Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
intel_dp.c
Go to the documentation of this file.
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  * Keith Packard <[email protected]>
25  *
26  */
27 
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38 
39 #define DP_RECEIVER_CAP_SIZE 0xf
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42 
50 static bool is_edp(struct intel_dp *intel_dp)
51 {
52  return intel_dp->base.type == INTEL_OUTPUT_EDP;
53 }
54 
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65  return intel_dp->is_pch_edp;
66 }
67 
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76  return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78 
79 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
80 {
81  return container_of(encoder, struct intel_dp, base.base);
82 }
83 
84 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
85 {
86  return container_of(intel_attached_encoder(connector),
87  struct intel_dp, base);
88 }
89 
98 {
99  struct intel_dp *intel_dp;
100 
101  if (!encoder)
102  return false;
103 
104  intel_dp = enc_to_intel_dp(encoder);
105 
106  return is_pch_edp(intel_dp);
107 }
108 
109 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
110 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112 
113 void
115  int *lane_num, int *link_bw)
116 {
117  struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
118 
119  *lane_num = intel_dp->lane_count;
120  if (intel_dp->link_bw == DP_LINK_BW_1_62)
121  *link_bw = 162000;
122  else if (intel_dp->link_bw == DP_LINK_BW_2_7)
123  *link_bw = 270000;
124 }
125 
126 int
128  struct drm_display_mode *mode)
129 {
130  struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
131 
132  if (intel_dp->panel_fixed_mode)
133  return intel_dp->panel_fixed_mode->clock;
134  else
135  return mode->clock;
136 }
137 
138 static int
139 intel_dp_max_lane_count(struct intel_dp *intel_dp)
140 {
141  int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
142  switch (max_lane_count) {
143  case 1: case 2: case 4:
144  break;
145  default:
146  max_lane_count = 4;
147  }
148  return max_lane_count;
149 }
150 
151 static int
152 intel_dp_max_link_bw(struct intel_dp *intel_dp)
153 {
154  int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
155 
156  switch (max_link_bw) {
157  case DP_LINK_BW_1_62:
158  case DP_LINK_BW_2_7:
159  break;
160  default:
161  max_link_bw = DP_LINK_BW_1_62;
162  break;
163  }
164  return max_link_bw;
165 }
166 
167 static int
168 intel_dp_link_clock(uint8_t link_bw)
169 {
170  if (link_bw == DP_LINK_BW_2_7)
171  return 270000;
172  else
173  return 162000;
174 }
175 
176 /*
177  * The units on the numbers in the next two are... bizarre. Examples will
178  * make it clearer; this one parallels an example in the eDP spec.
179  *
180  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
181  *
182  * 270000 * 1 * 8 / 10 == 216000
183  *
184  * The actual data capacity of that configuration is 2.16Gbit/s, so the
185  * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
186  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
187  * 119000. At 18bpp that's 2142000 kilobits per second.
188  *
189  * Thus the strange-looking division by 10 in intel_dp_link_required, to
190  * get the result in decakilobits instead of kilobits.
191  */
192 
193 static int
194 intel_dp_link_required(int pixel_clock, int bpp)
195 {
196  return (pixel_clock * bpp + 9) / 10;
197 }
198 
199 static int
200 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
201 {
202  return (max_link_clock * max_lanes * 8) / 10;
203 }
204 
205 static bool
206 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
207  struct drm_display_mode *mode,
208  bool adjust_mode)
209 {
210  int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
211  int max_lanes = intel_dp_max_lane_count(intel_dp);
212  int max_rate, mode_rate;
213 
214  mode_rate = intel_dp_link_required(mode->clock, 24);
215  max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216 
217  if (mode_rate > max_rate) {
218  mode_rate = intel_dp_link_required(mode->clock, 18);
219  if (mode_rate > max_rate)
220  return false;
221 
222  if (adjust_mode)
223  mode->private_flags
225 
226  return true;
227  }
228 
229  return true;
230 }
231 
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234  struct drm_display_mode *mode)
235 {
236  struct intel_dp *intel_dp = intel_attached_dp(connector);
237 
238  if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
239  if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
240  return MODE_PANEL;
241 
242  if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
243  return MODE_PANEL;
244  }
245 
246  if (!intel_dp_adjust_dithering(intel_dp, mode, false))
247  return MODE_CLOCK_HIGH;
248 
249  if (mode->clock < 10000)
250  return MODE_CLOCK_LOW;
251 
252  if (mode->flags & DRM_MODE_FLAG_DBLCLK)
253  return MODE_H_ILLEGAL;
254 
255  return MODE_OK;
256 }
257 
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261  int i;
262  uint32_t v = 0;
263 
264  if (src_bytes > 4)
265  src_bytes = 4;
266  for (i = 0; i < src_bytes; i++)
267  v |= ((uint32_t) src[i]) << ((3-i) * 8);
268  return v;
269 }
270 
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274  int i;
275  if (dst_bytes > 4)
276  dst_bytes = 4;
277  for (i = 0; i < dst_bytes; i++)
278  dst[i] = src >> ((3-i) * 8);
279 }
280 
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285  struct drm_i915_private *dev_priv = dev->dev_private;
286  uint32_t clkcfg;
287 
288  clkcfg = I915_READ(CLKCFG);
289  switch (clkcfg & CLKCFG_FSB_MASK) {
290  case CLKCFG_FSB_400:
291  return 100;
292  case CLKCFG_FSB_533:
293  return 133;
294  case CLKCFG_FSB_667:
295  return 166;
296  case CLKCFG_FSB_800:
297  return 200;
298  case CLKCFG_FSB_1067:
299  return 266;
300  case CLKCFG_FSB_1333:
301  return 333;
302  /* these two are just a guess; one of them might be right */
303  case CLKCFG_FSB_1600:
304  case CLKCFG_FSB_1600_ALT:
305  return 400;
306  default:
307  return 133;
308  }
309 }
310 
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313  struct drm_device *dev = intel_dp->base.base.dev;
314  struct drm_i915_private *dev_priv = dev->dev_private;
315 
316  return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318 
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321  struct drm_device *dev = intel_dp->base.base.dev;
322  struct drm_i915_private *dev_priv = dev->dev_private;
323 
324  return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326 
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330  struct drm_device *dev = intel_dp->base.base.dev;
331  struct drm_i915_private *dev_priv = dev->dev_private;
332 
333  if (!is_edp(intel_dp))
334  return;
335  if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336  WARN(1, "eDP powered off while attempting aux channel communication.\n");
337  DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
340  }
341 }
342 
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345  uint8_t *send, int send_bytes,
346  uint8_t *recv, int recv_size)
347 {
348  uint32_t output_reg = intel_dp->output_reg;
349  struct drm_device *dev = intel_dp->base.base.dev;
350  struct drm_i915_private *dev_priv = dev->dev_private;
351  uint32_t ch_ctl = output_reg + 0x10;
352  uint32_t ch_data = ch_ctl + 4;
353  int i;
354  int recv_bytes;
356  uint32_t aux_clock_divider;
357  int try, precharge;
358 
359  intel_dp_check_edp(intel_dp);
360  /* The clock divider is based off the hrawclk,
361  * and would like to run at 2MHz. So, take the
362  * hrawclk value and divide by 2 and use that
363  *
364  * Note that PCH attached eDP panels should use a 125MHz input
365  * clock divider.
366  */
367  if (is_cpu_edp(intel_dp)) {
368  if (IS_GEN6(dev) || IS_GEN7(dev))
369  aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
370  else
371  aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372  } else if (HAS_PCH_SPLIT(dev))
373  aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
374  else
375  aux_clock_divider = intel_hrawclk(dev) / 2;
376 
377  if (IS_GEN6(dev))
378  precharge = 3;
379  else
380  precharge = 5;
381 
382  /* Try to wait for any previous AUX channel activity */
383  for (try = 0; try < 3; try++) {
384  status = I915_READ(ch_ctl);
385  if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386  break;
387  msleep(1);
388  }
389 
390  if (try == 3) {
391  WARN(1, "dp_aux_ch not started status 0x%08x\n",
392  I915_READ(ch_ctl));
393  return -EBUSY;
394  }
395 
396  /* Must try at least 3 times according to DP spec */
397  for (try = 0; try < 5; try++) {
398  /* Load the send data into the aux channel data registers */
399  for (i = 0; i < send_bytes; i += 4)
400  I915_WRITE(ch_data + i,
401  pack_aux(send + i, send_bytes - i));
402 
403  /* Send the command and wait for it to complete */
404  I915_WRITE(ch_ctl,
407  (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408  (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409  (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
413  for (;;) {
414  status = I915_READ(ch_ctl);
415  if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416  break;
417  udelay(100);
418  }
419 
420  /* Clear done status and any errors */
421  I915_WRITE(ch_ctl,
422  status |
426 
427  if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
429  continue;
430  if (status & DP_AUX_CH_CTL_DONE)
431  break;
432  }
433 
434  if ((status & DP_AUX_CH_CTL_DONE) == 0) {
435  DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
436  return -EBUSY;
437  }
438 
439  /* Check for timeout or receive error.
