with napi)
3580  */
3581  writel(0, base + NvRegIrqMask);
3582  __napi_schedule(&np->napi);
3583  }
3584 
3585  return IRQ_HANDLED;
3586 }
3587 
3588 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3589 {
3590  struct net_device *dev = (struct net_device *) data;
3591  struct fe_priv *np = netdev_priv(dev);
3592  u8 __iomem *base = get_hwbase(dev);
3593  u32 events;
3594  int i;
3595  unsigned long flags;
3596 
3597  for (i = 0;; i++) {
3598  events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3599  writel(events, base + NvRegMSIXIrqStatus);
3600  netdev_dbg(dev, "tx irq events: %08x\n", events);
3601  if (!(events & np->irqmask))
3602  break;
3603 
3604  spin_lock_irqsave(&np->lock, flags);
3605  nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3606  spin_unlock_irqrestore(&np->lock, flags);
3607 
3608  if (unlikely(i > max_interrupt_work)) {
3609  spin_lock_irqsave(&np->lock, flags);
3610  /* disable interrupts on the nic */
3612  pci_push(base);
3613 
3614  if (!np->in_shutdown) {
3616  mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3617  }
3618  spin_unlock_irqrestore(&np->lock, flags);
3619  netdev_dbg(dev, "%s: too many iterations (%d)\n",
3620  __func__, i);
3621  break;
3622  }
3623 
3624  }
3625 
3626  return IRQ_RETVAL(i);
3627 }
3628 
3629 static int nv_napi_poll(struct napi_struct *napi, int budget)
3630 {
3631  struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3632  struct net_device *dev = np->dev;
3633  u8 __iomem *base = get_hwbase(dev);
3634  unsigned long flags;
3635  int retcode;
3636  int rx_count, tx_work = 0, rx_work = 0;
3637 
3638  do {
3639  if (!nv_optimized(np)) {
3640  spin_lock_irqsave(&np->lock, flags);
3641  tx_work += nv_tx_done(dev, np->tx_ring_size);
3642  spin_unlock_irqrestore(&np->lock, flags);
3643 
3644  rx_count = nv_rx_process(dev, budget - rx_work);
3645  retcode = nv_alloc_rx(dev);
3646  } else {
3647  spin_lock_irqsave(&np->lock, flags);
3648  tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
3649  spin_unlock_irqrestore(&np->lock, flags);
3650 
3651  rx_count = nv_rx_process_optimized(dev,
3652  budget - rx_work);
3653  retcode = nv_alloc_rx_optimized(dev);
3654  }
3655  } while (retcode == 0 &&
3656  rx_count > 0 && (rx_work += rx_count) < budget);
3657 
3658  if (retcode) {
3659  spin_lock_irqsave(&np->lock, flags);
3660  if (!np->in_shutdown)
3661  mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3662  spin_unlock_irqrestore(&np->lock, flags);
3663  }
3664 
3665  nv_change_interrupt_mode(dev, tx_work + rx_work);
3666 
3667  if (unlikely(np->events & NVREG_IRQ_LINK)) {
3668  spin_lock_irqsave(&np->lock, flags);
3669  nv_link_irq(dev);
3670  spin_unlock_irqrestore(&np->lock, flags);
3671  }
3672  if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3673  spin_lock_irqsave(&np->lock, flags);
3674  nv_linkchange(dev);
3675  spin_unlock_irqrestore(&np->lock, flags);
3677  }
3679  spin_lock_irqsave(&np->lock, flags);
3680  if (!np->in_shutdown) {
3681  np->nic_poll_irq = np->irqmask;
3682  np->recover_error = 1;
3683  mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3684  }
3685  spin_unlock_irqrestore(&np->lock, flags);
3686  napi_complete(napi);
3687  return rx_work;
3688  }
3689 
3690  if (rx_work < budget) {
3691  /* re-enable interrupts
3692  (msix not enabled in napi) */
3693  napi_complete(napi);
3694 
3695  writel(np->irqmask, base + NvRegIrqMask);
3696  }
3697  return rx_work;
3698 }
3699 
3700 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3701 {
3702  struct net_device *dev = (struct net_device *) data;
3703  struct fe_priv *np = netdev_priv(dev);
3704  u8 __iomem *base = get_hwbase(dev);
3705  u32 events;
3706  int i;
3707  unsigned long flags;
3708 
3709  for (i = 0;; i++) {
3710  events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3711  writel(events, base + NvRegMSIXIrqStatus);
3712  netdev_dbg(dev, "rx irq events: %08x\n", events);
3713  if (!(events & np->irqmask))
3714  break;
3715 
3716  if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3717  if (unlikely(nv_alloc_rx_optimized(dev))) {
3718  spin_lock_irqsave(&np->lock, flags);
3719  if (!np->in_shutdown)
3720  mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3721  spin_unlock_irqrestore(&np->lock, flags);
3722  }
3723  }
3724 
3725  if (unlikely(i > max_interrupt_work)) {
3726  spin_lock_irqsave(&np->lock, flags);
3727  /* disable interrupts on the nic */
3729  pci_push(base);
3730 
3731  if (!np->in_shutdown) {
3733  mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3734  }
3735  spin_unlock_irqrestore(&np->lock, flags);
3736  netdev_dbg(dev, "%s: too many iterations (%d)\n",
3737  __func__, i);
3738  break;
3739  }
3740  }
3741 
3742  return IRQ_RETVAL(i);
3743 }
3744 
3745 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3746 {
3747  struct net_device *dev = (struct net_device *) data;
3748  struct fe_priv *np = netdev_priv(dev);
3749  u8 __iomem *base = get_hwbase(dev);
3750  u32 events;
3751  int i;
3752  unsigned long flags;
3753 
3754  for (i = 0;; i++) {
3755  events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3756  writel(events, base + NvRegMSIXIrqStatus);
3757  netdev_dbg(dev, "irq events: %08x\n", events);
3758  if (!(events & np->irqmask))
3759  break;
3760 
3761  /* check tx in case we reached max loop limit in tx isr */
3762  spin_lock_irqsave(&np->lock, flags);
3763  nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3764  spin_unlock_irqrestore(&np->lock, flags);
3765 
3766  if (events & NVREG_IRQ_LINK) {
3767  spin_lock_irqsave(&np->lock, flags);
3768  nv_link_irq(dev);
3769  spin_unlock_irqrestore(&np->lock, flags);
3770  }
3771  if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3772  spin_lock_irqsave(&np->lock, flags);
3773  nv_linkchange(dev);
3774  spin_unlock_irqrestore(&np->lock, flags);
3776  }
3777  if (events & NVREG_IRQ_RECOVER_ERROR) {
3778  spin_lock_irqsave(&np->lock, flags);
3779  /* disable interrupts on the nic */
3781  pci_push(base);
3782 
3783  if (!np->in_shutdown) {
3785  np->recover_error = 1;
3786  mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3787  }
3788  spin_unlock_irqrestore(&np->lock, flags);
3789  break;
3790  }
3791  if (unlikely(i > max_interrupt_work)) {
3792  spin_lock_irqsave(&np->lock, flags);
3793  /* disable interrupts on the nic */
3795  pci_push(base);
3796 
3797  if (!np->in_shutdown) {
3799  mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3800  }
3801  spin_unlock_irqrestore(&np->lock, flags);
3802  netdev_dbg(dev, "%s: too many iterations (%d)\n",
3803  __func__, i);
3804  break;
3805  }
3806 
3807  }
3808 
3809  return IRQ_RETVAL(i);
3810 }
3811 
3812 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3813 {
3814  struct net_device *dev = (struct net_device *) data;
3815  struct fe_priv *np = netdev_priv(dev);
3816  u8 __iomem *base = get_hwbase(dev);
3817  u32 events;
3818 
3819  if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3820  events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3821  writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3822  } else {
3823  events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3824  writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3825  }
3826  pci_push(base);
3827  if (!(events & NVREG_IRQ_TIMER))
3828  return IRQ_RETVAL(0);
3829 
3830  nv_msi_workaround(np);
3831 
3832  spin_lock(&np->lock);
3833  np->intr_test = 1;
3834  spin_unlock(&np->lock);
3835 
3836  return IRQ_RETVAL(1);
3837 }
3838 
3839 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3840 {
3841  u8 __iomem *base = get_hwbase(dev);
3842  int i;
3843  u32 msixmap = 0;
3844 
3845  /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3846  * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3847  * the remaining 8 interrupts.
