Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
intel_ips.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  * Jesse Barnes <[email protected]>
22  */
23 
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point). This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware. It also provides a few tunables to control behavior. Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature. If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp. Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware. The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  * - dual MCP configs
50  *
51  * TODO:
52  * - handle CPU hotplug
53  * - provide turbo enable/disable api
54  *
55  * Related documents:
56  * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  * - CDI 401376 - Ibex Peak EDS
58  * - ref 26037, 26641 - IPS BIOS spec
59  * - ref 26489 - Nehalem BIOS writer's guide
60  * - ref 26921 - Ibex Peak BIOS Specification
61  */
62 
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <linux/dmi.h>
76 #include <drm/i915_drm.h>
77 #include <asm/msr.h>
78 #include <asm/processor.h>
79 #include "intel_ips.h"
80 
82 
83 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
84 
85 /*
86  * Package level MSRs for monitor/control
87  */
88 #define PLATFORM_INFO 0xce
89 #define PLATFORM_TDP (1<<29)
90 #define PLATFORM_RATIO (1<<28)
91 
92 #define IA32_MISC_ENABLE 0x1a0
93 #define IA32_MISC_TURBO_EN (1ULL<<38)
94 
95 #define TURBO_POWER_CURRENT_LIMIT 0x1ac
96 #define TURBO_TDC_OVR_EN (1UL<<31)
97 #define TURBO_TDC_MASK (0x000000007fff0000UL)
98 #define TURBO_TDC_SHIFT (16)
99 #define TURBO_TDP_OVR_EN (1UL<<15)
100 #define TURBO_TDP_MASK (0x0000000000003fffUL)
101 
102 /*
103  * Core/thread MSRs for monitoring
104  */
105 #define IA32_PERF_CTL 0x199
106 #define IA32_PERF_TURBO_DIS (1ULL<<32)
107 
108 /*
109  * Thermal PCI device regs
110  */
111 #define THM_CFG_TBAR 0x10
112 #define THM_CFG_TBAR_HI 0x14
113 
114 #define THM_TSIU 0x00
115 #define THM_TSE 0x01
116 #define TSE_EN 0xb8
117 #define THM_TSS 0x02
118 #define THM_TSTR 0x03
119 #define THM_TSTTP 0x04
120 #define THM_TSCO 0x08
121 #define THM_TSES 0x0c
122 #define THM_TSGPEN 0x0d
123 #define TSGPEN_HOT_LOHI (1<<1)
124 #define TSGPEN_CRIT_LOHI (1<<2)
125 #define THM_TSPC 0x0e
126 #define THM_PPEC 0x10
127 #define THM_CTA 0x12
128 #define THM_PTA 0x14
129 #define PTA_SLOPE_MASK (0xff00)
130 #define PTA_SLOPE_SHIFT 8
131 #define PTA_OFFSET_MASK (0x00ff)
132 #define THM_MGTA 0x16
133 #define MGTA_SLOPE_MASK (0xff00)
134 #define MGTA_SLOPE_SHIFT 8
135 #define MGTA_OFFSET_MASK (0x00ff)
136 #define THM_TRC 0x1a
137 #define TRC_CORE2_EN (1<<15)
138 #define TRC_THM_EN (1<<12)
139 #define TRC_C6_WAR (1<<8)
140 #define TRC_CORE1_EN (1<<7)
141 #define TRC_CORE_PWR (1<<6)
142 #define TRC_PCH_EN (1<<5)
143 #define TRC_MCH_EN (1<<4)
144 #define TRC_DIMM4 (1<<3)
145 #define TRC_DIMM3 (1<<2)
146 #define TRC_DIMM2 (1<<1)
147 #define TRC_DIMM1 (1<<0)
148 #define THM_TES 0x20
149 #define THM_TEN 0x21
150 #define TEN_UPDATE_EN 1
151 #define THM_PSC 0x24
152 #define PSC_NTG (1<<0) /* No GFX turbo support */
153 #define PSC_NTPC (1<<1) /* No CPU turbo support */
154 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
155 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
156 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
157 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
158 #define PSP_PBRT (1<<4) /* BIOS run time support */
159 #define THM_CTV1 0x30
160 #define CTV_TEMP_ERROR (1<<15)
161 #define CTV_TEMP_MASK 0x3f
162 #define CTV_
163 #define THM_CTV2 0x32
164 #define THM_CEC 0x34 /* undocumented power accumulator in joules */
165 #define THM_AE 0x3f
166 #define THM_HTS 0x50 /* 32 bits */
167 #define HTS_PCPL_MASK (0x7fe00000)
168 #define HTS_PCPL_SHIFT 21
169 #define HTS_GPL_MASK (0x001ff000)
170 #define HTS_GPL_SHIFT 12
171 #define HTS_PP_MASK (0x00000c00)
172 #define HTS_PP_SHIFT 10
173 #define HTS_PP_DEF 0
174 #define HTS_PP_PROC 1
175 #define HTS_PP_BAL 2
176 #define HTS_PP_GFX 3
177 #define HTS_PCTD_DIS (1<<9)