440  * Timeouts occur when the sink is not connected
441  */
442  if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
443  DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
444  return -EIO;
445  }
446 
447  /* Timeouts occur when the device isn't connected, so they're
448  * "normal" -- don't fill the kernel log with these */
449  if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
450  DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
451  return -ETIMEDOUT;
452  }
453 
454  /* Unload any bytes sent back from the other side */
455  recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
457  if (recv_bytes > recv_size)
458  recv_bytes = recv_size;
459 
460  for (i = 0; i < recv_bytes; i += 4)
461  unpack_aux(I915_READ(ch_data + i),
462  recv + i, recv_bytes - i);
463 
464  return recv_bytes;
465 }
466 
467 /* Write data to the aux channel in native mode */
468 static int
469 intel_dp_aux_native_write(struct intel_dp *intel_dp,
470  uint16_t address, uint8_t *send, int send_bytes)
471 {
472  int ret;
473  uint8_t msg[20];
474  int msg_bytes;
475  uint8_t ack;
476 
477  intel_dp_check_edp(intel_dp);
478  if (send_bytes > 16)
479  return -1;
480  msg[0] = AUX_NATIVE_WRITE << 4;
481  msg[1] = address >> 8;
482  msg[2] = address & 0xff;
483  msg[3] = send_bytes - 1;
484  memcpy(&msg[4], send, send_bytes);
485  msg_bytes = send_bytes + 4;
486  for (;;) {
487  ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
488  if (ret < 0)
489  return ret;
491  break;
492  else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
493  udelay(100);
494  else
495  return -EIO;
496  }
497  return send_bytes;
498 }
499 
500 /* Write a single byte to the aux channel in native mode */
501 static int
502 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
503  uint16_t address, uint8_t byte)
504 {
505  return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
506 }
507 
508 /* read bytes from a native aux channel */
509 static int
510 intel_dp_aux_native_read(struct intel_dp *intel_dp,
511  uint16_t address, uint8_t *recv, int recv_bytes)
512 {
513  uint8_t msg[4];
514  int msg_bytes;
515  uint8_t reply[20];
516  int reply_bytes;
517  uint8_t ack;
518  int ret;
519 
520  intel_dp_check_edp(intel_dp);
521  msg[0] = AUX_NATIVE_READ << 4;
522  msg[1] = address >> 8;
523  msg[2] = address & 0xff;
524  msg[3] = recv_bytes - 1;
525 
526  msg_bytes = 4;
527  reply_bytes = recv_bytes + 1;
528 
529  for (;;) {
530  ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
531  reply, reply_bytes);
532  if (ret == 0)
533  return -EPROTO;
534  if (ret < 0)
535  return ret;
536  ack = reply[0];
537  if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
538  memcpy(recv, reply + 1, ret - 1);
539  return ret - 1;
540  }
541  else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
542  udelay(100);
543  else
544  return -EIO;
545  }
546 }
547 
548 static int
549 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
550  uint8_t write_byte, uint8_t *read_byte)
551 {
552  struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
553  struct intel_dp *intel_dp = container_of(adapter,
554  struct intel_dp,
555  adapter);
556  uint16_t address = algo_data->address;
557  uint8_t msg[5];
558  uint8_t reply[2];
559  unsigned retry;
560  int msg_bytes;
561  int reply_bytes;
562  int ret;
563 
564  intel_dp_check_edp(intel_dp);
565  /* Set up the command byte */
566  if (mode & MODE_I2C_READ)
567  msg[0] = AUX_I2C_READ << 4;
568  else
569  msg[0] = AUX_I2C_WRITE << 4;
570 
571  if (!(mode & MODE_I2C_STOP))
572  msg[0] |= AUX_I2C_MOT << 4;
573 
574  msg[1] = address >> 8;
575  msg[2] = address;
576 
577  switch (mode) {
578  case MODE_I2C_WRITE:
579  msg[3] = 0;
580  msg[4] = write_byte;
581  msg_bytes = 5;
582  reply_bytes = 1;
583  break;
584  case MODE_I2C_READ:
585  msg[3] = 0;
586  msg_bytes = 4;
587  reply_bytes = 2;
588  break;
589  default:
590  msg_bytes = 3;
591  reply_bytes = 1;
592  break;
593  }
594 
595  for (retry = 0; retry < 5; retry++) {
596  ret = intel_dp_aux_ch(intel_dp,
597  msg, msg_bytes,
598  reply, reply_bytes);
599  if (ret < 0) {
600  DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
601  return ret;
602  }
603 
604  switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
606  /* I2C-over-AUX Reply field is only valid
607  * when paired with AUX ACK.
608  */
609  break;
611  DRM_DEBUG_KMS("aux_ch native nack\n");
612  return -EREMOTEIO;
614  udelay(100);
615  continue;
616  default:
617  DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
618  reply[0]);
619  return -EREMOTEIO;
620  }
621 
622  switch (reply[0] & AUX_I2C_REPLY_MASK) {
623  case AUX_I2C_REPLY_ACK:
624  if (mode == MODE_I2C_READ) {
625  *read_byte = reply[1];
626  }
627  return reply_bytes - 1;
628  case AUX_I2C_REPLY_NACK:
629  DRM_DEBUG_KMS("aux_i2c nack\n");
630  return -EREMOTEIO;
631  case AUX_I2C_REPLY_DEFER:
632  DRM_DEBUG_KMS("aux_i2c defer\n");
633  udelay(100);
634  break;
635  default:
636  DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
637  return -EREMOTEIO;
638  }
639  }
640 
641  DRM_ERROR("too many retries, giving up\n");
642  return -EREMOTEIO;
643 }
644 
645 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
646 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
647 
648 static int
649 intel_dp_i2c_init(struct intel_dp *intel_dp,
650  struct intel_connector *intel_connector, const char *name)
651 {
652  int ret;
653 
654  DRM_DEBUG_KMS("i2c_init %s\n", name);
655  intel_dp->algo.running = false;
656  intel_dp->algo.address = 0;
657  intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
658 
659  memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
660  intel_dp->adapter.owner = THIS_MODULE;
661  intel_dp->adapter.class = I2C_CLASS_DDC;
662  strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
663  intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
664  intel_dp->adapter.algo_data = &intel_dp->algo;
665  intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
666 
667  ironlake_edp_panel_vdd_on(intel_dp);
668  ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
669  ironlake_edp_panel_vdd_off(intel_dp, false);
670  return ret;
671 }
672 
673 static bool
674 intel_dp_mode_fixup(struct drm_encoder *encoder,
675  const struct drm_display_mode *mode,
676  struct drm_display_mode *adjusted_mode)
677 {
678  struct drm_device *dev = encoder->dev;
679  struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
680  int lane_count, clock;
681  int max_lane_count = intel_dp_max_lane_count(intel_dp);
682  int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
683  int bpp, mode_rate;
684  static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
685 
686  if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
687  intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
689  mode, adjusted_mode);
690  }
691 
692  if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
693  return false;
694 
695  DRM_DEBUG_KMS("DP link computation with max lane count %i "
696  "max bw %02x pixel clock %iKHz\n",
697  max_lane_count, bws[max_clock], adjusted_mode->clock);
698 
699  if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
700  return false;
701 
702  bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
703  mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
704 
705  for (clock = 0; clock <= max_clock; clock++) {
706  for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
707  int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
708 
709  if (mode_rate <= link_avail) {
710  intel_dp->link_bw = bws[clock];
711  intel_dp->lane_count = lane_count;
712  adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
713  DRM_DEBUG_KMS("DP link bw %02x lane "
714  "count %d clock %d bpp %d\n",
715  intel_dp->link_bw, intel_dp->lane_count,
716  adjusted_mode->clock, bpp);
717  DRM_DEBUG_KMS("DP link bw required %i available %i\n",
718  mode_rate, link_avail);
719  return true;
720  }
721  }
722  }
723 
724  return false;
725 }
726 
727 struct intel_dp_m_n {
733 };
734 
735 static void
736 intel_reduce_ratio(uint32_t *num, uint32_t *den)
737 {
738  while (*num > 0xffffff || *den > 0xffffff) {
739  *num >>= 1;
740  *den >>= 1;
741  }
742 }
743 
744 static void
745 intel_dp_compute_m_n(int bpp,
746  int nlanes,
747  int pixel_clock,
748  int link_clock,
749  struct intel_dp_m_n *m_n)
750 {
751  m_n->tu = 64;
752  m_n->gmch_m = (pixel_clock * bpp) >> 3;
753  m_n->gmch_n = link_clock * nlanes;
754  intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
755  m_n->link_m = pixel_clock;
756  m_n->link_n = link_clock;
757  intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
758 }
759 
760 void
762  struct drm_display_mode *adjusted_mode)
763 {
764  struct drm_device *dev = crtc->dev;
765  struct intel_encoder *encoder;
766  struct drm_i915_private *dev_priv = dev->dev_private;
767  struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
768  int lane_count = 4;
769  struct intel_dp_m_n m_n;
770  int pipe = intel_crtc->pipe;
771 
772  /*
773  * Find the lane count in the intel_encoder private
774  */
775  for_each_encoder_on_crtc(dev, crtc, encoder) {
776  struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
777 
778  if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
779  intel_dp->base.type == INTEL_OUTPUT_EDP)
780  {
781  lane_count = intel_dp->lane_count;
782  break;
783  }
784  }
785 
786  /*
787  * Compute the GMCH and Link ratios. The '3' here is
788  * the number of bytes_per_pixel post-LUT, which we always
789  * set up for 8-bits of R/G/B, or 3 bytes total.