3848  */
3849  for (i = 0; i < 8; i++) {
3850  if ((irqmask >> i) & 0x1)
3851  msixmap |= vector << (i << 2);
3852  }
3853  writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3854 
3855  msixmap = 0;
3856  for (i = 0; i < 8; i++) {
3857  if ((irqmask >> (i + 8)) & 0x1)
3858  msixmap |= vector << (i << 2);
3859  }
3860  writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3861 }
3862 
3863 static int nv_request_irq(struct net_device *dev, int intr_test)
3864 {
3865  struct fe_priv *np = get_nvpriv(dev);
3866  u8 __iomem *base = get_hwbase(dev);
3867  int ret = 1;
3868  int i;
3869  irqreturn_t (*handler)(int foo, void *data);
3870 
3871  if (intr_test) {
3872  handler = nv_nic_irq_test;
3873  } else {
3874  if (nv_optimized(np))
3875  handler = nv_nic_irq_optimized;
3876  else
3877  handler = nv_nic_irq;
3878  }
3879 
3880  if (np->msi_flags & NV_MSI_X_CAPABLE) {
3881  for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
3882  np->msi_x_entry[i].entry = i;
3884  if (ret == 0) {
3885  np->msi_flags |= NV_MSI_X_ENABLED;
3886  if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3887  /* Request irq for rx handling */
3888  sprintf(np->name_rx, "%s-rx", dev->name);
3889  if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
3890  nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
3891  netdev_info(dev,
3892  "request_irq failed for rx %d\n",
3893  ret);
3895  np->msi_flags &= ~NV_MSI_X_ENABLED;
3896  goto out_err;
3897  }
3898  /* Request irq for tx handling */
3899  sprintf(np->name_tx, "%s-tx", dev->name);
3900  if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
3901  nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
3902  netdev_info(dev,
3903  "request_irq failed for tx %d\n",
3904  ret);
3906  np->msi_flags &= ~NV_MSI_X_ENABLED;
3907  goto out_free_rx;
3908  }
3909  /* Request irq for link and timer handling */
3910  sprintf(np->name_other, "%s-other", dev->name);
3912  nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
3913  netdev_info(dev,
3914  "request_irq failed for link %d\n",
3915  ret);
3917  np->msi_flags &= ~NV_MSI_X_ENABLED;
3918  goto out_free_tx;
3919  }
3920  /* map interrupts to their respective vector */
3921  writel(0, base + NvRegMSIXMap0);
3922  writel(0, base + NvRegMSIXMap1);
3923  set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3924  set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3925  set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3926  } else {
3927  /* Request irq for all interrupts */
3928  if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3929  netdev_info(dev,
3930  "request_irq failed %d\n",
3931  ret);
3933  np->msi_flags &= ~NV_MSI_X_ENABLED;
3934  goto out_err;
3935  }
3936 
3937  /* map interrupts to vector 0 */
3938  writel(0, base + NvRegMSIXMap0);
3939  writel(0, base + NvRegMSIXMap1);
3940  }
3941  netdev_info(dev, "MSI-X enabled\n");
3942  }
3943  }
3944  if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3945  ret = pci_enable_msi(np->pci_dev);
3946  if (ret == 0) {
3947  np->msi_flags |= NV_MSI_ENABLED;
3948  if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3949  netdev_info(dev, "request_irq failed %d\n",
3950  ret);
3951  pci_disable_msi(np->pci_dev);
3952  np->msi_flags &= ~NV_MSI_ENABLED;
3953  goto out_err;
3954  }
3955 
3956  /* map interrupts to vector 0 */
3957  writel(0, base + NvRegMSIMap0);
3958  writel(0, base + NvRegMSIMap1);
3959  /* enable msi vector 0 */
3961  netdev_info(dev, "MSI enabled\n");
3962  }
3963  }
3964  if (ret != 0) {
3965  if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3966  goto out_err;
3967 
3968  }
3969 
3970  return 0;
3971 out_free_tx:
3972  free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3973 out_free_rx:
3974  free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3975 out_err:
3976  return 1;
3977 }
3978 
3979 static void nv_free_irq(struct net_device *dev)
3980 {
3981  struct fe_priv *np = get_nvpriv(dev);
3982  int i;
3983 
3984  if (np->msi_flags & NV_MSI_X_ENABLED) {
3985  for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
3986  free_irq(np->msi_x_entry[i].vector, dev);
3988  np->msi_flags &= ~NV_MSI_X_ENABLED;
3989  } else {
3990  free_irq(np->pci_dev->irq, dev);
3991  if (np->msi_flags & NV_MSI_ENABLED) {
3992  pci_disable_msi(np->pci_dev);
3993  np->msi_flags &= ~NV_MSI_ENABLED;
3994  }
3995  }
3996 }
3997 
3998 static void nv_do_nic_poll(unsigned long data)
3999 {
4000  struct net_device *dev = (struct net_device *) data;
4001  struct fe_priv *np = netdev_priv(dev);
4002  u8 __iomem *base = get_hwbase(dev);
4003  u32 mask = 0;
4004 
4005  /*
4006  * First disable irq(s) and then
4007  * reenable interrupts on the nic, we have to do this before calling
4008  * nv_nic_irq because that may decide to do otherwise
4009  */
4010 
4011  if (!using_multi_irqs(dev)) {
4012  if (np->msi_flags & NV_MSI_X_ENABLED)
4014  else
4015  disable_irq_lockdep(np->pci_dev->irq);
4016  mask = np->irqmask;
4017  } else {
4018  if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4020  mask |= NVREG_IRQ_RX_ALL;
4021  }
4022  if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4024  mask |= NVREG_IRQ_TX_ALL;
4025  }
4026  if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4028  mask |= NVREG_IRQ_OTHER;
4029  }
4030  }
4031  /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
4032 
4033  if (np->recover_error) {
4034  np->recover_error = 0;
4035  netdev_info(dev, "MAC in recoverable error state\n");
4036  if (netif_running(dev)) {
4037  netif_tx_lock_bh(dev);
4038  netif_addr_lock(dev);
4039  spin_lock(&np->lock);
4040  /* stop engines */
4041  nv_stop_rxtx(dev);
4042  if (np->driver_data & DEV_HAS_POWER_CNTRL)
4043  nv_mac_reset(dev);
4044  nv_txrx_reset(dev);
4045  /* drain rx queue */
4046  nv_drain_rxtx(dev);
4047  /* reinit driver view of the rx queue */
4048  set_bufsize(dev);
4049  if (nv_init_ring(dev)) {
4050  if (!np->in_shutdown)
4051  mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4052  }
4053  /* reinit nic view of the rx queue */
4054  writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4055  setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4057  base + NvRegRingSizes);
4058  pci_push(base);
4059  writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4060  pci_push(base);
4061  /* clear interrupts */
4062  if (!(np->msi_flags & NV_MSI_X_ENABLED))
4064  else
4066 
4067  /* restart rx engine */
4068  nv_start_rxtx(dev);
4069  spin_unlock(&np->lock);
4070  netif_addr_unlock(dev);
4071  netif_tx_unlock_bh(dev);
4072  }
4073  }
4074 
4075  writel(mask, base + NvRegIrqMask);
4076  pci_push(base);
4077 
4078  if (!using_multi_irqs(dev)) {
4079  np->nic_poll_irq = 0;
4080  if (nv_optimized(np))
4081  nv_nic_irq_optimized(0, dev);
4082  else
4083  nv_nic_irq(0, dev);
4084  if (np->msi_flags & NV_MSI_X_ENABLED)
4086  else
4087  enable_irq_lockdep(np->pci_dev->irq);
4088  } else {
4089  if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4091  nv_nic_irq_rx(0, dev);
4093  }
4094  if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4096  nv_nic_irq_tx(0, dev);
4098  }
4099  if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4100  np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4101  nv_nic_irq_other(0, dev);
4103  }
4104  }
4105 
4106 }
4107 
4108 #ifdef CONFIG_NET_POLL_CONTROLLER
4109 static void nv_poll_controller(struct net_device *dev)
4110 {
4111  nv_do_nic_poll((unsigned long) dev);
4112 }
4113 #endif
4114 
4115 static void nv_do_stats_poll(unsigned long data)
4116  __acquires(&netdev_priv(dev)->hwstats_lock)
4117  __releases(&netdev_priv(dev)->hwstats_lock)
4118 {
4119  struct net_device *dev = (struct net_device *) data;
4120  struct fe_priv *np = netdev_priv(dev);
4121 
4122  /* If lock is currently taken, the stats are being refreshed
4123  * and hence fresh enough */
4124  if (spin_trylock(&np->hwstats_lock)) {
4125  nv_update_stats(dev);
4126  spin_unlock(&np->hwstats_lock);
4127  }
4128 
4129  if (!np->in_shutdown)
4130  mod_timer(&np->stats_poll,
4131  round_jiffies(jiffies + STATS_INTERVAL));
4132 }
4133 
4134 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4135 {
4136  struct fe_priv *np = netdev_priv(dev);
4137  strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
4138  strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
4139  strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
4140 }
4141 
4142 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4143 {
4144  struct fe_priv *np = netdev_priv(dev);
4145  wolinfo->supported = WAKE_MAGIC;
4146 
4147  spin_lock_irq(&np->lock);
4148  if (np->wolenabled)
4149  wolinfo->wolopts = WAKE_MAGIC;
4150  spin_unlock_irq(&np->lock);
4151 }
4152 
4153 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4154 {
4155  struct fe_priv *np = netdev_priv(dev);
4156  u8 __iomem *base = get_hwbase(dev);
4157  u32 flags = 0;
4158 
4159  if (wolinfo->wolopts == 0) {
4160  np->wolenabled = 0;
4161  } else if (wolinfo->wolopts & WAKE_MAGIC) {
4162  np->wolenabled = 1;
4163  flags = NVREG_WAKEUPFLAGS_ENABLE;
4164  }
4165  if (netif_running(dev)) {
4166  spin_lock_irq(&np->lock);
4167  writel(flags, base + NvRegWakeUpFlags);
4168  spin_unlock_irq(&np->lock);
4169  }
4171  return 0;
4172 }
4173 
4174 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4175 {
4176  struct fe_priv *np = netdev_priv(dev);
4177  u32 speed;
4178  int adv;
4179 
4180  spin_lock_irq(&np->lock);
4181  ecmd->port = PORT_MII;
4182  if (!netif_running(dev)) {
4183  /* We do not track link speed / duplex setting if the
4184  * interface is disabled. Force a link check */
4185  if (nv_update_linkspeed(dev)) {
4186  if (!netif_carrier_ok(dev))
4187  netif_carrier_on(dev);
4188  } else {
4189  if (netif_carrier_ok(dev))
4190  netif_carrier_off(dev);
4191  }
4192  }
4193 
4194  if (netif_carrier_ok(dev)) {
4195  switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4196  case NVREG_LINKSPEED_10:
4197  speed = SPEED_10;
4198  break;
4199  case NVREG_LINKSPEED_100:
4200  speed = SPEED_100;
4201  break;
4202  case NVREG_LINKSPEED_1000:
4203  speed = SPEED_1000;
4204  break;
4205  default:
4206  speed = -1;
4207  break;
4208  }
4209  ecmd->duplex = DUPLEX_HALF;
4210  if (np->duplex)
4211  ecmd->duplex = DUPLEX_FULL;
4212  } else {
4213  speed = -1;
4214  ecmd->duplex = -1;
4215  }
4216  ethtool_cmd_speed_set(ecmd, speed);
4217  ecmd->autoneg = np->autoneg;
4218 
4219  ecmd->advertising = ADVERTISED_MII;
4220  if (np->autoneg) {
4222  adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4223  if (adv & ADVERTISE_10HALF)
4225  if (adv & ADVERTISE_10FULL)
4227  if (adv & ADVERTISE_100HALF)
4229  if (adv & ADVERTISE_100FULL)
4231  if (np->gigabit == PHY_GIGABIT) {
4232  adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4233  if (adv & ADVERTISE_1000FULL)
4235  }
4236  }
4237  ecmd->supported = (SUPPORTED_Autoneg |
4240  SUPPORTED_MII);
4241  if (np->gigabit == PHY_GIGABIT)
4243 
4244  ecmd->phy_address = np->phyaddr;
4245  ecmd->transceiver = XCVR_EXTERNAL;
4246 
4247  /* ignore maxtxpkt, maxrxpkt for now */
4248  spin_unlock_irq(&np->lock);
4249  return 0;
4250 }
4251 
4252 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4253 {
4254  struct fe_priv *np = netdev_priv(dev);
4255  u32 speed = ethtool_cmd_speed(ecmd);
4256 
4257  if (ecmd->port != PORT_MII)
4258  return -EINVAL;
4259  if (ecmd->transceiver != XCVR_EXTERNAL)
4260  return -EINVAL;
4261  if (ecmd->phy_address != np->phyaddr) {
4262  /* TODO: support switching between multiple phys. Should be
4263  * trivial, but not enabled due to lack of test hardware. */
4264  return -EINVAL;
4265  }
4266  if (ecmd->autoneg == AUTONEG_ENABLE) {
4267  u32 mask;
4268 
4271  if (np->gigabit == PHY_GIGABIT)
4272  mask |= ADVERTISED_1000baseT_Full;
4273 
4274  if ((ecmd->advertising & mask) == 0)
4275  return -EINVAL;
4276 
4277  } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4278  /* Note: autonegotiation disable, speed 1000 intentionally
4279  * forbidden - no one should need that. */
4280 
4281  if (speed != SPEED_10 && speed != SPEED_100)
4282  return -EINVAL;
4283  if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4284  return -EINVAL;
4285  } else {
4286  return -EINVAL;
4287  }
4288 
4289  netif_carrier_off(dev);
4290  if (netif_running(dev)) {
4291  unsigned long flags;
4292 
4293  nv_disable_irq(dev);
4294  netif_tx_lock_bh(dev);
4295  netif_addr_lock(dev);
4296  /* with plain spinlock lockdep complains */
4297  spin_lock_irqsave(&np->lock, flags);
4298  /* stop engines */
4299  /* FIXME:
4300  * this can take some time, and interrupts are disabled
4301  * due to spin_lock_irqsave, but let's hope no daemon
4302  * is going to change the settings very often...