178 #define HTS_GTD_DIS (1<<8)
179 #define HTS_PTL_MASK (0x000000fe)
180 #define HTS_PTL_SHIFT 1
181 #define HTS_NVV (1<<0)
182 #define THM_HTSHI 0x54 /* 16 bits */
183 #define HTS2_PPL_MASK (0x03ff)
184 #define HTS2_PRST_MASK (0x3c00)
185 #define HTS2_PRST_SHIFT 10
186 #define HTS2_PRST_UNLOADED 0
187 #define HTS2_PRST_RUNNING 1
188 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
189 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
190 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
191 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
192 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
193 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
194 #define THM_PTL 0x56
195 #define THM_MGTV 0x58
196 #define TV_MASK 0x000000000000ff00
197 #define TV_SHIFT 8
198 #define THM_PTV 0x60
199 #define PTV_MASK 0x00ff
200 #define THM_MMGPC 0x64
201 #define THM_MPPC 0x66
202 #define THM_MPCPC 0x68
203 #define THM_TSPIEN 0x82
204 #define TSPIEN_AUX_LOHI (1<<0)
205 #define TSPIEN_HOT_LOHI (1<<1)
206 #define TSPIEN_CRIT_LOHI (1<<2)
207 #define TSPIEN_AUX2_LOHI (1<<3)
208 #define THM_TSLOCK 0x83
209 #define THM_ATR 0x84
210 #define THM_TOF 0x87
211 #define THM_STS 0x98
212 #define STS_PCPL_MASK (0x7fe00000)
213 #define STS_PCPL_SHIFT 21
214 #define STS_GPL_MASK (0x001ff000)
215 #define STS_GPL_SHIFT 12
216 #define STS_PP_MASK (0x00000c00)
217 #define STS_PP_SHIFT 10
218 #define STS_PP_DEF 0
219 #define STS_PP_PROC 1
220 #define STS_PP_BAL 2
221 #define STS_PP_GFX 3
222 #define STS_PCTD_DIS (1<<9)
223 #define STS_GTD_DIS (1<<8)
224 #define STS_PTL_MASK (0x000000fe)
225 #define STS_PTL_SHIFT 1
226 #define STS_NVV (1<<0)
227 #define THM_SEC 0x9c
228 #define SEC_ACK (1<<0)
229 #define THM_TC3 0xa4
230 #define THM_TC1 0xa8
231 #define STS_PPL_MASK (0x0003ff00)
232 #define STS_PPL_SHIFT 16
233 #define THM_TC2 0xac
234 #define THM_DTV 0xb0
235 #define THM_ITV 0xd8
236 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
237 #define ITV_ME_SEQNO_SHIFT (16)
238 #define ITV_MCH_TEMP_MASK 0x0000ff00
239 #define ITV_MCH_TEMP_SHIFT (8)
240 #define ITV_PCH_TEMP_MASK 0x000000ff
241 
242 #define thm_readb(off) readb(ips->regmap + (off))
243 #define thm_readw(off) readw(ips->regmap + (off))
244 #define thm_readl(off) readl(ips->regmap + (off))
245 #define thm_readq(off) readq(ips->regmap + (off))
246 
247 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
248 #define thm_writew(off, val) writew((val), ips->regmap + (off))
249 #define thm_writel(off, val) writel((val), ips->regmap + (off))
250 
251 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
252 static bool late_i915_load = false;
253 
254 /* For initial average collection */
255 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
256 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
257 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
258 
259 /* Per-SKU limits */
262  int cpu_model; /* includes extended model... */
263  int mcp_power_limit; /* mW units */
266  int core_temp_limit; /* degrees C */
268 };
269 
270 /* Max temps are -10 degrees C to avoid PROCHOT# */
271 
273  .mcp_power_limit = 35000,
274  .core_power_limit = 29000,
275  .mch_power_limit = 20000,
276  .core_temp_limit = 95,
277  .mch_temp_limit = 90
278 };
279 
281  .mcp_power_limit = 25000,
282  .core_power_limit = 21000,
283  .mch_power_limit = 13000,
284  .core_temp_limit = 95,
285  .mch_temp_limit = 90
286 };
287 
289  .mcp_power_limit = 18000,
290  .core_power_limit = 14000,
291  .mch_power_limit = 11000,
292  .core_temp_limit = 95,
293  .mch_temp_limit = 90
294 };
295 
296 struct ips_driver {
297  struct pci_dev *dev;
298  void *regmap;
302 
303  /* Average CPU core temps (all averages in .01 degrees C for precision) */
306  /* GMCH average */
308  /* Average for the CPU (both cores?) */
310  /* Average power consumption (in mW) */
313 
314  /* Offset values */
318 
319  /* Maximums & prefs, protected by turbo status lock */
334 
335  /* Optional MCH interfaces for if i915 is in use */
336  unsigned long (*read_mch_val)(void);
341 