790  */
791  intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
792  mode->clock, adjusted_mode->clock, &m_n);
793 
794  if (HAS_PCH_SPLIT(dev)) {
795  I915_WRITE(TRANSDATA_M1(pipe),
796  ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
797  m_n.gmch_m);
798  I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
799  I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
800  I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
801  } else {
803  ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
804  m_n.gmch_m);
805  I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
806  I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
807  I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
808  }
809 }
810 
811 static void
812 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
813  struct drm_display_mode *adjusted_mode)
814 {
815  struct drm_device *dev = encoder->dev;
816  struct drm_i915_private *dev_priv = dev->dev_private;
817  struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
818  struct drm_crtc *crtc = intel_dp->base.base.crtc;
819  struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
820 
821  /*
822  * There are four kinds of DP registers:
823  *
824  * IBX PCH
825  * SNB CPU
826  * IVB CPU
827  * CPT PCH
828  *
829  * IBX PCH and CPU are the same for almost everything,
830  * except that the CPU DP PLL is configured in this
831  * register
832  *
833  * CPT PCH is quite different, having many bits moved
834  * to the TRANS_DP_CTL register instead. That
835  * configuration happens (oddly) in ironlake_pch_enable
836  */
837 
838  /* Preserve the BIOS-computed detected bit. This is
839  * supposed to be read-only.
840  */
841  intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
842 
843  /* Handle DP bits in common between all three register formats */
844  intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
845 
846  switch (intel_dp->lane_count) {
847  case 1:
848  intel_dp->DP |= DP_PORT_WIDTH_1;
849  break;
850  case 2:
851  intel_dp->DP |= DP_PORT_WIDTH_2;
852  break;
853  case 4:
854  intel_dp->DP |= DP_PORT_WIDTH_4;
855  break;
856  }
857  if (intel_dp->has_audio) {
858  DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
859  pipe_name(intel_crtc->pipe));
860  intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
861  intel_write_eld(encoder, adjusted_mode);
862  }
864  intel_dp->link_configuration[0] = intel_dp->link_bw;
865  intel_dp->link_configuration[1] = intel_dp->lane_count;
866  intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
867  /*
868  * Check for DPCD version > 1.1 and enhanced framing support
869  */
870  if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
873  }
874 
875  /* Split out the IBX/CPU vs CPT settings */
876 
877  if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
878  if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
879  intel_dp->DP |= DP_SYNC_HS_HIGH;
880  if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
881  intel_dp->DP |= DP_SYNC_VS_HIGH;
882  intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
883 
885  intel_dp->DP |= DP_ENHANCED_FRAMING;
886 
887  intel_dp->DP |= intel_crtc->pipe << 29;
888 
889  /* don't miss out required setting for eDP */
890  if (adjusted_mode->clock < 200000)
891  intel_dp->DP |= DP_PLL_FREQ_160MHZ;
892  else
893  intel_dp->DP |= DP_PLL_FREQ_270MHZ;
894  } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
895  intel_dp->DP |= intel_dp->color_range;
896 
897  if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
898  intel_dp->DP |= DP_SYNC_HS_HIGH;
899  if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
900  intel_dp->DP |= DP_SYNC_VS_HIGH;
901  intel_dp->DP |= DP_LINK_TRAIN_OFF;
902 
904  intel_dp->DP |= DP_ENHANCED_FRAMING;
905 
906  if (intel_crtc->pipe == 1)
907  intel_dp->DP |= DP_PIPEB_SELECT;
908 
909  if (is_cpu_edp(intel_dp)) {
910  /* don't miss out required setting for eDP */
911  if (adjusted_mode->clock < 200000)
912  intel_dp->DP |= DP_PLL_FREQ_160MHZ;
913  else
914  intel_dp->DP |= DP_PLL_FREQ_270MHZ;
915  }
916  } else {
917  intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
918  }
919 }
920 
921 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
922 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
923 
924 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
925 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
926 
927 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
928 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
929 
930 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
931  u32 mask,
932  u32 value)
933 {
934  struct drm_device *dev = intel_dp->base.base.dev;
935  struct drm_i915_private *dev_priv = dev->dev_private;
936 
937  DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
938  mask, value,
941 
942  if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
943  DRM_ERROR("Panel status timeout: status %08x control %08x\n",
946  }
947 }
948 
949 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
950 {
951  DRM_DEBUG_KMS("Wait for panel power on\n");
952  ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
953 }
954 
955 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
956 {
957  DRM_DEBUG_KMS("Wait for panel power off time\n");
958  ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
959 }
960 
961 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
962 {
963  DRM_DEBUG_KMS("Wait for panel power cycle\n");
964  ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
965 }
966 
967 
968 /* Read the current pp_control value, unlocking the register if it
969  * is locked
970  */
971 
972 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
973 {
975 
976  control &= ~PANEL_UNLOCK_MASK;
977  control |= PANEL_UNLOCK_REGS;
978  return control;
979 }
980 
981 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
982 {
983  struct drm_device *dev = intel_dp->base.base.dev;
984  struct drm_i915_private *dev_priv = dev->dev_private;
985  u32 pp;
986 
987  if (!is_edp(intel_dp))
988  return;
989  DRM_DEBUG_KMS("Turn eDP VDD on\n");
990 
991  WARN(intel_dp->want_panel_vdd,
992  "eDP VDD already requested on\n");
993 
994  intel_dp->want_panel_vdd = true;
995 
996  if (ironlake_edp_have_panel_vdd(intel_dp)) {
997  DRM_DEBUG_KMS("eDP VDD already on\n");
998  return;
999  }
1000 
1001  if (!ironlake_edp_have_panel_power(intel_dp))
1002  ironlake_wait_panel_power_cycle(intel_dp);
1003 
1004  pp = ironlake_get_pp_control(dev_priv);
1005  pp |= EDP_FORCE_VDD;
1008  DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1010 
1011  /*
1012  * If the panel wasn't on, delay before accessing aux channel
1013  */
1014  if (!ironlake_edp_have_panel_power(intel_dp)) {
1015  DRM_DEBUG_KMS("eDP was not running\n");
1016  msleep(intel_dp->panel_power_up_delay);
1017  }
1018 }
1019 
1020 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1021 {
1022  struct drm_device *dev = intel_dp->base.base.dev;
1023  struct drm_i915_private *dev_priv = dev->dev_private;
1024  u32 pp;
1025 
1026  if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1027  pp = ironlake_get_pp_control(dev_priv);
1028  pp &= ~EDP_FORCE_VDD;
1031 
1032  /* Make sure sequencer is idle before allowing subsequent activity */
1033  DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1035 
1036  msleep(intel_dp->panel_power_down_delay);
1037  }
1038 }
1039 
1040 static void ironlake_panel_vdd_work(struct work_struct *__work)
1041 {
1042  struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1043  struct intel_dp, panel_vdd_work);
1044  struct drm_device *dev = intel_dp->base.base.dev;
1045 
1046  mutex_lock(&dev->mode_config.mutex);
1047  ironlake_panel_vdd_off_sync(intel_dp);
1048  mutex_unlock(&dev->mode_config.mutex);
1049 }
1050 
1051 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1052 {
1053  if (!is_edp(intel_dp))
1054  return;
1055 
1056  DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1057  WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1058 
1059  intel_dp->want_panel_vdd = false;
1060 
1061  if (sync) {
1062  ironlake_panel_vdd_off_sync(intel_dp);
1063  } else {
1064  /*
1065  * Queue the timer to fire a long
1066  * time from now (relative to the power down delay)
1067  * to keep the panel power up across a sequence of operations
1068  */
1070  msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1071  }
1072 }
1073 
1074 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1075 {
1076  struct drm_device *dev = intel_dp->base.base.dev;
1077  struct drm_i915_private *dev_priv = dev->dev_private;
1078  u32 pp;
1079 
1080  if (!is_edp(intel_dp))
1081  return;
1082 
1083  DRM_DEBUG_KMS("Turn eDP power on\n");
1084 
1085  if (ironlake_edp_have_panel_power(intel_dp)) {
1086  DRM_DEBUG_KMS("eDP power already on\n");
1087  return;
1088  }
1089 
1090  ironlake_wait_panel_power_cycle(intel_dp);
1091 
1092  pp = ironlake_get_pp_control(dev_priv);
1093  if (IS_GEN5(dev)) {
1094  /* ILK workaround: disable reset around power sequence */
1095  pp &= ~PANEL_POWER_RESET;
1098  }
1099 
1100  pp |= POWER_TARGET_ON;
1101  if (!IS_GEN5(dev))
1102  pp |= PANEL_POWER_RESET;
1103 
1106 
1107  ironlake_wait_panel_on(intel_dp);
1108 
1109  if (IS_GEN5(dev)) {
1110  pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1113  }
1114 }
1115 
1116 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1117 {
1118  struct drm_device *dev = intel_dp->base.base.dev;
1119  struct drm_i915_private *dev_priv = dev->dev_private;
1120  u32 pp;
1121 
1122  if (!is_edp(intel_dp))
1123  return;
1124 
1125  DRM_DEBUG_KMS("Turn eDP power off\n");
1126 
1127  WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1128 
1129  pp = ironlake_get_pp_control(dev_priv);
1130  /* We need to switch off panel power _and_ force vdd, for otherwise some
1131  * panels get very unhappy and cease to work. */
1135 
1136  intel_dp->want_panel_vdd = false;
1137 
1138  ironlake_wait_panel_off(intel_dp);
1139 }
1140 
1141 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1142 {
1143  struct drm_device *dev = intel_dp->base.base.dev;
1144  struct drm_i915_private *dev_priv = dev->dev_private;
1145  u32 pp;
1146 
1147  if (!is_edp(intel_dp))
1148  return;
1149 
1150  DRM_DEBUG_KMS("\n");
1151  /*
1152  * If we enable the backlight right away following a panel power
1153  * on, we may see slight flicker as the panel syncs with the eDP
1154  * link. So delay a bit to make sure the image is solid before
1155  * allowing it to appear.