4303  * Worst case:
4304  * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4305  * + some minor delays, which is up to a second approximately
4306  */
4307  nv_stop_rxtx(dev);
4308  spin_unlock_irqrestore(&np->lock, flags);
4309  netif_addr_unlock(dev);
4310  netif_tx_unlock_bh(dev);
4311  }
4312 
4313  if (ecmd->autoneg == AUTONEG_ENABLE) {
4314  int adv, bmcr;
4315 
4316  np->autoneg = 1;
4317 
4318  /* advertise only what has been requested */
4319  adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4322  adv |= ADVERTISE_10HALF;
4324  adv |= ADVERTISE_10FULL;
4326  adv |= ADVERTISE_100HALF;
4328  adv |= ADVERTISE_100FULL;
4329  if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4332  adv |= ADVERTISE_PAUSE_ASYM;
4333  mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4334 
4335  if (np->gigabit == PHY_GIGABIT) {
4336  adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4337  adv &= ~ADVERTISE_1000FULL;
4339  adv |= ADVERTISE_1000FULL;
4340  mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4341  }
4342 
4343  if (netif_running(dev))
4344  netdev_info(dev, "link down\n");
4345  bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4346  if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4347  bmcr |= BMCR_ANENABLE;
4348  /* reset the phy in order for settings to stick,
4349  * and cause autoneg to start */
4350  if (phy_reset(dev, bmcr)) {
4351  netdev_info(dev, "phy reset failed\n");
4352  return -EINVAL;
4353  }
4354  } else {
4355  bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4356  mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4357  }
4358  } else {
4359  int adv, bmcr;
4360 
4361  np->autoneg = 0;
4362 
4363  adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4365  if (speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4366  adv |= ADVERTISE_10HALF;
4367  if (speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4368  adv |= ADVERTISE_10FULL;
4369  if (speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4370  adv |= ADVERTISE_100HALF;
4371  if (speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4372  adv |= ADVERTISE_100FULL;
4374  if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
4377  }
4378  if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4379  adv |= ADVERTISE_PAUSE_ASYM;
4381  }
4382  mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4383  np->fixed_mode = adv;
4384 
4385  if (np->gigabit == PHY_GIGABIT) {
4386  adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4387  adv &= ~ADVERTISE_1000FULL;
4388  mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4389  }
4390 
4391  bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4393  if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4394  bmcr |= BMCR_FULLDPLX;
4395  if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4396  bmcr |= BMCR_SPEED100;
4397  if (np->phy_oui == PHY_OUI_MARVELL) {
4398  /* reset the phy in order for forced mode settings to stick */
4399  if (phy_reset(dev, bmcr)) {
4400  netdev_info(dev, "phy reset failed\n");
4401  return -EINVAL;
4402  }
4403  } else {
4404  mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4405  if (netif_running(dev)) {
4406  /* Wait a bit and then reconfigure the nic. */
4407  udelay(10);
4408  nv_linkchange(dev);
4409  }
4410  }
4411  }
4412 
4413  if (netif_running(dev)) {
4414  nv_start_rxtx(dev);
4415  nv_enable_irq(dev);
4416  }
4417 
4418  return 0;
4419 }
4420 
4421 #define FORCEDETH_REGS_VER 1
4422 
4423 static int nv_get_regs_len(struct net_device *dev)
4424 {
4425  struct fe_priv *np = netdev_priv(dev);
4426  return np->register_size;
4427 }
4428 
4429 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4430 {
4431  struct fe_priv *np = netdev_priv(dev);
4432  u8 __iomem *base = get_hwbase(dev);
4433  u32 *rbuf = buf;
4434  int i;
4435 
4436  regs->version = FORCEDETH_REGS_VER;
4437  spin_lock_irq(&np->lock);
4438  for (i = 0; i < np->register_size/sizeof(u32); i++)
4439  rbuf[i] = readl(base + i*sizeof(u32));
4440  spin_unlock_irq(&np->lock);
4441 }
4442 
4443 static int nv_nway_reset(struct net_device *dev)
4444 {
4445  struct fe_priv *np = netdev_priv(dev);
4446  int ret;
4447 
4448  if (np->autoneg) {
4449  int bmcr;
4450 
4451  netif_carrier_off(dev);
4452  if (netif_running(dev)) {
4453  nv_disable_irq(dev);
4454  netif_tx_lock_bh(dev);
4455  netif_addr_lock(dev);
4456  spin_lock(&np->lock);
4457  /* stop engines */
4458  nv_stop_rxtx(dev);
4459  spin_unlock(&np->lock);
4460  netif_addr_unlock(dev);
4461  netif_tx_unlock_bh(dev);
4462  netdev_info(dev, "link down\n");
4463  }
4464 
4465  bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4466  if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4467  bmcr |= BMCR_ANENABLE;
4468  /* reset the phy in order for settings to stick*/
4469  if (phy_reset(dev, bmcr)) {
4470  netdev_info(dev, "phy reset failed\n");
4471  return -EINVAL;
4472  }
4473  } else {
4474  bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4475  mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4476  }
4477 
4478  if (netif_running(dev)) {
4479  nv_start_rxtx(dev);
4480  nv_enable_irq(dev);
4481  }
4482  ret = 0;
4483  } else {
4484  ret = -EINVAL;
4485  }
4486 
4487  return ret;
4488 }
4489 
4490 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4491 {
4492  struct fe_priv *np = netdev_priv(dev);
4493 
4496 
4497  ring->rx_pending = np->rx_ring_size;
4498  ring->tx_pending = np->tx_ring_size;
4499 }
4500 
4501 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4502 {
4503  struct fe_priv *np = netdev_priv(dev);
4504  u8 __iomem *base = get_hwbase(dev);
4505  u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4507 
4508  if (ring->rx_pending < RX_RING_MIN ||
4509  ring->tx_pending < TX_RING_MIN ||
4510  ring->rx_mini_pending != 0 ||
4511  ring->rx_jumbo_pending != 0 ||
4512  (np->desc_ver == DESC_VER_1 &&
4513  (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4514  ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4515  (np->desc_ver != DESC_VER_1 &&
4516  (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4517  ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4518  return -EINVAL;
4519  }
4520 
4521  /* allocate new rings */
4522  if (!nv_optimized(np)) {
4523  rxtx_ring = pci_alloc_consistent(np->pci_dev,
4524  sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4525  &ring_addr);
4526  } else {
4527  rxtx_ring = pci_alloc_consistent(np->pci_dev,
4528  sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4529  &ring_addr);
4530  }
4531  rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4532  tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4533  if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4534  /* fall back to old rings */
4535  if (!nv_optimized(np)) {
4536  if (rxtx_ring)
4537  pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4538  rxtx_ring, ring_addr);
4539  } else {
4540  if (rxtx_ring)
4541  pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4542  rxtx_ring, ring_addr);
4543  }
4544 
4545  kfree(rx_skbuff);
4546  kfree(tx_skbuff);
4547  goto exit;
4548  }
4549 
4550  if (netif_running(dev)) {
4551  nv_disable_irq(dev);
4552  nv_napi_disable(dev);
4553  netif_tx_lock_bh(dev);
4554  netif_addr_lock(dev);
4555  spin_lock(&np->lock);
4556  /* stop engines */
4557  nv_stop_rxtx(dev);
4558  nv_txrx_reset(dev);
4559  /* drain queues */
4560  nv_drain_rxtx(dev);
4561  /* delete queues */
4562  free_rings(dev);
4563  }
4564 
4565  /* set new values */
4566  np->rx_ring_size = ring->rx_pending;
4567  np->tx_ring_size = ring->tx_pending;
4568 
4569  if (!nv_optimized(np)) {
4570  np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
4571  np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4572  } else {
4573  np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
4574  np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4575  }
4576  np->rx_skb = (struct nv_skb_map *)rx_skbuff;
4577  np->tx_skb = (struct nv_skb_map *)tx_skbuff;
4578  np->ring_addr = ring_addr;
4579 
4580  memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4581  memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4582 
4583  if (netif_running(dev)) {
4584  /* reinit driver view of the queues */
4585  set_bufsize(dev);
4586  if (nv_init_ring(dev)) {
4587  if (!np->in_shutdown)
4588  mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4589  }
4590 
4591  /* reinit nic view of the queues */
4592  writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4593  setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4595  base + NvRegRingSizes);
4596  pci_push(base);
4597  writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4598  pci_push(base);
4599 
4600  /* restart engines */
4601  nv_start_rxtx(dev);
4602  spin_unlock(&np->lock);
4603  netif_addr_unlock(dev);
4604  netif_tx_unlock_bh(dev);
4605  nv_napi_enable(dev);
4606  nv_enable_irq(dev);
4607  }
4608  return 0;
4609 exit:
4610  return -ENOMEM;
4611 }
4612 
4613 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4614 {
4615  struct fe_priv *np = netdev_priv(dev);
4616 
4617  pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4618  pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4619  pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4620 }
4621 
4622 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4623 {
4624  struct fe_priv *np = netdev_priv(dev);
4625  int adv, bmcr;
4626 
4627  if ((!np->autoneg && np->duplex == 0) ||
4628  (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4629  netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
4630  return -EINVAL;
4631  }
4632  if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4633  netdev_info(dev, "hardware does not support tx pause frames\n");