342  /* For restoration at unload */
345 };
346 
347 static bool
348 ips_gpu_turbo_enabled(struct ips_driver *ips);
349 
359 static bool ips_cpu_busy(struct ips_driver *ips)
360 {
361  if ((avenrun[0] >> FSHIFT) > 1)
362  return true;
363 
364  return false;
365 }
366 
377 static void ips_cpu_raise(struct ips_driver *ips)
378 {
379  u64 turbo_override;
380  u16 cur_tdp_limit, new_tdp_limit;
381 
382  if (!ips->cpu_turbo_enabled)
383  return;
384 
385  rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
386 
387  cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
388  new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
389 
390  /* Clamp to SKU TDP limit */
391  if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
392  new_tdp_limit = cur_tdp_limit;
393 
394  thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
395 
396  turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
397  wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
398 
399  turbo_override &= ~TURBO_TDP_MASK;
400  turbo_override |= new_tdp_limit;
401 
402  wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
403 }
404 
415 static void ips_cpu_lower(struct ips_driver *ips)
416 {
417  u64 turbo_override;
418  u16 cur_limit, new_limit;
419 
420  rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
421 
422  cur_limit = turbo_override & TURBO_TDP_MASK;
423  new_limit = cur_limit - 8; /* 1W decrease */
424 
425  /* Clamp to SKU TDP limit */
426  if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
427  new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
428 
429  thm_writew(THM_MPCPC, (new_limit * 10) / 8);
430 
431  turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
432  wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
433 
434  turbo_override &= ~TURBO_TDP_MASK;
435  turbo_override |= new_limit;
436 
437  wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
438 }
439 
448 static void do_enable_cpu_turbo(void *data)
449 {
450  u64 perf_ctl;
451 
452  rdmsrl(IA32_PERF_CTL, perf_ctl);
453  if (perf_ctl & IA32_PERF_TURBO_DIS) {
454  perf_ctl &= ~IA32_PERF_TURBO_DIS;
455  wrmsrl(IA32_PERF_CTL, perf_ctl);
456  }
457 }
458 
466 static void ips_enable_cpu_turbo(struct ips_driver *ips)
467 {
468  /* Already on, no need to mess with MSRs */
469  if (ips->__cpu_turbo_on)
470  return;
471 
472  if (ips->turbo_toggle_allowed)
473  on_each_cpu(do_enable_cpu_turbo, ips, 1);
474 
475  ips->__cpu_turbo_on = true;
476 }
477 
486 static void do_disable_cpu_turbo(void *data)
487 {
488  u64 perf_ctl;
489 
490  rdmsrl(IA32_PERF_CTL, perf_ctl);
491  if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
492  perf_ctl |= IA32_PERF_TURBO_DIS;
493  wrmsrl(IA32_PERF_CTL, perf_ctl);
494  }
495 }
496 
504 static void ips_disable_cpu_turbo(struct ips_driver *ips)
505 {
506  /* Already off, leave it */
507  if (!ips->__cpu_turbo_on)
508  return;
509 
510  if (ips->turbo_toggle_allowed)
511  on_each_cpu(do_disable_cpu_turbo, ips, 1);
512 
513  ips->__cpu_turbo_on = false;
514 }
515 
526 static bool ips_gpu_busy(struct ips_driver *ips)
527 {
528  if (!ips_gpu_turbo_enabled(ips))
529  return false;
530 
531  return ips->gpu_busy();
532 }
533 
541 static void ips_gpu_raise(struct ips_driver *ips)
542 {
543  if (!ips_gpu_turbo_enabled(ips))
544  return;
545 
546  if (!ips->gpu_raise())
547  ips->gpu_turbo_enabled = false;
548 
549  return;
550 }
551 
558 static void ips_gpu_lower(struct ips_driver *ips)
559 {
560  if (!ips_gpu_turbo_enabled(ips))
561  return;
562 
563  if (!ips->gpu_lower())
564  ips->gpu_turbo_enabled = false;
565 
566  return;
567 }
568 
576 static void ips_enable_gpu_turbo(struct ips_driver *ips)
577 {
578  if (ips->__gpu_turbo_on)
579  return;
580  ips->__gpu_turbo_on = true;
581 }
582 
589 static void ips_disable_gpu_turbo(struct ips_driver *ips)
590 {
591  /* Avoid calling i915 if turbo is already disabled */
592  if (!ips->__gpu_turbo_on)
593  return;
594 
595  if (!ips->gpu_turbo_disable())
596  dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
597  else
598  ips->__gpu_turbo_on = false;