1156  */
1157  msleep(intel_dp->backlight_on_delay);
1158  pp = ironlake_get_pp_control(dev_priv);
1159  pp |= EDP_BLC_ENABLE;
1162 }
1163 
1164 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1165 {
1166  struct drm_device *dev = intel_dp->base.base.dev;
1167  struct drm_i915_private *dev_priv = dev->dev_private;
1168  u32 pp;
1169 
1170  if (!is_edp(intel_dp))
1171  return;
1172 
1173  DRM_DEBUG_KMS("\n");
1174  pp = ironlake_get_pp_control(dev_priv);
1175  pp &= ~EDP_BLC_ENABLE;
1178  msleep(intel_dp->backlight_off_delay);
1179 }
1180 
1181 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1182 {
1183  struct drm_device *dev = intel_dp->base.base.dev;
1184  struct drm_crtc *crtc = intel_dp->base.base.crtc;
1185  struct drm_i915_private *dev_priv = dev->dev_private;
1186  u32 dpa_ctl;
1187 
1188  assert_pipe_disabled(dev_priv,
1189  to_intel_crtc(crtc)->pipe);
1190 
1191  DRM_DEBUG_KMS("\n");
1192  dpa_ctl = I915_READ(DP_A);
1193  WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1194  WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1195 
1196  /* We don't adjust intel_dp->DP while tearing down the link, to
1197  * facilitate link retraining (e.g. after hotplug). Hence clear all
1198  * enable bits here to ensure that we don't enable too much. */
1199  intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1200  intel_dp->DP |= DP_PLL_ENABLE;
1201  I915_WRITE(DP_A, intel_dp->DP);
1202  POSTING_READ(DP_A);
1203  udelay(200);
1204 }
1205 
1206 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1207 {
1208  struct drm_device *dev = intel_dp->base.base.dev;
1209  struct drm_crtc *crtc = intel_dp->base.base.crtc;
1210  struct drm_i915_private *dev_priv = dev->dev_private;
1211  u32 dpa_ctl;
1212 
1213  assert_pipe_disabled(dev_priv,
1214  to_intel_crtc(crtc)->pipe);
1215 
1216  dpa_ctl = I915_READ(DP_A);
1217  WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1218  "dp pll off, should be on\n");
1219  WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1220 
1221  /* We can't rely on the value tracked for the DP register in
1222  * intel_dp->DP because link_down must not change that (otherwise link
1223  * re-training will fail. */
1224  dpa_ctl &= ~DP_PLL_ENABLE;
1225  I915_WRITE(DP_A, dpa_ctl);
1226  POSTING_READ(DP_A);
1227  udelay(200);
1228 }
1229 
1230 /* If the sink supports it, try to set the power state appropriately */
1231 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1232 {
1233  int ret, i;
1234 
1235  /* Should have a valid DPCD by this point */
1236  if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1237  return;
1238 
1239  if (mode != DRM_MODE_DPMS_ON) {
1240  ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1241  DP_SET_POWER_D3);
1242  if (ret != 1)
1243  DRM_DEBUG_DRIVER("failed to write sink power state\n");
1244  } else {
1245  /*
1246  * When turning on, we need to retry for 1ms to give the sink
1247  * time to wake up.
1248  */
1249  for (i = 0; i < 3; i++) {
1250  ret = intel_dp_aux_native_write_1(intel_dp,
1251  DP_SET_POWER,
1252  DP_SET_POWER_D0);
1253  if (ret == 1)
1254  break;
1255  msleep(1);
1256  }
1257  }
1258 }
1259 
1260 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1261  enum pipe *pipe)
1262 {
1263  struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1264  struct drm_device *dev = encoder->base.dev;
1265  struct drm_i915_private *dev_priv = dev->dev_private;
1266  u32 tmp = I915_READ(intel_dp->output_reg);
1267 
1268  if (!(tmp & DP_PORT_EN))
1269  return false;
1270 
1271  if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1272  *pipe = PORT_TO_PIPE_CPT(tmp);
1273  } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1274  *pipe = PORT_TO_PIPE(tmp);
1275  } else {
1276  u32 trans_sel;
1277  u32 trans_dp;
1278  int i;
1279 
1280  switch (intel_dp->output_reg) {
1281  case PCH_DP_B:
1282  trans_sel = TRANS_DP_PORT_SEL_B;
1283  break;
1284  case PCH_DP_C:
1285  trans_sel = TRANS_DP_PORT_SEL_C;
1286  break;
1287  case PCH_DP_D:
1288  trans_sel = TRANS_DP_PORT_SEL_D;
1289  break;
1290  default:
1291  return true;
1292  }
1293 
1294  for_each_pipe(i) {
1295  trans_dp = I915_READ(TRANS_DP_CTL(i));
1296  if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1297  *pipe = i;
1298  return true;
1299  }
1300  }
1301  }
1302 
1303  DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1304 
1305  return true;
1306 }
1307 
1308 static void intel_disable_dp(struct intel_encoder *encoder)
1309 {
1310  struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1311 
1312  /* Make sure the panel is off before trying to change the mode. But also
1313  * ensure that we have vdd while we switch off the panel. */
1314  ironlake_edp_panel_vdd_on(intel_dp);
1315  ironlake_edp_backlight_off(intel_dp);
1316  intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1317  ironlake_edp_panel_off(intel_dp);
1318 
1319  /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1320  if (!is_cpu_edp(intel_dp))
1321  intel_dp_link_down(intel_dp);
1322 }
1323 
1324 static void intel_post_disable_dp(struct intel_encoder *encoder)
1325 {
1326  struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1327 
1328  if (is_cpu_edp(intel_dp)) {
1329  intel_dp_link_down(intel_dp);
1330  ironlake_edp_pll_off(intel_dp);
1331  }
1332 }
1333 
1334 static void intel_enable_dp(struct intel_encoder *encoder)
1335 {
1336  struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1337  struct drm_device *dev = encoder->base.dev;
1338  struct drm_i915_private *dev_priv = dev->dev_private;
1339  uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1340 
1341  if (WARN_ON(dp_reg & DP_PORT_EN))
1342  return;
1343 
1344  ironlake_edp_panel_vdd_on(intel_dp);
1345  intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1346  intel_dp_start_link_train(intel_dp);
1347  ironlake_edp_panel_on(intel_dp);
1348  ironlake_edp_panel_vdd_off(intel_dp, true);
1349  intel_dp_complete_link_train(intel_dp);
1350  ironlake_edp_backlight_on(intel_dp);
1351 }
1352 
1353 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1354 {
1355  struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1356 
1357  if (is_cpu_edp(intel_dp))
1358  ironlake_edp_pll_on(intel_dp);
1359 }
1360 
1361 /*
1362  * Native read with retry for link status and receiver capability reads for
1363  * cases where the sink may still be asleep.