4634  return -EINVAL;
4635  }
4636 
4637  netif_carrier_off(dev);
4638  if (netif_running(dev)) {
4639  nv_disable_irq(dev);
4640  netif_tx_lock_bh(dev);
4641  netif_addr_lock(dev);
4642  spin_lock(&np->lock);
4643  /* stop engines */
4644  nv_stop_rxtx(dev);
4645  spin_unlock(&np->lock);
4646  netif_addr_unlock(dev);
4647  netif_tx_unlock_bh(dev);
4648  }
4649 
4651  if (pause->rx_pause)
4653  if (pause->tx_pause)
4655 
4656  if (np->autoneg && pause->autoneg) {
4658 
4659  adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4661  if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4664  adv |= ADVERTISE_PAUSE_ASYM;
4665  mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4666 
4667  if (netif_running(dev))
4668  netdev_info(dev, "link down\n");
4669  bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4670  bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4671  mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4672  } else {
4674  if (pause->rx_pause)
4676  if (pause->tx_pause)
4678 
4679  if (!netif_running(dev))
4680  nv_update_linkspeed(dev);
4681  else
4682  nv_update_pause(dev, np->pause_flags);
4683  }
4684 
4685  if (netif_running(dev)) {
4686  nv_start_rxtx(dev);
4687  nv_enable_irq(dev);
4688  }
4689  return 0;
4690 }
4691 
4692 static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
4693 {
4694  struct fe_priv *np = netdev_priv(dev);
4695  unsigned long flags;
4696  u32 miicontrol;
4697  int err, retval = 0;
4698 
4699  spin_lock_irqsave(&np->lock, flags);
4700  miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4701  if (features & NETIF_F_LOOPBACK) {
4702  if (miicontrol & BMCR_LOOPBACK) {
4703  spin_unlock_irqrestore(&np->lock, flags);
4704  netdev_info(dev, "Loopback already enabled\n");
4705  return 0;
4706  }
4707  nv_disable_irq(dev);
4708  /* Turn on loopback mode */
4709  miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
4710  err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
4711  if (err) {
4712  retval = PHY_ERROR;
4713  spin_unlock_irqrestore(&np->lock, flags);
4714  phy_init(dev);
4715  } else {
4716  if (netif_running(dev)) {
4717  /* Force 1000 Mbps full-duplex */
4718  nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
4719  1);
4720  /* Force link up */
4721  netif_carrier_on(dev);
4722  }
4723  spin_unlock_irqrestore(&np->lock, flags);
4724  netdev_info(dev,
4725  "Internal PHY loopback mode enabled.\n");
4726  }
4727  } else {
4728  if (!(miicontrol & BMCR_LOOPBACK)) {
4729  spin_unlock_irqrestore(&np->lock, flags);
4730  netdev_info(dev, "Loopback already disabled\n");
4731  return 0;
4732  }
4733  nv_disable_irq(dev);
4734  /* Turn off loopback */
4735  spin_unlock_irqrestore(&np->lock, flags);
4736  netdev_info(dev, "Internal PHY loopback mode disabled.\n");
4737  phy_init(dev);
4738  }
4739  msleep(500);
4740  spin_lock_irqsave(&np->lock, flags);
4741  nv_enable_irq(dev);
4742  spin_unlock_irqrestore(&np->lock, flags);
4743 
4744  return retval;
4745 }
4746 
4747 static netdev_features_t nv_fix_features(struct net_device *dev,
4748  netdev_features_t features)
4749 {
4750  /* vlan is dependent on rx checksum offload */
4751  if (features & (NETIF_F_HW_VLAN_TX|NETIF_F_HW_VLAN_RX))
4752  features |= NETIF_F_RXCSUM;
4753 
4754  return features;
4755 }
4756 
4757 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
4758 {
4759  struct fe_priv *np = get_nvpriv(dev);
4760 
4761  spin_lock_irq(&np->lock);
4762 
4763  if (features & NETIF_F_HW_VLAN_RX)
4765  else
4767 
4768  if (features & NETIF_F_HW_VLAN_TX)
4770  else
4772 
4773  writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4774 
4775  spin_unlock_irq(&np->lock);
4776 }
4777 
4778 static int nv_set_features(struct net_device *dev, netdev_features_t features)
4779 {
4780  struct fe_priv *np = netdev_priv(dev);
4781  u8 __iomem *base = get_hwbase(dev);
4783  int retval;
4784 
4785  if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
4786  retval = nv_set_loopback(dev, features);
4787  if (retval != 0)
4788  return retval;
4789  }
4790 
4791  if (changed & NETIF_F_RXCSUM) {
4792  spin_lock_irq(&np->lock);
4793 
4794  if (features & NETIF_F_RXCSUM)
4796  else
4798 
4799  if (netif_running(dev))
4800  writel(np->txrxctl_bits, base + NvRegTxRxControl);
4801 
4802  spin_unlock_irq(&np->lock);
4803  }
4804 
4805  if (changed & (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX))
4806  nv_vlan_mode(dev, features);
4807 
4808  return 0;
4809 }
4810 
4811 static int nv_get_sset_count(struct net_device *dev, int sset)
4812 {
4813  struct fe_priv *np = netdev_priv(dev);
4814 
4815  switch (sset) {
4816  case ETH_SS_TEST:
4818  return NV_TEST_COUNT_EXTENDED;
4819  else
4820  return NV_TEST_COUNT_BASE;
4821  case ETH_SS_STATS:
4824  else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4826  else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4828  else
4829  return 0;
4830  default:
4831  return -EOPNOTSUPP;
4832  }
4833 }
4834 
4835 static void nv_get_ethtool_stats(struct net_device *dev,
4836  struct ethtool_stats *estats, u64 *buffer)
4837  __acquires(&netdev_priv(dev)->hwstats_lock)
4838  __releases(&netdev_priv(dev)->hwstats_lock)
4839 {
4840  struct fe_priv *np = netdev_priv(dev);
4841 
4842  spin_lock_bh(&np->hwstats_lock);
4843  nv_update_stats(dev);
4844  memcpy(buffer, &np->estats,
4845  nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4846  spin_unlock_bh(&np->hwstats_lock);
4847 }
4848 
4849 static int nv_link_test(struct net_device *dev)
4850 {
4851  struct fe_priv *np = netdev_priv(dev);
4852  int mii_status;
4853 
4854  mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4855  mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4856 
4857  /* check phy link status */
4858  if (!(mii_status & BMSR_LSTATUS))
4859  return 0;
4860  else
4861  return 1;
4862 }
4863 
4864 static int nv_register_test(struct net_device *dev)
4865 {
4866  u8 __iomem *base = get_hwbase(dev);
4867  int i = 0;
4868  u32 orig_read, new_read;
4869 
4870  do {
4871  orig_read = readl(base + nv_registers_test[i].reg);
4872 
4873  /* xor with mask to toggle bits */
4874  orig_read ^= nv_registers_test[i].mask;
4875 
4876  writel(orig_read, base + nv_registers_test[i].reg);
4877 
4878  new_read = readl(base + nv_registers_test[i].reg);
4879 
4880  if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4881  return 0;
4882 
4883  /* restore original value */
4884  orig_read ^= nv_registers_test[i].mask;
4885  writel(orig_read, base + nv_registers_test[i].reg);
4886 
4887  } while (nv_registers_test[++i].reg != 0);
4888 
4889  return 1;
4890 }
4891 
4892 static int nv_interrupt_test(struct net_device *dev)
4893 {
4894  struct fe_priv *np = netdev_priv(dev);
4895  u8 __iomem *base = get_hwbase(dev);
4896  int ret = 1;
4897  int testcnt;
4898  u32 save_msi_flags, save_poll_interval = 0;
4899 
4900  if (netif_running(dev)) {
4901  /* free current irq */
4902  nv_free_irq(dev);
4903  save_poll_interval = readl(base+NvRegPollingInterval);
4904  }
4905 
4906  /* flag to test interrupt handler */
4907  np->intr_test = 0;
4908 
4909  /* setup test irq */
4910  save_msi_flags = np->msi_flags;
4912  np->msi_flags |= 0x001; /* setup 1 vector */
4913  if (nv_request_irq(dev, 1))
4914  return 0;
4915 
4916  /* setup timer interrupt */
4919 
4920  nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4921 
4922  /* wait for at least one interrupt */
4923  msleep(100);
4924 
4925  spin_lock_irq(&np->lock);
4926 
4927  /* flag should be set within ISR */
4928  testcnt = np->intr_test;
4929  if (!testcnt)
4930  ret = 2;
4931 
4932  nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4933  if (!(np->msi_flags & NV_MSI_X_ENABLED))
4935  else
4937 
4938  spin_unlock_irq(&np->lock);
4939 
4940  nv_free_irq(dev);
4941 
4942  np->msi_flags = save_msi_flags;
4943 
4944  if (netif_running(dev)) {
4945  writel(save_poll_interval, base + NvRegPollingInterval);
4947  /* restore original irq */
4948  if (nv_request_irq(dev, 0))
4949  return 0;
4950  }
4951 
4952  return ret;
4953 }
4954 
4955 static int nv_loopback_test(struct net_device *dev)
4956 {
4957  struct fe_priv *np = netdev_priv(dev);
4958  u8 __iomem *base = get_hwbase(dev);
4959  struct sk_buff *tx_skb, *rx_skb;
4960  dma_addr_t test_dma_addr;
4961  u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4962  u32 flags;
4963  int len, i, pkt_len;
4964  u8 *pkt_data;
4965  u32 filter_flags = 0;
4966  u32 misc1_flags = 0;
4967  int ret = 1;
4968 
4969  if (netif_running(dev)) {
4970  nv_disable_irq(dev);
4971  filter_flags = readl(base + NvRegPacketFilterFlags);
4972  misc1_flags = readl(base + NvRegMisc1);
4973  } else {
4974  nv_txrx_reset(dev);
4975  }
4976 
4977  /* reinit driver view of the rx queue */
4978  set_bufsize(dev);
4979  nv_init_ring(dev);
4980 
4981  /* setup hardware for loopback */
4984 
4985  /* reinit nic view of the rx queue */
4986  writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4987  setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4989  base + NvRegRingSizes);
4990  pci_push(base);
4991 
4992  /* restart rx engine */
4993  nv_start_rxtx(dev);
4994 
4995  /* setup packet for tx */
4996  pkt_len = ETH_DATA_LEN;
4997  tx_skb = netdev_alloc_skb(dev, pkt_len);
4998  if (!tx_skb) {
4999  netdev_err(dev, "netdev_alloc_skb() failed during loopback test\n");
5000  ret = 0;
5001  goto out;
5002  }
5003  test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
5004  skb_tailroom(tx_skb),
5006  pkt_data = skb_put(tx_skb, pkt_len);
5007  for (i = 0; i < pkt_len; i++)
5008  pkt_data[i] = (u8)(i & 0xff);
5009 
5010  if (!nv_optimized(np)) {
5011  np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5012  np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5013  } else {