599 }
600 
607 static bool mcp_exceeded(struct ips_driver *ips)
608 {
609  unsigned long flags;
610  bool ret = false;
611  u32 temp_limit;
612  u32 avg_power;
613 
614  spin_lock_irqsave(&ips->turbo_status_lock, flags);
615 
616  temp_limit = ips->mcp_temp_limit * 100;
617  if (ips->mcp_avg_temp > temp_limit)
618  ret = true;
619 
620  avg_power = ips->cpu_avg_power + ips->mch_avg_power;
621  if (avg_power > ips->mcp_power_limit)
622  ret = true;
623 
624  spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
625 
626  return ret;
627 }
628 
636 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
637 {
638  unsigned long flags;
639  int avg;
640  bool ret = false;
641 
642  spin_lock_irqsave(&ips->turbo_status_lock, flags);
643  avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
644  if (avg > (ips->limits->core_temp_limit * 100))
645  ret = true;
646  if (ips->cpu_avg_power > ips->core_power_limit * 100)
647  ret = true;
648  spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
649 
650  if (ret)
651  dev_info(&ips->dev->dev,
652  "CPU power or thermal limit exceeded\n");
653 
654  return ret;
655 }
656 
663 static bool mch_exceeded(struct ips_driver *ips)
664 {
665  unsigned long flags;
666  bool ret = false;
667 
668  spin_lock_irqsave(&ips->turbo_status_lock, flags);
669  if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
670  ret = true;
671  if (ips->mch_avg_power > ips->mch_power_limit)
672  ret = true;
673  spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
674 
675  return ret;
676 }
677 
686 static void verify_limits(struct ips_driver *ips)
687 {
688  if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
689  ips->mcp_power_limit > 35000)
690  ips->mcp_power_limit = ips->limits->mcp_power_limit;
691 
692  if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
693  ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
694  ips->mcp_temp_limit > 150)
695  ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
696  ips->limits->mch_temp_limit);
697 }
698 
712 static void update_turbo_limits(struct ips_driver *ips)
713 {
714  u32 hts = thm_readl(THM_HTS);
715 
716  ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
717  /*
718  * Disable turbo for now, until we can figure out why the power figures
719  * are wrong
720  */
721  ips->cpu_turbo_enabled = false;
722 
723  if (ips->gpu_busy)
724  ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
725 
730 
731  verify_limits(ips);
732  /* Ignore BIOS CPU vs GPU pref */
733 }
734 
766 static int ips_adjust(void *data)
767 {
768  struct ips_driver *ips = data;
769  unsigned long flags;
770 
771  dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
772 
773  /*
774  * Adjust CPU and GPU clamps every 5s if needed. Doing it more
775  * often isn't recommended due to ME interaction.
776  */
777  do {
778  bool cpu_busy = ips_cpu_busy(ips);
779  bool gpu_busy = ips_gpu_busy(ips);
780 
781  spin_lock_irqsave(&ips->turbo_status_lock, flags);
782  if (ips->poll_turbo_status)
783  update_turbo_limits(ips);
784  spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
785 
786  /* Update turbo status if necessary */
787  if (ips->cpu_turbo_enabled)
788  ips_enable_cpu_turbo(ips);
789  else
790  ips_disable_cpu_turbo(ips);
791 
792  if (ips->gpu_turbo_enabled)
793  ips_enable_gpu_turbo(ips);
794  else
795  ips_disable_gpu_turbo(ips);
796 
797  /* We're outside our comfort zone, crank them down */
798  if (mcp_exceeded(ips)) {
799  ips_cpu_lower(ips);
800  ips_gpu_lower(ips);
801  goto sleep;
802  }
803 
804  if (!cpu_exceeded(ips, 0) && cpu_busy)
805  ips_cpu_raise(ips);
806  else
807  ips_cpu_lower(ips);
808 
809  if (!mch_exceeded(ips) && gpu_busy)
810  ips_gpu_raise(ips);
811  else
812  ips_gpu_lower(ips);
813 
814 sleep:
816  } while (!kthread_should_stop());
817 
818  dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
819 
820  return 0;
821 }
822 
823 /*
824  * Helpers for reading out temp/power values and calculating their
825  * averages for the decision making and monitoring functions.