1364  */
1365 static bool
1366 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1367  uint8_t *recv, int recv_bytes)
1368 {
1369  int ret, i;
1370 
1371  /*
1372  * Sinks are *supposed* to come up within 1ms from an off state,
1373  * but we're also supposed to retry 3 times per the spec.
1374  */
1375  for (i = 0; i < 3; i++) {
1376  ret = intel_dp_aux_native_read(intel_dp, address, recv,
1377  recv_bytes);
1378  if (ret == recv_bytes)
1379  return true;
1380  msleep(1);
1381  }
1382 
1383  return false;
1384 }
1385 
1386 /*
1387  * Fetch AUX CH registers 0x202 - 0x207 which contain
1388  * link status information
1389  */
1390 static bool
1391 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1392 {
1393  return intel_dp_aux_native_read_retry(intel_dp,
1395  link_status,
1396  DP_LINK_STATUS_SIZE);
1397 }
1398 
1399 static uint8_t
1400 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1401  int r)
1402 {
1403  return link_status[r - DP_LANE0_1_STATUS];
1404 }
1405 
1406 static uint8_t
1407 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1408  int lane)
1409 {
1410  int s = ((lane & 1) ?
1413  uint8_t l = adjust_request[lane>>1];
1414 
1415  return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1416 }
1417 
1418 static uint8_t
1419 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1420  int lane)
1421 {
1422  int s = ((lane & 1) ?
1425  uint8_t l = adjust_request[lane>>1];
1426 
1427  return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1428 }
1429 
1430 
1431 #if 0
1432 static char *voltage_names[] = {
1433  "0.4V", "0.6V", "0.8V", "1.2V"
1434 };
1435 static char *pre_emph_names[] = {
1436  "0dB", "3.5dB", "6dB", "9.5dB"
1437 };
1438 static char *link_train_names[] = {
1439  "pattern 1", "pattern 2", "idle", "off"
1440 };
1441 #endif
1442 
1443 /*
1444  * These are source-specific values; current Intel hardware supports
1445  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1446  */
1447 
1448 static uint8_t
1449 intel_dp_voltage_max(struct intel_dp *intel_dp)
1450 {
1451  struct drm_device *dev = intel_dp->base.base.dev;
1452 
1453  if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1455  else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1457  else
1459 }
1460 
1461 static uint8_t
1462 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1463 {
1464  struct drm_device *dev = intel_dp->base.base.dev;
1465 
1466  if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1467  switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1469  return DP_TRAIN_PRE_EMPHASIS_6;
1473  default:
1474  return DP_TRAIN_PRE_EMPHASIS_0;
1475  }
1476  } else {
1477  switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1479  return DP_TRAIN_PRE_EMPHASIS_6;
1481  return DP_TRAIN_PRE_EMPHASIS_6;
1485  default:
1486  return DP_TRAIN_PRE_EMPHASIS_0;
1487  }
1488  }
1489 }
1490 
1491 static void
1492 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1493 {
1494  uint8_t v = 0;
1495  uint8_t p = 0;
1496  int lane;
1498  uint8_t voltage_max;
1499  uint8_t preemph_max;
1500 
1501  for (lane = 0; lane < intel_dp->lane_count; lane++) {
1502  uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1503  uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1504 
1505  if (this_v > v)
1506  v = this_v;
1507  if (this_p > p)
1508  p = this_p;
1509  }
1510 
1511  voltage_max = intel_dp_voltage_max(intel_dp);
1512  if (v >= voltage_max)
1513  v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1514 
1515  preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1516  if (p >= preemph_max)
1517  p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1518 
1519  for (lane = 0; lane < 4; lane++)
1520  intel_dp->train_set[lane] = v | p;
1521 }
1522 
1523 static uint32_t
1524 intel_dp_signal_levels(uint8_t train_set)
1525 {
1526  uint32_t signal_levels = 0;
1527 
1528  switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1530  default:
1531  signal_levels |= DP_VOLTAGE_0_4;
1532  break;
1534  signal_levels |= DP_VOLTAGE_0_6;
1535  break;
1537  signal_levels |= DP_VOLTAGE_0_8;
1538  break;
1540  signal_levels |= DP_VOLTAGE_1_2;
1541  break;
1542  }
1543  switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1545  default:
1546  signal_levels |= DP_PRE_EMPHASIS_0;
1547  break;
1549  signal_levels |= DP_PRE_EMPHASIS_3_5;
1550  break;
1552  signal_levels |= DP_PRE_EMPHASIS_6;
1553  break;
1555  signal_levels |= DP_PRE_EMPHASIS_9_5;
1556  break;
1557  }
1558  return signal_levels;
1559 }
1560 
1561 /* Gen6's DP voltage swing and pre-emphasis control */
1562 static uint32_t
1563 intel_gen6_edp_signal_levels(uint8_t train_set)
1564 {
1565  int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1567  switch (signal_levels) {
1582  default:
1583  DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1584  "0x%x\n", signal_levels);
1586  }
1587 }
1588 
1589 /* Gen7's DP voltage swing and pre-emphasis control */
1590 static uint32_t
1591 intel_gen7_edp_signal_levels(uint8_t train_set)
1592 {
1593  int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1595  switch (signal_levels) {
1602 
1607 
1612 
1613  default:
1614  DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1615  "0x%x\n", signal_levels);
1617  }
1618 }
1619 
1620 static uint8_t
1621 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1622  int lane)
1623 {
1624  int s = (lane & 1) * 4;
1625  uint8_t l = link_status[lane>>1];
1626 
1627  return (l >> s) & 0xf;
1628 }
1629 
1630 /* Check for clock recovery is done on all channels */
1631 static bool
1632 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1633 {
1634  int lane;
1635  uint8_t lane_status;
1636 
1637  for (lane = 0; lane < lane_count; lane++) {
1638  lane_status = intel_get_lane_status(link_status, lane);
1639  if ((lane_status & DP_LANE_CR_DONE) == 0)
1640  return false;
1641  }
1642  return true;
1643 }
1644 
1645 /* Check to see if channel eq is done on all channels */
1646 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1647  DP_LANE_CHANNEL_EQ_DONE|\
1648  DP_LANE_SYMBOL_LOCKED)
1649 static bool
1650 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1651 {
1652  uint8_t lane_align;
1653  uint8_t lane_status;
1654  int lane;
1655 
1656  lane_align = intel_dp_link_status(link_status,
1658  if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1659  return false;
1660  for (lane = 0; lane < intel_dp->lane_count; lane++) {
1661  lane_status = intel_get_lane_status(link_status, lane);
1662  if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1663  return false;
1664  }
1665  return true;
1666 }
1667 
1668 static bool
1669 intel_dp_set_link_train(struct intel_dp *intel_dp,
1670  uint32_t dp_reg_value,
1671  uint8_t dp_train_pat)
1672 {
1673  struct drm_device *dev = intel_dp->base.base.dev;
1674  struct drm_i915_private *dev_priv = dev->dev_private;
1675  int ret;
1676 
1677  if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1678  dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1679 
1680  switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1682  dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1683  break;
1684  case DP_TRAINING_PATTERN_1:
1685  dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1686  break;
1687  case DP_TRAINING_PATTERN_2:
1688  dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1689  break;
1690  case DP_TRAINING_PATTERN_3:
1691  DRM_ERROR("DP training pattern 3 not supported\n");
1692  dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1693  break;
1694  }
1695 