5014  np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5015  np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5016  np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5017  }
5018  writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5019  pci_push(get_hwbase(dev));
5020 
5021  msleep(500);
5022 
5023  /* check for rx of the packet */
5024  if (!nv_optimized(np)) {
5025  flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5026  len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5027 
5028  } else {
5029  flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5030  len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5031  }
5032 
5033  if (flags & NV_RX_AVAIL) {
5034  ret = 0;
5035  } else if (np->desc_ver == DESC_VER_1) {
5036  if (flags & NV_RX_ERROR)
5037  ret = 0;
5038  } else {
5039  if (flags & NV_RX2_ERROR)
5040  ret = 0;
5041  }
5042 
5043  if (ret) {
5044  if (len != pkt_len) {
5045  ret = 0;
5046  } else {
5047  rx_skb = np->rx_skb[0].skb;
5048  for (i = 0; i < pkt_len; i++) {
5049  if (rx_skb->data[i] != (u8)(i & 0xff)) {
5050  ret = 0;
5051  break;
5052  }
5053  }
5054  }
5055  }
5056 
5057  pci_unmap_single(np->pci_dev, test_dma_addr,
5058  (skb_end_pointer(tx_skb) - tx_skb->data),
5060  dev_kfree_skb_any(tx_skb);
5061  out:
5062  /* stop engines */
5063  nv_stop_rxtx(dev);
5064  nv_txrx_reset(dev);
5065  /* drain rx queue */
5066  nv_drain_rxtx(dev);
5067 
5068  if (netif_running(dev)) {
5069  writel(misc1_flags, base + NvRegMisc1);
5070  writel(filter_flags, base + NvRegPacketFilterFlags);
5071  nv_enable_irq(dev);
5072  }
5073 
5074  return ret;
5075 }
5076 
5077 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5078 {
5079  struct fe_priv *np = netdev_priv(dev);
5080  u8 __iomem *base = get_hwbase(dev);
5081  int result;
5082  memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
5083 
5084  if (!nv_link_test(dev)) {
5085  test->flags |= ETH_TEST_FL_FAILED;
5086  buffer[0] = 1;
5087  }
5088 
5089  if (test->flags & ETH_TEST_FL_OFFLINE) {
5090  if (netif_running(dev)) {
5091  netif_stop_queue(dev);
5092  nv_napi_disable(dev);
5093  netif_tx_lock_bh(dev);
5094  netif_addr_lock(dev);
5095  spin_lock_irq(&np->lock);
5096  nv_disable_hw_interrupts(dev, np->irqmask);
5097  if (!(np->msi_flags & NV_MSI_X_ENABLED))
5099  else
5101  /* stop engines */
5102  nv_stop_rxtx(dev);
5103  nv_txrx_reset(dev);
5104  /* drain rx queue */
5105  nv_drain_rxtx(dev);
5106  spin_unlock_irq(&np->lock);
5107  netif_addr_unlock(dev);
5108  netif_tx_unlock_bh(dev);
5109  }
5110 
5111  if (!nv_register_test(dev)) {
5112  test->flags |= ETH_TEST_FL_FAILED;
5113  buffer[1] = 1;
5114  }
5115 
5116  result = nv_interrupt_test(dev);
5117  if (result != 1) {
5118  test->flags |= ETH_TEST_FL_FAILED;
5119  buffer[2] = 1;
5120  }
5121  if (result == 0) {
5122  /* bail out */
5123  return;
5124  }
5125 
5126  if (!nv_loopback_test(dev)) {
5127  test->flags |= ETH_TEST_FL_FAILED;
5128  buffer[3] = 1;
5129  }
5130 
5131  if (netif_running(dev)) {
5132  /* reinit driver view of the rx queue */
5133  set_bufsize(dev);
5134  if (nv_init_ring(dev)) {
5135  if (!np->in_shutdown)
5136  mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5137  }
5138  /* reinit nic view of the rx queue */
5139  writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5140  setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5142  base + NvRegRingSizes);
5143  pci_push(base);
5144  writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5145  pci_push(base);
5146  /* restart rx engine */
5147  nv_start_rxtx(dev);
5148  netif_start_queue(dev);
5149  nv_napi_enable(dev);
5150  nv_enable_hw_interrupts(dev, np->irqmask);
5151  }
5152  }
5153 }
5154 
5155 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5156 {
5157  switch (stringset) {
5158  case ETH_SS_STATS:
5159  memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5160  break;
5161  case ETH_SS_TEST:
5162  memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5163  break;
5164  }
5165 }
5166 
5167 static const struct ethtool_ops ops = {
5168  .get_drvinfo = nv_get_drvinfo,
5169  .get_link = ethtool_op_get_link,
5170  .get_wol = nv_get_wol,
5171  .set_wol = nv_set_wol,
5172  .get_settings = nv_get_settings,
5173  .set_settings = nv_set_settings,
5174  .get_regs_len = nv_get_regs_len,
5175  .get_regs = nv_get_regs,
5176  .nway_reset = nv_nway_reset,
5177  .get_ringparam = nv_get_ringparam,
5178  .set_ringparam = nv_set_ringparam,
5179  .get_pauseparam = nv_get_pauseparam,
5180  .set_pauseparam = nv_set_pauseparam,
5181  .get_strings = nv_get_strings,
5182  .get_ethtool_stats = nv_get_ethtool_stats,
5183  .get_sset_count = nv_get_sset_count,
5184  .self_test = nv_self_test,
5185  .get_ts_info = ethtool_op_get_ts_info,
5186 };
5187 
5188 /* The mgmt unit and driver use a semaphore to access the phy during init */
5189 static int nv_mgmt_acquire_sema(struct net_device *dev)
5190 {
5191  struct fe_priv *np = netdev_priv(dev);
5192  u8 __iomem *base = get_hwbase(dev);
5193  int i;
5194  u32 tx_ctrl, mgmt_sema;
5195 
5196  for (i = 0; i < 10; i++) {
5198  if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5199  break;
5200  msleep(500);
5201  }
5202 
5203  if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5204  return 0;
5205 
5206  for (i = 0; i < 2; i++) {
5207  tx_ctrl = readl(base + NvRegTransmitterControl);
5208  tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5209  writel(tx_ctrl, base + NvRegTransmitterControl);
5210 
5211  /* verify that semaphore was acquired */
5212  tx_ctrl = readl(base + NvRegTransmitterControl);
5215  np->mgmt_sema = 1;
5216  return 1;
5217  } else
5218  udelay(50);
5219  }
5220 
5221  return 0;
5222 }
5223 
5224 static void nv_mgmt_release_sema(struct net_device *dev)
5225 {
5226  struct fe_priv *np = netdev_priv(dev);
5227  u8 __iomem *base = get_hwbase(dev);
5228  u32 tx_ctrl;
5229 
5230  if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5231  if (np->mgmt_sema) {
5232  tx_ctrl = readl(base + NvRegTransmitterControl);
5233  tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5234  writel(tx_ctrl, base + NvRegTransmitterControl);
5235  }
5236  }
5237 }
5238 
5239 
5240 static int nv_mgmt_get_version(struct net_device *dev)
5241 {
5242  struct fe_priv *np = netdev_priv(dev);
5243  u8 __iomem *base = get_hwbase(dev);
5244  u32 data_ready = readl(base + NvRegTransmitterControl);
5245  u32 data_ready2 = 0;
5246  unsigned long start;
5247  int ready = 0;
5248 
5251  start = jiffies;
5252  while (time_before(jiffies, start + 5*HZ)) {
5253  data_ready2 = readl(base + NvRegTransmitterControl);
5254  if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5255  ready = 1;
5256  break;
5257  }
5259  }
5260 
5261  if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5262  return 0;
5263 
5265 
5266  return 1;
5267 }
5268 
5269 static int nv_open(struct net_device *dev)
5270 {
5271  struct fe_priv *np = netdev_priv(dev);
5272  u8 __iomem *base = get_hwbase(dev);
5273  int ret = 1;
5274  int oom, i;
5275  u32 low;
5276 
5277  /* power up phy */
5278  mii_rw(dev, np->phyaddr, MII_BMCR,
5279  mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5280 
5281  nv_txrx_gate(dev, false);
5282  /* erase previous misconfiguration */
5283  if (np->driver_data & DEV_HAS_POWER_CNTRL)
5284  nv_mac_reset(dev);
5286  writel(0, base + NvRegMulticastAddrB);
5289  writel(0, base + NvRegPacketFilterFlags);
5290 
5291  writel(0, base + NvRegTransmitterControl);
5292  writel(0, base + NvRegReceiverControl);
5293 
5294  writel(0, base + NvRegAdapterControl);
5295 
5298 
5299  /* initialize descriptor rings */
5300  set_bufsize(dev);
5301  oom = nv_init_ring(dev);
5302 
5303  writel(0, base + NvRegLinkSpeed);
5305  nv_txrx_reset(dev);
5306  writel(0, base + NvRegUnknownSetupReg6);
5307 
5308  np->in_shutdown = 0;
5309 
5310  /* give hw rings */
5311  setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5313  base + NvRegRingSizes);
5314 
5315  writel(np->linkspeed, base + NvRegLinkSpeed);
5316  if (np->desc_ver == DESC_VER_1)
5318  else
5320  writel(np->txrxctl_bits, base + NvRegTxRxControl);
5321  writel(np->vlanctl_bits, base + NvRegVlanControl);
5322  pci_push(base);
5324  if (reg_delay(dev, NvRegUnknownSetupReg5,
5327  netdev_info(dev,
5328  "%s: SetupReg5, Bit 31 remained off\n", __func__);
5329 
5330  writel(0, base + NvRegMIIMask);
5333 
5337  writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5338 
5340 
5341  get_random_bytes(&low, sizeof(low));
5342  low &= NVREG_SLOTTIME_MASK;
5343  if (np->desc_ver == DESC_VER_1) {
5345  } else {
5346  if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5347  /* setup legacy backoff */
5349  } else {
5351  nv_gear_backoff_reseed(dev);
5352  }
5353  }
5356  if (poll_interval == -1) {
5357  if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5359  else
5361  } else
5362  writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5365  base + NvRegAdapterControl);
5368  if (np->wolenabled)
5370 
5371  i = readl(base + NvRegPowerState);
5372  if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
5373  writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5374 
5375  pci_push(base);
5376  udelay(10);
5378 
5379  nv_disable_hw_interrupts(dev, np->irqmask);
5380  pci_push(base);
5383  pci_push(base);
5384 
5385  if (nv_request_irq(dev, 0))
5386  goto out_drain;
5387 
5388  /* ask for interrupts */
5389  nv_enable_hw_interrupts(dev, np->irqmask);
5390 
5391  spin_lock_irq(&np->lock);
5393  writel(0, base + NvRegMulticastAddrB);
5397  /* One manual link speed update: Interrupts are enabled, future link
5398  * speed changes cause interrupts and are handled by nv_link_irq().