826  */
827 
828 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
829 {
830  u64 total = 0;
831  int i;
832  u16 avg;
833 
834  for (i = 0; i < IPS_SAMPLE_COUNT; i++)
835  total += (u64)(array[i] * 100);
836 
837  do_div(total, IPS_SAMPLE_COUNT);
838 
839  avg = (u16)total;
840 
841  return avg;
842 }
843 
844 static u16 read_mgtv(struct ips_driver *ips)
845 {
846  u16 ret;
847  u64 slope, offset;
848  u64 val;
849 
850  val = thm_readq(THM_MGTV);
851  val = (val & TV_MASK) >> TV_SHIFT;
852 
853  slope = offset = thm_readw(THM_MGTA);
854  slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
855  offset = offset & MGTA_OFFSET_MASK;
856 
857  ret = ((val * slope + 0x40) >> 7) + offset;
858 
859  return 0; /* MCH temp reporting buggy */
860 }
861 
862 static u16 read_ptv(struct ips_driver *ips)
863 {
864  u16 val, slope, offset;
865 
866  slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
867  offset = ips->pta_val & PTA_OFFSET_MASK;
868 
869  val = thm_readw(THM_PTV) & PTV_MASK;
870 
871  return val;
872 }
873 
874 static u16 read_ctv(struct ips_driver *ips, int cpu)
875 {
876  int reg = cpu ? THM_CTV2 : THM_CTV1;
877  u16 val;
878 
879  val = thm_readw(reg);
880  if (!(val & CTV_TEMP_ERROR))
881  val = (val) >> 6; /* discard fractional component */
882  else
883  val = 0;
884 
885  return val;
886 }
887 
888 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
889 {
890  u32 val;
891  u32 ret;
892 
893  /*
894  * CEC is in joules/65535. Take difference over time to
895  * get watts.
896  */
897  val = thm_readl(THM_CEC);
898 
899  /* period is in ms and we want mW */
900  ret = (((val - *last) * 1000) / period);
901  ret = (ret * 1000) / 65535;
902  *last = val;
903 
904  return 0;
905 }
906 
907 static const u16 temp_decay_factor = 2;
908 static u16 update_average_temp(u16 avg, u16 val)
909 {
910  u16 ret;
911 
912  /* Multiply by 100 for extra precision */
913  ret = (val * 100 / temp_decay_factor) +
914  (((temp_decay_factor - 1) * avg) / temp_decay_factor);
915  return ret;
916 }
917 
918 static const u16 power_decay_factor = 2;
919 static u16 update_average_power(u32 avg, u32 val)
920 {
921  u32 ret;
922 
923  ret = (val / power_decay_factor) +
924  (((power_decay_factor - 1) * avg) / power_decay_factor);
925 
926  return ret;
927 }
928 
929 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
930 {
931  u64 total = 0;
932  u32 avg;
933  int i;
934 
935  for (i = 0; i < IPS_SAMPLE_COUNT; i++)
936  total += array[i];
937 
938  do_div(total, IPS_SAMPLE_COUNT);
939  avg = (u32)total;
940 
941  return avg;
942 }
943 
944 static void monitor_timeout(unsigned long arg)
945 {
946  wake_up_process((struct task_struct *)arg);
947 }
948 
960 static int ips_monitor(void *data)
961 {
962  struct ips_driver *ips = data;
963  struct timer_list timer;
964  unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
965  int i;
966  u32 *cpu_samples, *mchp_samples, old_cpu_power;
967  u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
968  u8 cur_seqno, last_seqno;
969 
970  mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
971  ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972  ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973  mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974  cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975  mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