1696  } else {
1697  dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1698 
1699  switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1701  dp_reg_value |= DP_LINK_TRAIN_OFF;
1702  break;
1703  case DP_TRAINING_PATTERN_1:
1704  dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1705  break;
1706  case DP_TRAINING_PATTERN_2:
1707  dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1708  break;
1709  case DP_TRAINING_PATTERN_3:
1710  DRM_ERROR("DP training pattern 3 not supported\n");
1711  dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1712  break;
1713  }
1714  }
1715 
1716  I915_WRITE(intel_dp->output_reg, dp_reg_value);
1717  POSTING_READ(intel_dp->output_reg);
1718 
1719  intel_dp_aux_native_write_1(intel_dp,
1721  dp_train_pat);
1722 
1723  if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1725  ret = intel_dp_aux_native_write(intel_dp,
1727  intel_dp->train_set,
1728  intel_dp->lane_count);
1729  if (ret != intel_dp->lane_count)
1730  return false;
1731  }
1732 
1733  return true;
1734 }
1735 
1736 /* Enable corresponding port and start training pattern 1 */
1737 static void
1738 intel_dp_start_link_train(struct intel_dp *intel_dp)
1739 {
1740  struct drm_device *dev = intel_dp->base.base.dev;
1741  int i;
1742  uint8_t voltage;
1743  bool clock_recovery = false;
1744  int voltage_tries, loop_tries;
1745  uint32_t DP = intel_dp->DP;
1746 
1747  /* Write the link configuration data */
1748  intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1749  intel_dp->link_configuration,
1751 
1752  DP |= DP_PORT_EN;
1753 
1754  memset(intel_dp->train_set, 0, 4);
1755  voltage = 0xff;
1756  voltage_tries = 0;
1757  loop_tries = 0;
1758  clock_recovery = false;
1759  for (;;) {
1760  /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1762  uint32_t signal_levels;
1763 
1764 
1765  if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1766  signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1767  DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1768  } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1769  signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1770  DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1771  } else {
1772  signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1773  DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1774  DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1775  }
1776 
1777  if (!intel_dp_set_link_train(intel_dp, DP,
1780  break;
1781  /* Set training pattern 1 */
1782 
1783  udelay(100);
1784  if (!intel_dp_get_link_status(intel_dp, link_status)) {
1785  DRM_ERROR("failed to get link status\n");
1786  break;
1787  }
1788 
1789  if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1790  DRM_DEBUG_KMS("clock recovery OK\n");
1791  clock_recovery = true;
1792  break;
1793  }
1794 
1795  /* Check to see if we've tried the max voltage */
1796  for (i = 0; i < intel_dp->lane_count; i++)
1797  if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1798  break;
1799  if (i == intel_dp->lane_count && voltage_tries == 5) {
1800  ++loop_tries;
1801  if (loop_tries == 5) {
1802  DRM_DEBUG_KMS("too many full retries, give up\n");
1803  break;
1804  }
1805  memset(intel_dp->train_set, 0, 4);
1806  voltage_tries = 0;
1807  continue;
1808  }
1809 
1810  /* Check to see if we've tried the same voltage 5 times */
1811  if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1812  ++voltage_tries;
1813  if (voltage_tries == 5) {
1814  DRM_DEBUG_KMS("too many voltage retries, give up\n");
1815  break;
1816  }
1817  } else
1818  voltage_tries = 0;
1819  voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1820 
1821  /* Compute new intel_dp->train_set as requested by target */
1822  intel_get_adjust_train(intel_dp, link_status);
1823  }
1824 
1825  intel_dp->DP = DP;
1826 }
1827 
1828 static void
1829 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1830 {
1831  struct drm_device *dev = intel_dp->base.base.dev;
1832  bool channel_eq = false;
1833  int tries, cr_tries;
1834  uint32_t DP = intel_dp->DP;
1835 
1836  /* channel equalization */
1837  tries = 0;
1838  cr_tries = 0;
1839  channel_eq = false;
1840  for (;;) {
1841  /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1842  uint32_t signal_levels;
1843  uint8_t link_status[DP_LINK_STATUS_SIZE];
1844 
1845  if (cr_tries > 5) {
1846  DRM_ERROR("failed to train DP, aborting\n");
1847  intel_dp_link_down(intel_dp);
1848  break;
1849  }
1850 
1851  if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1852  signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1853  DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1854  } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1855  signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1856  DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1857  } else {
1858  signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1859  DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1860  }
1861 
1862  /* channel eq pattern */
1863  if (!intel_dp_set_link_train(intel_dp, DP,
1866  break;
1867 
1868  udelay(400);
1869  if (!intel_dp_get_link_status(intel_dp, link_status))
1870  break;
1871 
1872  /* Make sure clock is still ok */
1873  if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1874  intel_dp_start_link_train(intel_dp);
1875  cr_tries++;
1876  continue;
1877  }
1878 
1879  if (intel_channel_eq_ok(intel_dp, link_status)) {
1880  channel_eq = true;
1881  break;
1882  }
1883 
1884  /* Try 5 times, then try clock recovery if that fails */
1885  if (tries > 5) {
1886  intel_dp_link_down(intel_dp);
1887  intel_dp_start_link_train(intel_dp);
1888  tries = 0;
1889  cr_tries++;
1890  continue;
1891  }
1892 
1893  /* Compute new intel_dp->train_set as requested by target */
1894  intel_get_adjust_train(intel_dp, link_status);
1895  ++tries;
1896  }
1897 
1898  intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1899 }
1900 
1901 static void
1902 intel_dp_link_down(struct intel_dp *intel_dp)
1903 {
1904  struct drm_device *dev = intel_dp->base.base.dev;
1905  struct drm_i915_private *dev_priv = dev->dev_private;
1906  uint32_t DP = intel_dp->DP;
1907 
1908  if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1909  return;
1910 
1911  DRM_DEBUG_KMS("\n");
1912 
1913  if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1914  DP &= ~DP_LINK_TRAIN_MASK_CPT;
1916  } else {
1917  DP &= ~DP_LINK_TRAIN_MASK;
1918  I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1919  }
1920  POSTING_READ(intel_dp->output_reg);
1921 
1922  msleep(17);
1923 
1924  if (HAS_PCH_IBX(dev) &&
1925  I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1926  struct drm_crtc *crtc = intel_dp->base.base.crtc;
1927 
1928  /* Hardware workaround: leaving our transcoder select
1929  * set to transcoder B while it's off will prevent the
1930  * corresponding HDMI output on transcoder A.
1931  *
1932  * Combine this with another hardware workaround:
1933  * transcoder select bit can only be cleared while the
1934  * port is enabled.
1935  */
1936  DP &= ~DP_PIPEB_SELECT;
1937  I915_WRITE(intel_dp->output_reg, DP);
1938 
1939  /* Changes to enable or select take place the vblank
1940  * after being written.
1941  */
1942  if (crtc == NULL) {
1943  /* We can arrive here never having been attached
1944  * to a CRTC, for instance, due to inheriting
1945  * random state from the BIOS.
1946  *
1947  * If the pipe is not running, play safe and
1948  * wait for the clocks to stabilise before
1949  * continuing.