5399  */
5400  {
5401  u32 miistat;
5402  miistat = readl(base + NvRegMIIStatus);
5404  }
5405  /* set linkspeed to invalid value, thus force nv_update_linkspeed
5406  * to init hw */
5407  np->linkspeed = 0;
5408  ret = nv_update_linkspeed(dev);
5409  nv_start_rxtx(dev);
5410  netif_start_queue(dev);
5411  nv_napi_enable(dev);
5412 
5413  if (ret) {
5414  netif_carrier_on(dev);
5415  } else {
5416  netdev_info(dev, "no link during initialization\n");
5417  netif_carrier_off(dev);
5418  }
5419  if (oom)
5420  mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5421 
5422  /* start statistics timer */
5424  mod_timer(&np->stats_poll,
5425  round_jiffies(jiffies + STATS_INTERVAL));
5426 
5427  spin_unlock_irq(&np->lock);
5428 
5429  /* If the loopback feature was set while the device was down, make sure
5430  * that it's set correctly now.
5431  */
5432  if (dev->features & NETIF_F_LOOPBACK)
5433  nv_set_loopback(dev, dev->features);
5434 
5435  return 0;
5436 out_drain:
5437  nv_drain_rxtx(dev);
5438  return ret;
5439 }
5440 
5441 static int nv_close(struct net_device *dev)
5442 {
5443  struct fe_priv *np = netdev_priv(dev);
5444  u8 __iomem *base;
5445 
5446  spin_lock_irq(&np->lock);
5447  np->in_shutdown = 1;
5448  spin_unlock_irq(&np->lock);
5449  nv_napi_disable(dev);
5450  synchronize_irq(np->pci_dev->irq);
5451 
5452  del_timer_sync(&np->oom_kick);
5453  del_timer_sync(&np->nic_poll);
5454  del_timer_sync(&np->stats_poll);
5455 
5456  netif_stop_queue(dev);
5457  spin_lock_irq(&np->lock);
5458  nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */
5459  nv_stop_rxtx(dev);
5460  nv_txrx_reset(dev);
5461 
5462  /* disable interrupts on the nic or we will lock up */
5463  base = get_hwbase(dev);
5464  nv_disable_hw_interrupts(dev, np->irqmask);
5465  pci_push(base);
5466 
5467  spin_unlock_irq(&np->lock);
5468 
5469  nv_free_irq(dev);
5470 
5471  nv_drain_rxtx(dev);
5472 
5473  if (np->wolenabled || !phy_power_down) {
5474  nv_txrx_gate(dev, false);
5476  nv_start_rx(dev);
5477  } else {
5478  /* power down phy */
5479  mii_rw(dev, np->phyaddr, MII_BMCR,
5480  mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5481  nv_txrx_gate(dev, true);
5482  }
5483 
5484  /* FIXME: power down nic */
5485 
5486  return 0;
5487 }
5488 
5489 static const struct net_device_ops nv_netdev_ops = {
5490  .ndo_open = nv_open,
5491  .ndo_stop = nv_close,
5492  .ndo_get_stats64 = nv_get_stats64,
5493  .ndo_start_xmit = nv_start_xmit,
5494  .ndo_tx_timeout = nv_tx_timeout,
5495  .ndo_change_mtu = nv_change_mtu,
5496  .ndo_fix_features = nv_fix_features,
5497  .ndo_set_features = nv_set_features,
5498  .ndo_validate_addr = eth_validate_addr,
5499  .ndo_set_mac_address = nv_set_mac_address,
5500  .ndo_set_rx_mode = nv_set_multicast,
5501 #ifdef CONFIG_NET_POLL_CONTROLLER
5502  .ndo_poll_controller = nv_poll_controller,
5503 #endif
5504 };
5505 
5506 static const struct net_device_ops nv_netdev_ops_optimized = {
5507  .ndo_open = nv_open,
5508  .ndo_stop = nv_close,
5509  .ndo_get_stats64 = nv_get_stats64,
5510  .ndo_start_xmit = nv_start_xmit_optimized,
5511  .ndo_tx_timeout = nv_tx_timeout,
5512  .ndo_change_mtu = nv_change_mtu,
5513  .ndo_fix_features = nv_fix_features,
5514  .ndo_set_features = nv_set_features,
5515  .ndo_validate_addr = eth_validate_addr,
5516  .ndo_set_mac_address = nv_set_mac_address,
5517  .ndo_set_rx_mode = nv_set_multicast,
5518 #ifdef CONFIG_NET_POLL_CONTROLLER
5519  .ndo_poll_controller = nv_poll_controller,
5520 #endif
5521 };
5522 
5523 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5524 {
5525  struct net_device *dev;
5526  struct fe_priv *np;
5527  unsigned long addr;
5528  u8 __iomem *base;
5529  int err, i;
5530  u32 powerstate, txreg;
5531  u32 phystate_orig = 0, phystate;
5532  int phyinitialized = 0;
5533  static int printed_version;
5534 
5535  if (!printed_version++)
5536  pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
5538 
5539  dev = alloc_etherdev(sizeof(struct fe_priv));
5540  err = -ENOMEM;
5541  if (!dev)
5542  goto out;
5543 
5544  np = netdev_priv(dev);
5545  np->dev = dev;
5546  np->pci_dev = pci_dev;
5547  spin_lock_init(&np->lock);
5549  SET_NETDEV_DEV(dev, &pci_dev->dev);
5550 
5551  init_timer(&np->oom_kick);
5552  np->oom_kick.data = (unsigned long) dev;
5553  np->oom_kick.function = nv_do_rx_refill; /* timer handler */
5554  init_timer(&np->nic_poll);
5555  np->nic_poll.data = (unsigned long) dev;
5556  np->nic_poll.function = nv_do_nic_poll; /* timer handler */
5558  np->stats_poll.data = (unsigned long) dev;
5559  np->stats_poll.function = nv_do_stats_poll; /* timer handler */
5560 
5561  err = pci_enable_device(pci_dev);
5562  if (err)
5563  goto out_free;
5564 
5565  pci_set_master(pci_dev);
5566 
5567  err = pci_request_regions(pci_dev, DRV_NAME);
5568  if (err < 0)
5569  goto out_disable;
5570 
5573  else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5575  else
5577 
5578  err = -EINVAL;
5579  addr = 0;
5580  for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5581  if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5582  pci_resource_len(pci_dev, i) >= np->register_size) {
5583  addr = pci_resource_start(pci_dev, i);
5584  break;
5585  }
5586  }
5587  if (i == DEVICE_COUNT_RESOURCE) {
5588  dev_info(&pci_dev->dev, "Couldn't find register window\n");
5589  goto out_relreg;
5590  }
5591 
5592  /* copy of driver data */
5593  np->driver_data = id->driver_data;
5594  /* copy of device id */
5595  np->device_id = id->device;
5596 
5597  /* handle different descriptor versions */
5598  if (id->driver_data & DEV_HAS_HIGH_DMA) {
5599  /* packet format 3: supports 40-bit addressing */
5600  np->desc_ver = DESC_VER_3;
5602  if (dma_64bit) {
5603  if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5604  dev_info(&pci_dev->dev,
5605  "64-bit DMA failed, using 32-bit addressing\n");
5606  else
5607  dev->features |= NETIF_F_HIGHDMA;
5608  if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5609  dev_info(&pci_dev->dev,
5610  "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5611  }
5612  }
5613  } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5614  /* packet format 2: supports jumbo frames */
5615  np->desc_ver = DESC_VER_2;
5617  } else {
5618  /* original packet format */
5619  np->desc_ver = DESC_VER_1;
5621  }
5622 
5623  np->pkt_limit = NV_PKTLIMIT_1;
5624  if (id->driver_data & DEV_HAS_LARGEDESC)
5625  np->pkt_limit = NV_PKTLIMIT_2;
5626 
5627  if (id->driver_data & DEV_HAS_CHECKSUM) {
5631  }
5632 
5633  np->vlanctl_bits = 0;
5634  if (id->driver_data & DEV_HAS_VLAN) {
5636  dev->hw_features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5637  }
5638 
5639  dev->features |= dev->hw_features;
5640 
5641  /* Add loopback capability to the device. */
5642  dev->hw_features |= NETIF_F_LOOPBACK;
5643 
5645  if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5649  }
5650 
5651  err = -ENOMEM;
5652  np->base = ioremap(addr, np->register_size);
5653  if (!np->base)
5654  goto out_relreg;
5655 
5658 
5659  if (!nv_optimized(np)) {
5660  np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5661  sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5662  &np->ring_addr);
5663  if (!np->rx_ring.orig)
5664  goto out_unmap;
5665  np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5666  } else {
5667  np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5668  sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5669  &np->ring_addr);
5670  if (!np->rx_ring.ex)
5671  goto out_unmap;
5672  np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5673  }
5674  np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5675  np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5676  if (!np->rx_skb || !np->tx_skb)
5677  goto out_freering;
5678 
5679  if (!nv_optimized(np))
5680  dev->netdev_ops = &nv_netdev_ops;
5681  else
5682  dev->netdev_ops = &nv_netdev_ops_optimized;
5683 
5684  netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5685  SET_ETHTOOL_OPS(dev, &ops);
5687 
5688  pci_set_drvdata(pci_dev, dev);
5689 
5690  /* read the mac address */
5691  base = get_hwbase(dev);
5692  np->orig_mac[0] = readl(base + NvRegMacAddrA);
5693  np->orig_mac[1] = readl(base + NvRegMacAddrB);
5694 
5695  /* check the workaround bit for correct mac address order */
5696  txreg = readl(base + NvRegTransmitPoll);
5698  /* mac address is already in correct order */
5699  dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5700  dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5701  dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5702  dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5703  dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5704  dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5705  } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5706  /* mac address is already in correct order */
5707  dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5708  dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5709  dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5710  dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5711  dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5712  dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5713  /*
5714  * Set orig mac address back to the reversed version.