976  if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
977  !cpu_samples || !mchp_samples) {
978  dev_err(&ips->dev->dev,
979  "failed to allocate sample array, ips disabled\n");
980  kfree(mcp_samples);
981  kfree(ctv1_samples);
982  kfree(ctv2_samples);
983  kfree(mch_samples);
984  kfree(cpu_samples);
985  kfree(mchp_samples);
986  return -ENOMEM;
987  }
988 
989  last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
991  seqno_timestamp = get_jiffies_64();
992 
993  old_cpu_power = thm_readl(THM_CEC);
995 
996  /* Collect an initial average */
997  for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
998  u32 mchp, cpu_power;
999  u16 val;
1000 
1001  mcp_samples[i] = read_ptv(ips);
1002 
1003  val = read_ctv(ips, 0);
1004  ctv1_samples[i] = val;
1005 
1006  val = read_ctv(ips, 1);
1007  ctv2_samples[i] = val;
1008 
1009  val = read_mgtv(ips);
1010  mch_samples[i] = val;
1011 
1012  cpu_power = get_cpu_power(ips, &old_cpu_power,
1013  IPS_SAMPLE_PERIOD);
1014  cpu_samples[i] = cpu_power;
1015 
1016  if (ips->read_mch_val) {
1017  mchp = ips->read_mch_val();
1018  mchp_samples[i] = mchp;
1019  }
1020 
1022  if (kthread_should_stop())
1023  break;
1024  }
1025 
1026  ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1027  ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1028  ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1029  ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1030  ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1031  ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1032  kfree(mcp_samples);
1033  kfree(ctv1_samples);
1034  kfree(ctv2_samples);
1035  kfree(mch_samples);
1036  kfree(cpu_samples);
1037  kfree(mchp_samples);
1038 
1039  /* Start the adjustment thread now that we have data */
1040  wake_up_process(ips->adjust);
1041 
1042  /*
1043  * Ok, now we have an initial avg. From here on out, we track the
1044  * running avg using a decaying average calculation. This allows
1045  * us to reduce the sample frequency if the CPU and GPU are idle.
1046  */
1047  old_cpu_power = thm_readl(THM_CEC);
1049  last_sample_period = IPS_SAMPLE_PERIOD;
1050 
1051  setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1052  (unsigned long)current);
1053  do {
1054  u32 cpu_val, mch_val;
1055  u16 val;
1056 
1057  /* MCP itself */
1058  val = read_ptv(ips);
1059  ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1060 
1061  /* Processor 0 */
1062  val = read_ctv(ips, 0);
1063  ips->ctv1_avg_temp =
1064  update_average_temp(ips->ctv1_avg_temp, val);
1065  /* Power */
1066  cpu_val = get_cpu_power(ips, &old_cpu_power,
1067  last_sample_period);
1068  ips->cpu_avg_power =
1069  update_average_power(ips->cpu_avg_power, cpu_val);
1070 
1071  if (ips->second_cpu) {
1072  /* Processor 1 */
1073  val = read_ctv(ips, 1);
1074  ips->ctv2_avg_temp =
1075  update_average_temp(ips->ctv2_avg_temp, val);
1076  }
1077 
1078  /* MCH */
1079  val = read_mgtv(ips);
1080  ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1081  /* Power */
1082  if (ips->read_mch_val) {
1083  mch_val = ips->read_mch_val();
1084  ips->mch_avg_power =
1085  update_average_power(ips->mch_avg_power,
1086  mch_val);
1087  }
1088 
1089  /*
1090  * Make sure ME is updating thermal regs.
1091  * Note:
1092  * If it's been more than a second since the last update,
1093  * the ME is probably hung.