1950  */
1951  POSTING_READ(intel_dp->output_reg);
1952  msleep(50);
1953  } else
1954  intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1955  }
1956 
1957  DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1958  I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1959  POSTING_READ(intel_dp->output_reg);
1960  msleep(intel_dp->panel_power_down_delay);
1961 }
1962 
1963 static bool
1964 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1965 {
1966  if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1967  sizeof(intel_dp->dpcd)) == 0)
1968  return false; /* aux transfer failed */
1969 
1970  if (intel_dp->dpcd[DP_DPCD_REV] == 0)
1971  return false; /* DPCD not present */
1972 
1973  if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1975  return true; /* native DP sink */
1976 
1977  if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
1978  return true; /* no per-port downstream info */
1979 
1980  if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
1981  intel_dp->downstream_ports,
1983  return false; /* downstream port status fetch failed */
1984 
1985  return true;
1986 }
1987 
1988 static void
1989 intel_dp_probe_oui(struct intel_dp *intel_dp)
1990 {
1991  u8 buf[3];
1992 
1993  if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1994  return;
1995 
1996  ironlake_edp_panel_vdd_on(intel_dp);
1997 
1998  if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1999  DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2000  buf[0], buf[1], buf[2]);
2001 
2002  if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2003  DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2004  buf[0], buf[1], buf[2]);
2005 
2006  ironlake_edp_panel_vdd_off(intel_dp, false);
2007 }
2008 
2009 static bool
2010 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2011 {
2012  int ret;
2013 
2014  ret = intel_dp_aux_native_read_retry(intel_dp,
2016  sink_irq_vector, 1);
2017  if (!ret)
2018  return false;
2019 
2020  return true;
2021 }
2022 
2023 static void
2024 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2025 {
2026  /* NAK by default */
2027  intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2028 }
2029 
2030 /*
2031  * According to DP spec
2032  * 5.1.2:
2033  * 1. Read DPCD
2034  * 2. Configure link according to Receiver Capabilities
2035  * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2036  * 4. Check link status on receipt of hot-plug interrupt
2037  */
2038 
2039 static void
2040 intel_dp_check_link_status(struct intel_dp *intel_dp)
2041 {
2042  u8 sink_irq_vector;
2043  u8 link_status[DP_LINK_STATUS_SIZE];
2044 
2045  if (!intel_dp->base.connectors_active)
2046  return;
2047 
2048  if (WARN_ON(!intel_dp->base.base.crtc))
2049  return;
2050 
2051  /* Try to read receiver status if the link appears to be up */
2052  if (!intel_dp_get_link_status(intel_dp, link_status)) {
2053  intel_dp_link_down(intel_dp);
2054  return;
2055  }
2056 
2057  /* Now read the DPCD to see if it's actually running */
2058  if (!intel_dp_get_dpcd(intel_dp)) {
2059  intel_dp_link_down(intel_dp);
2060  return;
2061  }
2062 
2063  /* Try to read the source of the interrupt */
2064  if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2065  intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2066  /* Clear interrupt source */
2067  intel_dp_aux_native_write_1(intel_dp,
2069  sink_irq_vector);
2070 
2071  if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2072  intel_dp_handle_test_request(intel_dp);
2073  if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2074  DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2075  }
2076 
2077  if (!intel_channel_eq_ok(intel_dp, link_status)) {
2078  DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2079  drm_get_encoder_name(&intel_dp->base.base));
2080  intel_dp_start_link_train(intel_dp);
2081  intel_dp_complete_link_train(intel_dp);
2082  }
2083 }
2084 
2085 /* XXX this is probably wrong for multiple downstream ports */
2086 static enum drm_connector_status
2087 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2088 {
2089  uint8_t *dpcd = intel_dp->dpcd;
2090  bool hpd;
2091  uint8_t type;
2092 
2093  if (!intel_dp_get_dpcd(intel_dp))
2095 
2096  /* if there's no downstream port, we're done */
2097  if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2099 
2100  /* If we're HPD-aware, SINK_COUNT changes dynamically */
2101  hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2102  if (hpd) {
2103  uint8_t reg;
2104  if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2105  &reg, 1))
2106  return connector_status_unknown;
2109  }
2110 
2111  /* If no HPD, poke DDC gently */
2112  if (drm_probe_ddc(&intel_dp->adapter))
2114 
2115  /* Well we tried, say unknown for unreliable port types */
2116  type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2117  if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2118  return connector_status_unknown;
2119 
2120  /* Anything else is out of spec, warn and ignore */
2121  DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2123 }
2124 
2125 static enum drm_connector_status
2126 ironlake_dp_detect(struct intel_dp *intel_dp)
2127 {
2129 
2130  /* Can't disconnect eDP, but you can close the lid... */
2131  if (is_edp(intel_dp)) {
2132  status = intel_panel_detect(intel_dp->base.base.dev);
2133  if (status == connector_status_unknown)
2134  status = connector_status_connected;
2135  return status;
2136  }
2137 
2138  return intel_dp_detect_dpcd(intel_dp);
2139 }
2140 
2141 static enum drm_connector_status
2142 g4x_dp_detect(struct intel_dp *intel_dp)
2143 {
2144  struct drm_device *dev = intel_dp->base.base.dev;
2145  struct drm_i915_private *dev_priv = dev->dev_private;
2146  uint32_t bit;
2147 
2148  switch (intel_dp->output_reg) {
2149  case DP_B:
2151  break;
2152  case DP_C:
2154  break;
2155  case DP_D:
2157  break;
2158  default:
2159  return connector_status_unknown;
2160  }
2161 
2162  if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2164 
2165  return intel_dp_detect_dpcd(intel_dp);
2166 }
2167 
2168 static struct edid *
2169 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2170 {
2171  struct intel_dp *intel_dp = intel_attached_dp(connector);
2172  struct edid *edid;
2173  int size;
2174 
2175  if (is_edp(intel_dp)) {
2176  if (!intel_dp->edid)
2177  return NULL;
2178 
2179  size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2180  edid = kmalloc(size, GFP_KERNEL);
2181  if (!edid)
2182  return NULL;
2183 
2184  memcpy(edid, intel_dp->edid, size);
2185  return edid;
2186  }
2187 
2188  edid = drm_get_edid(connector, adapter);
2189  return edid;
2190 }
2191 
2192 static int
2193 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2194 {
2195  struct intel_dp *intel_dp = intel_attached_dp(connector);
2196  int ret;
2197 
2198  if (is_edp(intel_dp)) {
2200  intel_dp->edid);
2201  ret = drm_add_edid_modes(connector, intel_dp->edid);
2202  drm_edid_to_eld(connector,
2203  intel_dp->edid);
2204  return intel_dp->edid_mode_count;
2205  }
2206 
2207  ret = intel_ddc_get_modes(connector, adapter);
2208  return ret;
2209 }
2210 
2211 
2218 static enum drm_connector_status
2219 intel_dp_detect(struct drm_connector *connector, bool force)
2220 {
2221  struct intel_dp *intel_dp = intel_attached_dp(connector);
2222  struct drm_device *dev = intel_dp->base.base.dev;
2224  struct edid *edid = NULL;
2225 
2226  intel_dp->has_audio = false;
2227 
2228  if (HAS_PCH_SPLIT(dev))
2229  status = ironlake_dp_detect(intel_dp);
2230  else
2231  status = g4x_dp_detect(intel_dp);
2232 
2233  DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2234  intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2235  intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2236  intel_dp->dpcd[6], intel_dp->dpcd[7]);
2237 
2238  if (status != connector_status_connected)
2239  return status;
2240 
2241  intel_dp_probe_oui(intel_dp);
2242 
2243  if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2244  intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2245  } else {
2246  edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2247  if (edid) {
2248  intel_dp->has_audio = drm_detect_monitor_audio(edid);
2249  kfree(edid);
2250  }
2251  }
2252 
2254 }
2255 
2256 static int intel_dp_get_modes(struct drm_connector *connector)
2257 {
2258  struct intel_dp *intel_dp = intel_attached_dp(connector);
2259  struct drm_device *dev = intel_dp->base.base.dev;
2260  struct drm_i915_private *dev_priv = dev->dev_private;
2261  int ret;
2262 
2263  /* We should parse the EDID data and find out if it has an audio sink
2264  */
2265 
2266  ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2267  if (ret) {
2268  if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2269  struct drm_display_mode *newmode;
2270  list_for_each_entry(newmode, &connector->probed_modes,
2271  head) {
2272  if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2273  intel_dp->panel_fixed_mode =
2274  drm_mode_duplicate(dev, newmode);
2275  break;
2276  }
2277  }
2278  }
2279  return ret;
2280  }
2281 
2282  /* if eDP has no EDID, try to use fixed panel mode from VBT */
2283  if (is_edp(intel_dp)) {
2284  /* initialize panel mode from VBT if available for eDP */
2285  if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2286  intel_dp->panel_fixed_mode =
2287  drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2288  if (intel_dp->panel_fixed_mode) {
2289  intel_dp->panel_fixed_mode->type |=
2291  }
2292  }
2293  if (intel_dp->panel_fixed_mode) {
2294  struct drm_display_mode *mode;
2295  mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2296  drm_mode_probed_add(connector, mode);
2297  return 1;
2298  }
2299  }
2300  return 0;
2301 }
2302 
2303 static bool
2304 intel_dp_detect_audio(struct drm_connector *connector)
2305 {
2306  struct intel_dp *intel_dp = intel_attached_dp(connector);
2307  struct edid *edid;
2308  bool has_audio = false;
2309 
2310  edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2311  if (edid) {
2312  has_audio = drm_detect_monitor_audio(edid);
2313  kfree(edid);
2314  }
2315 
2316  return has_audio;
2317 }
2318 