5715  * This flag will be cleared during low power transition.
5716  * Therefore, we should always put back the reversed address.
5717  */
5718  np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5719  (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5720  np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5721  } else {
5722  /* need to reverse mac address to correct order */
5723  dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5724  dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5725  dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5726  dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5727  dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5728  dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5729  writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5730  dev_dbg(&pci_dev->dev,
5731  "%s: set workaround bit for reversed mac addr\n",
5732  __func__);
5733  }
5734  memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5735 
5736  if (!is_valid_ether_addr(dev->perm_addr)) {
5737  /*
5738  * Bad mac address. At least one bios sets the mac address
5739  * to 01:23:45:67:89:ab
5740  */
5741  dev_err(&pci_dev->dev,
5742  "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
5743  dev->dev_addr);
5744  eth_hw_addr_random(dev);
5745  dev_err(&pci_dev->dev,
5746  "Using random MAC address: %pM\n", dev->dev_addr);
5747  }
5748 
5749  /* set mac address */
5750  nv_copy_mac_to_hw(dev);
5751 
5752  /* disable WOL */
5753  writel(0, base + NvRegWakeUpFlags);
5754  np->wolenabled = 0;
5755  device_set_wakeup_enable(&pci_dev->dev, false);
5756 
5757  if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5758 
5759  /* take phy and nic out of low power mode */
5760  powerstate = readl(base + NvRegPowerState2);
5761  powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5762  if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5763  pci_dev->revision >= 0xA3)
5764  powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5765  writel(powerstate, base + NvRegPowerState2);
5766  }
5767 
5768  if (np->desc_ver == DESC_VER_1)
5769  np->tx_flags = NV_TX_VALID;
5770  else
5771  np->tx_flags = NV_TX2_VALID;
5772 
5773  np->msi_flags = 0;
5774  if ((id->driver_data & DEV_HAS_MSI) && msi)
5775  np->msi_flags |= NV_MSI_CAPABLE;
5776 
5777  if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5778  /* msix has had reported issues when modifying irqmask
5779  as in the case of napi, therefore, disable for now
5780  */
5781 #if 0
5782  np->msi_flags |= NV_MSI_X_CAPABLE;
5783 #endif
5784  }
5785 
5786  if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5787  np->irqmask = NVREG_IRQMASK_CPU;
5788  if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5789  np->msi_flags |= 0x0001;
5790  } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5791  !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5792  /* start off in throughput mode */
5794  /* remove support for msix mode */
5795  np->msi_flags &= ~NV_MSI_X_CAPABLE;
5796  } else {
5797  optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5799  if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5800  np->msi_flags |= 0x0003;
5801  }
5802 
5803  if (id->driver_data & DEV_NEED_TIMERIRQ)
5804  np->irqmask |= NVREG_IRQ_TIMER;
5805  if (id->driver_data & DEV_NEED_LINKTIMER) {
5806  np->need_linktimer = 1;
5808  } else {
5809  np->need_linktimer = 0;
5810  }
5811 
5812  /* Limit the number of tx's outstanding for hw bug */
5813  if (id->driver_data & DEV_NEED_TX_LIMIT) {
5814  np->tx_limit = 1;
5816  pci_dev->revision >= 0xA2)
5817  np->tx_limit = 0;
5818  }
5819 
5820  /* clear phy state and temporarily halt phy interrupts */
5821  writel(0, base + NvRegMIIMask);
5822  phystate = readl(base + NvRegAdapterControl);
5823  if (phystate & NVREG_ADAPTCTL_RUNNING) {
5824  phystate_orig = 1;
5825  phystate &= ~NVREG_ADAPTCTL_RUNNING;
5826  writel(phystate, base + NvRegAdapterControl);
5827  }
5829 
5830  if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5831  /* management unit running on the mac? */
5834  nv_mgmt_acquire_sema(dev) &&
5835  nv_mgmt_get_version(dev)) {
5836  np->mac_in_use = 1;
5837  if (np->mgmt_version > 0)
5839  /* management unit setup the phy already? */
5840  if (np->mac_in_use &&
5842  NVREG_XMITCTL_SYNC_PHY_INIT)) {
5843  /* phy is inited by mgmt unit */
5844  phyinitialized = 1;
5845  } else {
5846  /* we need to init the phy */
5847  }
5848  }
5849  }
5850 
5851  /* find a suitable phy */
5852  for (i = 1; i <= 32; i++) {
5853  int id1, id2;
5854  int phyaddr = i & 0x1F;
5855 
5856  spin_lock_irq(&np->lock);
5857  id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5858  spin_unlock_irq(&np->lock);
5859  if (id1 < 0 || id1 == 0xffff)
5860  continue;
5861  spin_lock_irq(&np->lock);
5862  id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5863  spin_unlock_irq(&np->lock);
5864  if (id2 < 0 || id2 == 0xffff)
5865  continue;
5866 
5867  np->phy_model = id2 & PHYID2_MODEL_MASK;
5868  id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5869  id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5870  np->phyaddr = phyaddr;
5871  np->phy_oui = id1 | id2;
5872 
5873  /* Realtek hardcoded phy id1 to all zero's on certain phys */
5874  if (np->phy_oui == PHY_OUI_REALTEK2)
5875  np->phy_oui = PHY_OUI_REALTEK;
5876  /* Setup phy revision for Realtek */
5878  np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5879 
5880  break;
5881  }
5882  if (i == 33) {
5883  dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
5884  goto out_error;
5885  }
5886 
5887  if (!phyinitialized) {
5888  /* reset it */
5889  phy_init(dev);
5890  } else {
5891  /* see if it is a gigabit phy */
5892  u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5893  if (mii_status & PHY_GIGABIT)
5894  np->gigabit = PHY_GIGABIT;
5895  }
5896 
5897  /* set default link speed settings */
5899  np->duplex = 0;
5900  np->autoneg = 1;
5901 
5902  err = register_netdev(dev);
5903  if (err) {
5904  dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
5905  goto out_error;
5906  }
5907 
5908  netif_carrier_off(dev);
5909 
5910  /* Some NICs freeze when TX pause is enabled while NIC is
5911  * down, and this stays across warm reboots. The sequence
5912  * below should be enough to recover from that state.
5913  */
5914  nv_update_pause(dev, 0);
5915  nv_start_tx(dev);
5916  nv_stop_tx(dev);
5917 
5918  if (id->driver_data & DEV_HAS_VLAN)
5919  nv_vlan_mode(dev, dev->features);
5920 
5921  dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
5922  dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);
5923 
5924  dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
5925  dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
5926  dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
5927  "csum " : "",
5928  dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
5929  "vlan " : "",
5930  dev->features & (NETIF_F_LOOPBACK) ?
5931  "loopback " : "",
5932  id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
5933  id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
5934  id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
5935  np->gigabit == PHY_GIGABIT ? "gbit " : "",
5936  np->need_linktimer ? "lnktim " : "",
5937  np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
5938  np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
5939  np->desc_ver);
5940 
5941  return 0;
5942 
5943 out_error:
5944  if (phystate_orig)
5945  writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5946  pci_set_drvdata(pci_dev, NULL);
5947 out_freering:
5948  free_rings(dev);
5949 out_unmap:
5950  iounmap(get_hwbase(dev));
5951 out_relreg:
5952  pci_release_regions(pci_dev);
5953 out_disable:
5954  pci_disable_device(pci_dev);
5955 out_free:
5956  free_netdev(dev);
5957 out:
5958  return err;
5959 }
5960 
5961 static void nv_restore_phy(struct net_device *dev)
5962 {
5963  struct fe_priv *np = netdev_priv(dev);
5964  u16 phy_reserved, mii_control;
5965 
5966  if (np->phy_oui == PHY_OUI_REALTEK &&
5968  phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
5969  mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
5970  phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
5971  phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
5972  phy_reserved |= PHY_REALTEK_INIT8;
5973  mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
5974  mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
5975 
5976  /* restart auto negotiation */
5977  mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
5978  mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
5979  mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
5980  }
5981 }
5982 
5983 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
5984 {
5985  struct net_device *dev = pci_get_drvdata(pci_dev);
5986  struct fe_priv *np = netdev_priv(dev);
5987  u8 __iomem *base = get_hwbase(dev);
5988 
5989  /* special op: write back the misordered MAC address - otherwise
5990  * the next nv_probe would see a wrong address.