1094  */
1095  cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1097  if (cur_seqno == last_seqno &&
1098  time_after(jiffies, seqno_timestamp + HZ)) {
1099  dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1100  } else {
1101  seqno_timestamp = get_jiffies_64();
1102  last_seqno = cur_seqno;
1103  }
1104 
1105  last_msecs = jiffies_to_msecs(jiffies);
1106  expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1107 
1109  mod_timer(&timer, expire);
1110  schedule();
1111 
1112  /* Calculate actual sample period for power averaging */
1113  last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1114  if (!last_sample_period)
1115  last_sample_period = 1;
1116  } while (!kthread_should_stop());
1117 
1119  destroy_timer_on_stack(&timer);
1120 
1121  dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1122 
1123  return 0;
1124 }
1125 
1126 #if 0
1127 #define THM_DUMPW(reg) \
1128  { \
1129  u16 val = thm_readw(reg); \
1130  dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1131  }
1132 #define THM_DUMPL(reg) \
1133  { \
1134  u32 val = thm_readl(reg); \
1135  dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1136  }
1137 #define THM_DUMPQ(reg) \
1138  { \
1139  u64 val = thm_readq(reg); \
1140  dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1141  }
1142 
1143 static void dump_thermal_info(struct ips_driver *ips)
1144 {
1145  u16 ptl;
1146 
1147  ptl = thm_readw(THM_PTL);
1148  dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1149 
1150  THM_DUMPW(THM_CTA);
1151  THM_DUMPW(THM_TRC);
1152  THM_DUMPW(THM_CTV1);
1153  THM_DUMPL(THM_STS);
1154  THM_DUMPW(THM_PTV);
1155  THM_DUMPQ(THM_MGTV);
1156 }
1157 #endif
1158 
1168 static irqreturn_t ips_irq_handler(int irq, void *arg)
1169 {
1170  struct ips_driver *ips = arg;
1171  u8 tses = thm_readb(THM_TSES);
1172  u8 tes = thm_readb(THM_TES);
1173 
1174  if (!tses && !tes)
1175  return IRQ_NONE;
1176 
1177  dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1178  dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1179 
1180  /* STS update from EC? */
1181  if (tes & 1) {
1182  u32 sts, tc1;
1183 
1184  sts = thm_readl(THM_STS);
1185  tc1 = thm_readl(THM_TC1);
1186 
1187  if (sts & STS_NVV) {
1188  spin_lock(&ips->turbo_status_lock);
1189  ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1191  ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1192  STS_GPL_SHIFT;
1193  /* ignore EC CPU vs GPU pref */
1194  ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1195  /*
1196  * Disable turbo for now, until we can figure
1197  * out why the power figures are wrong
1198  */
1199  ips->cpu_turbo_enabled = false;
1200  if (ips->gpu_busy)
1201  ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1202  ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1203  STS_PTL_SHIFT;
1204  ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1205  STS_PPL_SHIFT;
1206  verify_limits(ips);
1207  spin_unlock(&ips->turbo_status_lock);
1208 
1210  }
1211  thm_writeb(THM_TES, tes);
1212  }
1213 
1214  /* Thermal trip */
1215  if (tses) {
1216  dev_warn(&ips->dev->dev,
1217  "thermal trip occurred, tses: 0x%04x\n", tses);
1218  thm_writeb(THM_TSES, tses);
1219  }
1220 
1221  return IRQ_HANDLED;
1222 }
1223 
1224 #ifndef CONFIG_DEBUG_FS
1225 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1226 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1227 #else
1228 
1229 /* Expose current state and limits in debugfs if possible */
1230 
1231 struct ips_debugfs_node {
1232  struct ips_driver *ips;
1233  char *name;
1234  int (*show)(struct seq_file *m, void *data);
1235 };
1236 
1237 static int show_cpu_temp(struct seq_file *m, void *data)
1238 {
1239  struct ips_driver *ips = m->private;
1240 
1241  seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1242  ips->ctv1_avg_temp % 100);
1243 
1244  return 0;
1245 }
1246 
1247 static int show_cpu_power(struct seq_file *m, void *data)
1248 {
1249  struct ips_driver *ips = m->private;
1250 
1251  seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1252 
1253  return 0;
1254 }
1255 
1256 static int show_cpu_clamp(struct seq_file *m, void *data)
1257 {
1258  u64 turbo_override;
1259  int tdp, tdc;
1260 
1261  rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1262 
1263  tdp = (int)(turbo_override & TURBO_TDP_MASK);
1264  tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1265 
1266  /* Convert to .1W/A units */
1267  tdp = tdp * 10 / 8;
1268  tdc = tdc * 10 / 8;
1269 
1270  /* Watts Amperes */
1271  seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1272  tdc / 10, tdc % 10);
1273 
1274  return 0;
1275 }
1276 
1277 static int show_mch_temp(struct seq_file *m, void *data)
1278 {
1279  struct ips_driver *ips = m->private;
1280 