2319 static int
2320 intel_dp_set_property(struct drm_connector *connector,
2321  struct drm_property *property,
2322  uint64_t val)
2323 {
2324  struct drm_i915_private *dev_priv = connector->dev->dev_private;
2325  struct intel_dp *intel_dp = intel_attached_dp(connector);
2326  int ret;
2327 
2328  ret = drm_connector_property_set_value(connector, property, val);
2329  if (ret)
2330  return ret;
2331 
2332  if (property == dev_priv->force_audio_property) {
2333  int i = val;
2334  bool has_audio;
2335 
2336  if (i == intel_dp->force_audio)
2337  return 0;
2338 
2339  intel_dp->force_audio = i;
2340 
2341  if (i == HDMI_AUDIO_AUTO)
2342  has_audio = intel_dp_detect_audio(connector);
2343  else
2344  has_audio = (i == HDMI_AUDIO_ON);
2345 
2346  if (has_audio == intel_dp->has_audio)
2347  return 0;
2348 
2349  intel_dp->has_audio = has_audio;
2350  goto done;
2351  }
2352 
2353  if (property == dev_priv->broadcast_rgb_property) {
2354  if (val == !!intel_dp->color_range)
2355  return 0;
2356 
2357  intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2358  goto done;
2359  }
2360 
2361  return -EINVAL;
2362 
2363 done:
2364  if (intel_dp->base.base.crtc) {
2365  struct drm_crtc *crtc = intel_dp->base.base.crtc;
2366  intel_set_mode(crtc, &crtc->mode,
2367  crtc->x, crtc->y, crtc->fb);
2368  }
2369 
2370  return 0;
2371 }
2372 
2373 static void
2374 intel_dp_destroy(struct drm_connector *connector)
2375 {
2376  struct drm_device *dev = connector->dev;
2377  struct intel_dp *intel_dp = intel_attached_dp(connector);
2378 
2379  if (is_edp(intel_dp))
2381 
2382  drm_sysfs_connector_remove(connector);
2383  drm_connector_cleanup(connector);
2384  kfree(connector);
2385 }
2386 
2387 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2388 {
2389  struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2390 
2391  i2c_del_adapter(&intel_dp->adapter);
2392  drm_encoder_cleanup(encoder);
2393  if (is_edp(intel_dp)) {
2394  kfree(intel_dp->edid);
2396  ironlake_panel_vdd_off_sync(intel_dp);
2397  }
2398  kfree(intel_dp);
2399 }
2400 
2401 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2402  .mode_fixup = intel_dp_mode_fixup,
2403  .mode_set = intel_dp_mode_set,
2404  .disable = intel_encoder_noop,
2405 };
2406 
2407 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2408  .dpms = intel_connector_dpms,
2409  .detect = intel_dp_detect,
2411  .set_property = intel_dp_set_property,
2412  .destroy = intel_dp_destroy,
2413 };
2414 
2415 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2416  .get_modes = intel_dp_get_modes,
2417  .mode_valid = intel_dp_mode_valid,
2418  .best_encoder = intel_best_encoder,
2419 };
2420 
2421 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2422  .destroy = intel_dp_encoder_destroy,
2423 };
2424 
2425 static void
2426 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2427 {
2428  struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2429 
2430  intel_dp_check_link_status(intel_dp);
2431 }
2432 
2433 /* Return which DP Port should be selected for Transcoder DP control */
2434 int
2436 {
2437  struct drm_device *dev = crtc->dev;
2438  struct intel_encoder *encoder;
2439 
2440  for_each_encoder_on_crtc(dev, crtc, encoder) {
2441  struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2442 
2443  if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2444  intel_dp->base.type == INTEL_OUTPUT_EDP)
2445  return intel_dp->output_reg;
2446  }
2447 
2448  return -1;
2449 }
2450 
2451 /* check the VBT to see whether the eDP is on DP-D port */
2452 bool intel_dpd_is_edp(struct drm_device *dev)
2453 {
2454  struct drm_i915_private *dev_priv = dev->dev_private;
2455  struct child_device_config *p_child;
2456  int i;
2457 
2458  if (!dev_priv->child_dev_num)
2459  return false;
2460 
2461  for (i = 0; i < dev_priv->child_dev_num; i++) {
2462  p_child = dev_priv->child_dev + i;
2463 
2464  if (p_child->dvo_port == PORT_IDPD &&
2465  p_child->device_type == DEVICE_TYPE_eDP)
2466  return true;
2467  }
2468  return false;
2469 }
2470 
2471 static void
2472 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2473 {
2476 }
2477 
2478 void
2479 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2480 {
2481  struct drm_i915_private *dev_priv = dev->dev_private;
2482  struct drm_connector *connector;
2483  struct intel_dp *intel_dp;
2484  struct intel_encoder *intel_encoder;
2486  const char *name = NULL;
2487  int type;
2488 
2489  intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2490  if (!intel_dp)
2491  return;
2492 
2493  intel_dp->output_reg = output_reg;
2494  intel_dp->port = port;
2495  /* Preserve the current hw state. */
2496  intel_dp->DP = I915_READ(intel_dp->output_reg);
2497 
2498  intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2499  if (!intel_connector) {
2500  kfree(intel_dp);
2501  return;
2502  }
2503  intel_encoder = &intel_dp->base;
2504 
2505  if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2506  if (intel_dpd_is_edp(dev))
2507  intel_dp->is_pch_edp = true;
2508 
2509  if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2510  type = DRM_MODE_CONNECTOR_eDP;
2511  intel_encoder->type = INTEL_OUTPUT_EDP;
2512  } else {
2514  intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2515  }
2516 
2517  connector = &intel_connector->base;
2518  drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2519  drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2520 
2521  connector->polled = DRM_CONNECTOR_POLL_HPD;
2522 
2523  intel_encoder->cloneable = false;
2524 
2525  INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2526  ironlake_panel_vdd_work);
2527 
2528  intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2529 
2530  connector->interlace_allowed = true;
2531  connector->doublescan_allowed = 0;
2532 
2533  drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2535  drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2536 
2537  intel_connector_attach_encoder(intel_connector, intel_encoder);
2538  drm_sysfs_connector_add(connector);
2539 
2540  intel_encoder->enable = intel_enable_dp;
2541  intel_encoder->pre_enable = intel_pre_enable_dp;
2542  intel_encoder->disable = intel_disable_dp;
2543  intel_encoder->post_disable = intel_post_disable_dp;
2544  intel_encoder->get_hw_state = intel_dp_get_hw_state;
2545  intel_connector->get_hw_state = intel_connector_get_hw_state;
2546 
2547  /* Set up the DDC bus. */
2548  switch (port) {
2549  case PORT_A:
2550  name = "DPDDC-A";
2551  break;
2552  case PORT_B:
2554  name = "DPDDC-B";
2555  break;
2556  case PORT_C:
2558  name = "DPDDC-C";
2559  break;
2560  case PORT_D:
2562  name = "DPDDC-D";
2563  break;
2564  default:
2565  WARN(1, "Invalid port %c\n", port_name(port));
2566  break;
2567  }
2568 
2569  /* Cache some DPCD data in the eDP case */
2570  if (is_edp(intel_dp)) {
2571  struct edp_power_seq cur, vbt;
2572  u32 pp_on, pp_off, pp_div;
2573 
2574  pp_on = I915_READ(PCH_PP_ON_DELAYS);
2575  pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2576  pp_div = I915_READ(PCH_PP_DIVISOR);
2577 
2578  if (!pp_on || !pp_off || !pp_div) {
2579  DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2580  intel_dp_encoder_destroy(&intel_dp->base.base);
2581  intel_dp_destroy(&intel_connector->base);
2582  return;
2583  }
2584 
2585  /* Pull timing values out of registers */
2586  cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2588 
2589  cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2591 
2592  cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2594 
2595  cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2597 
2598  cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2600 
2601  DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2602  cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2603 
2604  vbt = dev_priv->edp.pps;
2605 
2606  DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2607  vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2608 
2609 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2610 
2611  intel_dp->panel_power_up_delay = get_delay(t1_t3);
2612  intel_dp->backlight_on_delay = get_delay(t8);
2613  intel_dp->backlight_off_delay = get_delay(t9);
2614  intel_dp->panel_power_down_delay = get_delay(t10);
2616 
2617  DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2618  intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2619  intel_dp->panel_power_cycle_delay);
2620 
2621  DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2622  intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2623  }
2624 
2625  intel_dp_i2c_init(intel_dp, intel_connector, name);
2626 
2627  if (is_edp(intel_dp)) {
2628  bool ret;
2629  struct edid *edid;
2630 
2631  ironlake_edp_panel_vdd_on(intel_dp);
2632  ret = intel_dp_get_dpcd(intel_dp);
2633  ironlake_edp_panel_vdd_off(intel_dp, false);
2634 
2635  if (ret) {
2636  if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2637  dev_priv->no_aux_handshake =
2638  intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2640  } else {
2641  /* if this fails, presume the device is a ghost */
2642  DRM_INFO("failed to retrieve link info, disabling eDP\n");
2643  intel_dp_encoder_destroy(&intel_dp->base.base);
2644  intel_dp_destroy(&intel_connector->base);
2645  return;
2646  }
2647 
2648  ironlake_edp_panel_vdd_on(intel_dp);
2649  edid = drm_get_edid(connector, &intel_dp->adapter);
2650  if (edid) {
2652  edid);
2653  intel_dp->edid_mode_count =
2654  drm_add_edid_modes(connector, edid);
2655  drm_edid_to_eld(connector, edid);
2656  intel_dp->edid = edid;
2657  }
2658  ironlake_edp_panel_vdd_off(intel_dp, false);
2659  }
2660 
2661  intel_encoder->hot_plug = intel_dp_hot_plug;
2662 
2663  if (is_edp(intel_dp)) {
2664  dev_priv->int_edp_connector = connector;
2666  }
2667 
2668  intel_dp_add_properties(intel_dp, connector);
2669 
2670  /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2671  * 0xd. Failure to do so will result in spurious interrupts being
2672  * generated on the port when a cable is not attached.
2673  */
2674  if (IS_G4X(dev) && !IS_GM45(dev)) {
2676  I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2677  }
2678 }