5991  */
5992  writel(np->orig_mac[0], base + NvRegMacAddrA);
5993  writel(np->orig_mac[1], base + NvRegMacAddrB);
5994  writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
5995  base + NvRegTransmitPoll);
5996 }
5997 
5998 static void __devexit nv_remove(struct pci_dev *pci_dev)
5999 {
6000  struct net_device *dev = pci_get_drvdata(pci_dev);
6001 
6002  unregister_netdev(dev);
6003 
6004  nv_restore_mac_addr(pci_dev);
6005 
6006  /* restore any phy related changes */
6007  nv_restore_phy(dev);
6008 
6009  nv_mgmt_release_sema(dev);
6010 
6011  /* free all structures */
6012  free_rings(dev);
6013  iounmap(get_hwbase(dev));
6014  pci_release_regions(pci_dev);
6015  pci_disable_device(pci_dev);
6016  free_netdev(dev);
6017  pci_set_drvdata(pci_dev, NULL);
6018 }
6019 
6020 #ifdef CONFIG_PM_SLEEP
6021 static int nv_suspend(struct device *device)
6022 {
6023  struct pci_dev *pdev = to_pci_dev(device);
6024  struct net_device *dev = pci_get_drvdata(pdev);
6025  struct fe_priv *np = netdev_priv(dev);
6026  u8 __iomem *base = get_hwbase(dev);
6027  int i;
6028 
6029  if (netif_running(dev)) {
6030  /* Gross. */
6031  nv_close(dev);
6032  }
6033  netif_device_detach(dev);
6034 
6035  /* save non-pci configuration space */
6036  for (i = 0; i <= np->register_size/sizeof(u32); i++)
6037  np->saved_config_space[i] = readl(base + i*sizeof(u32));
6038 
6039  return 0;
6040 }
6041 
6042 static int nv_resume(struct device *device)
6043 {
6044  struct pci_dev *pdev = to_pci_dev(device);
6045  struct net_device *dev = pci_get_drvdata(pdev);
6046  struct fe_priv *np = netdev_priv(dev);
6047  u8 __iomem *base = get_hwbase(dev);
6048  int i, rc = 0;
6049 
6050  /* restore non-pci configuration space */
6051  for (i = 0; i <= np->register_size/sizeof(u32); i++)
6052  writel(np->saved_config_space[i], base+i*sizeof(u32));
6053 
6054  if (np->driver_data & DEV_NEED_MSI_FIX)
6055  pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6056 
6057  /* restore phy state, including autoneg */
6058  phy_init(dev);
6059 
6060  netif_device_attach(dev);
6061  if (netif_running(dev)) {
6062  rc = nv_open(dev);
6063  nv_set_multicast(dev);
6064  }
6065  return rc;
6066 }
6067 
6068 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
6069 #define NV_PM_OPS (&nv_pm_ops)
6070 
6071 #else
6072 #define NV_PM_OPS NULL
6073 #endif /* CONFIG_PM_SLEEP */
6074 
6075 #ifdef CONFIG_PM
6076 static void nv_shutdown(struct pci_dev *pdev)
6077 {
6078  struct net_device *dev = pci_get_drvdata(pdev);
6079  struct fe_priv *np = netdev_priv(dev);
6080 
6081  if (netif_running(dev))
6082  nv_close(dev);
6083 
6084  /*
6085  * Restore the MAC so a kernel started by kexec won't get confused.
6086  * If we really go for poweroff, we must not restore the MAC,
6087  * otherwise the MAC for WOL will be reversed at least on some boards.
6088  */
6090  nv_restore_mac_addr(pdev);
6091 
6092  pci_disable_device(pdev);
6093  /*
6094  * Apparently it is not possible to reinitialise from D3 hot,
6095  * only put the device into D3 if we really go for poweroff.
6096  */
6097  if (system_state == SYSTEM_POWER_OFF) {
6098  pci_wake_from_d3(pdev, np->wolenabled);
6100  }
6101 }
6102 #else
6103 #define nv_shutdown NULL
6104 #endif /* CONFIG_PM */
6105 
6106 static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
6107  { /* nForce Ethernet Controller */
6108  PCI_DEVICE(0x10DE, 0x01C3),
6109  .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6110  },
6111  { /* nForce2 Ethernet Controller */
6112  PCI_DEVICE(0x10DE, 0x0066),
6113  .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6114  },
6115  { /* nForce3 Ethernet Controller */
6116  PCI_DEVICE(0x10DE, 0x00D6),
6117  .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6118  },
6119  { /* nForce3 Ethernet Controller */
6120  PCI_DEVICE(0x10DE, 0x0086),
6122  },
6123  { /* nForce3 Ethernet Controller */
6124  PCI_DEVICE(0x10DE, 0x008C),
6126  },
6127  { /* nForce3 Ethernet Controller */
6128  PCI_DEVICE(0x10DE, 0x00E6),
6130  },
6131  { /* nForce3 Ethernet Controller */
6132  PCI_DEVICE(0x10DE, 0x00DF),
6134  },
6135  { /* CK804 Ethernet Controller */
6136  PCI_DEVICE(0x10DE, 0x0056),
6138  },
6139  { /* CK804 Ethernet Controller */
6140  PCI_DEVICE(0x10DE, 0x0057),
6142  },
6143  { /* MCP04 Ethernet Controller */
6144  PCI_DEVICE(0x10DE, 0x0037),
6146  },
6147  { /* MCP04 Ethernet Controller */
6148  PCI_DEVICE(0x10DE, 0x0038),
6150  },
6151  { /* MCP51 Ethernet Controller */
6152  PCI_DEVICE(0x10DE, 0x0268),
6154  },
6155  { /* MCP51 Ethernet Controller */
6156  PCI_DEVICE(0x10DE, 0x0269),
6158  },
6159  { /* MCP55 Ethernet Controller */
6160  PCI_DEVICE(0x10DE, 0x0372),
6162  },
6163  { /* MCP55 Ethernet Controller */
6164  PCI_DEVICE(0x10DE, 0x0373),
6166  },
6167  { /* MCP61 Ethernet Controller */
6168  PCI_DEVICE(0x10DE, 0x03E5),
6170  },
6171  { /* MCP61 Ethernet Controller */
6172  PCI_DEVICE(0x10DE, 0x03E6),
6174  },
6175  { /* MCP61 Ethernet Controller */
6176  PCI_DEVICE(0x10DE, 0x03EE),
6178  },
6179  { /* MCP61 Ethernet Controller */
6180  PCI_DEVICE(0x10DE, 0x03EF),
6182  },
6183  { /* MCP65 Ethernet Controller */
6184  PCI_DEVICE(0x10DE, 0x0450),
6186  },
6187  { /* MCP65 Ethernet Controller */
6188  PCI_DEVICE(0x10DE, 0x0451),
6190  },
6191  { /* MCP65 Ethernet Controller */
6192  PCI_DEVICE(0x10DE, 0x0452),
6194  },
6195  { /* MCP65 Ethernet Controller */
6196  PCI_DEVICE(0x10DE, 0x0453),
6198  },
6199  { /* MCP67 Ethernet Controller */
6200  PCI_DEVICE(0x10DE, 0x054C),
6202  },
6203  { /* MCP67 Ethernet Controller */
6204  PCI_DEVICE(0x10DE, 0x054D),
6206  },
6207  { /* MCP67 Ethernet Controller */
6208  PCI_DEVICE(0x10DE, 0x054E),
6210  },
6211  { /* MCP67 Ethernet Controller */
6212  PCI_DEVICE(0x10DE, 0x054F),
6214  },
6215  { /* MCP73 Ethernet Controller */
6216  PCI_DEVICE(0x10DE, 0x07DC),
6218  },
6219  { /* MCP73 Ethernet Controller */
6220  PCI_DEVICE(0x10DE, 0x07DD),
6222  },
6223  { /* MCP73 Ethernet Controller */
6224  PCI_DEVICE(0x10DE, 0x07DE),
6226  },
6227  { /* MCP73 Ethernet Controller */
6228  PCI_DEVICE(0x10DE, 0x07DF),
6230  },
6231  { /* MCP77 Ethernet Controller */
6232  PCI_DEVICE(0x10DE, 0x0760),
6234  },
6235  { /* MCP77 Ethernet Controller */
6236  PCI_DEVICE(0x10DE, 0x0761),
6238  },
6239  { /* MCP77 Ethernet Controller */
6240  PCI_DEVICE(0x10DE, 0x0762),
6242  },
6243  { /* MCP77 Ethernet Controller */
6244  PCI_DEVICE(0x10DE, 0x0763),
6246  },
6247  { /* MCP79 Ethernet Controller */
6248  PCI_DEVICE(0x10DE, 0x0AB0),
6250  },
6251  { /* MCP79 Ethernet Controller */
6252  PCI_DEVICE(0x10DE, 0x0AB1),
6254  },
6255  { /* MCP79 Ethernet Controller */
6256  PCI_DEVICE(0x10DE, 0x0AB2),
6258  },
6259  { /* MCP79 Ethernet Controller */
6260  PCI_DEVICE(0x10DE, 0x0AB3),
6262  },
6263  { /* MCP89 Ethernet Controller */
6264  PCI_DEVICE(0x10DE, 0x0D7D),
6266  },
6267  {0,},
6268 };
6269 
6270 static struct pci_driver driver = {
6271  .name = DRV_NAME,
6272  .id_table = pci_tbl,
6273  .probe = nv_probe,
6274  .remove = __devexit_p(nv_remove),
6275  .shutdown = nv_shutdown,
6276  .driver.pm = NV_PM_OPS,
6277 };
6278 
6279 static int __init init_nic(void)
6280 {
6281  return pci_register_driver(&driver);
6282 }
6283 
6284 static void __exit exit_nic(void)
6285 {
6286  pci_unregister_driver(&driver);
6287 }
6288 
6289 module_param(max_interrupt_work, int, 0);
6290 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6291 module_param(optimization_mode, int, 0);
6292 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6293 module_param(poll_interval, int, 0);
6294 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6295 module_param(msi, int, 0);
6296 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6297 module_param(msix, int, 0);
6298 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6299 module_param(dma_64bit, int, 0);
6300 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6301 module_param(phy_cross, int, 0);
6302 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6303 module_param(phy_power_down, int, 0);
6304 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6305 module_param(debug_tx_timeout, bool, 0);
6306 MODULE_PARM_DESC(debug_tx_timeout,
6307  "Dump tx related registers and ring when tx_timeout happens");
6308 
6309 MODULE_AUTHOR("Manfred Spraul <[email protected]>");
6310 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6311 MODULE_LICENSE("GPL");
6312 
6313 MODULE_DEVICE_TABLE(pci, pci_tbl);
6314 
6315 module_init(init_nic);
6316 module_exit(exit_nic);