1281  seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1282  ips->mch_avg_temp % 100);
1283 
1284  return 0;
1285 }
1286 
1287 static int show_mch_power(struct seq_file *m, void *data)
1288 {
1289  struct ips_driver *ips = m->private;
1290 
1291  seq_printf(m, "%dmW\n", ips->mch_avg_power);
1292 
1293  return 0;
1294 }
1295 
1296 static struct ips_debugfs_node ips_debug_files[] = {
1297  { NULL, "cpu_temp", show_cpu_temp },
1298  { NULL, "cpu_power", show_cpu_power },
1299  { NULL, "cpu_clamp", show_cpu_clamp },
1300  { NULL, "mch_temp", show_mch_temp },
1301  { NULL, "mch_power", show_mch_power },
1302 };
1303 
1304 static int ips_debugfs_open(struct inode *inode, struct file *file)
1305 {
1306  struct ips_debugfs_node *node = inode->i_private;
1307 
1308  return single_open(file, node->show, node->ips);
1309 }
1310 
1311 static const struct file_operations ips_debugfs_ops = {
1312  .owner = THIS_MODULE,
1313  .open = ips_debugfs_open,
1314  .read = seq_read,
1315  .llseek = seq_lseek,
1316  .release = single_release,
1317 };
1318 
1319 static void ips_debugfs_cleanup(struct ips_driver *ips)
1320 {
1321  if (ips->debug_root)
1323  return;
1324 }
1325 
1326 static void ips_debugfs_init(struct ips_driver *ips)
1327 {
1328  int i;
1329 
1330  ips->debug_root = debugfs_create_dir("ips", NULL);
1331  if (!ips->debug_root) {
1332  dev_err(&ips->dev->dev,
1333  "failed to create debugfs entries: %ld\n",
1334  PTR_ERR(ips->debug_root));
1335  return;
1336  }
1337 
1338  for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1339  struct dentry *ent;
1340  struct ips_debugfs_node *node = &ips_debug_files[i];
1341 
1342  node->ips = ips;
1343  ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1344  ips->debug_root, node,
1345  &ips_debugfs_ops);
1346  if (!ent) {
1347  dev_err(&ips->dev->dev,
1348  "failed to create debug file: %ld\n",
1349  PTR_ERR(ent));
1350  goto err_cleanup;
1351  }
1352  }
1353 
1354  return;
1355 
1356 err_cleanup:
1357  ips_debugfs_cleanup(ips);
1358  return;
1359 }
1360 #endif /* CONFIG_DEBUG_FS */
1361 
1368 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1369 {
1370  u64 turbo_power, misc_en;
1371  struct ips_mcp_limits *limits = NULL;
1372  u16 tdp;
1373 
1374  if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1375  dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1376  goto out;
1377  }
1378 
1379  rdmsrl(IA32_MISC_ENABLE, misc_en);
1380  /*
1381  * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1382  * turbo manually or we'll get an illegal MSR access, even though
1383  * turbo will still be available.
1384  */
1385  if (misc_en & IA32_MISC_TURBO_EN)
1386  ips->turbo_toggle_allowed = true;
1387  else
1388  ips->turbo_toggle_allowed = false;
1389 
1390  if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1391  limits = &ips_sv_limits;
1392  else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1393  limits = &ips_lv_limits;
1394  else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1395  limits = &ips_ulv_limits;
1396  else {
1397  dev_info(&ips->dev->dev, "No CPUID match found.\n");
1398  goto out;
1399  }
1400 
1401  rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1402  tdp = turbo_power & TURBO_TDP_MASK;
1403 
1404  /* Sanity check TDP against CPU */
1405  if (limits->core_power_limit != (tdp / 8) * 1000) {
1406  dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1407  tdp / 8, limits->core_power_limit / 1000);
1408  limits->core_power_limit = (tdp / 8) * 1000;
1409  }
1410 
1411 out:
1412  return limits;
1413 }
1414 
1424 static bool ips_get_i915_syms(struct ips_driver *ips)
1425 {
1427  if (!ips->read_mch_val)
1428  goto out_err;
1430  if (!ips->gpu_raise)
1431  goto out_put_mch;
1433  if (!ips->gpu_lower)
1434  goto out_put_raise;
1436  if (!ips->gpu_busy)
1437  goto out_put_lower;
1439  if (!ips->gpu_turbo_disable)
1440  goto out_put_busy;
1441 
1442  return true;
1443 
1444 out_put_busy:
1446 out_put_lower:
1448 out_put_raise:
1450 out_put_mch:
1452 out_err:
1453  return false;
1454 }
1455 
1456 static bool
1457 ips_gpu_turbo_enabled(struct ips_driver *ips)
1458 {
1459  if (!ips->gpu_busy && late_i915_load) {
1460  if (ips_get_i915_syms(ips)) {
1461  dev_info(&ips->dev->dev,
1462  "i915 driver attached, reenabling gpu turbo\n");
1464  }
1465  }
1466 
1467  return ips->gpu_turbo_enabled;
1468 }
1469 
1470 void
1472 {
1473  /* We can't cleanly get at the various ips_driver structs from
1474  * this caller (the i915 driver), so just set a flag saying
1475  * that it's time to try getting the symbols again.
1476  */
1477  late_i915_load = true;
1478 }
1480 
1481 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1484  { 0, }
1485 };
1486 
1487 MODULE_DEVICE_TABLE(pci, ips_id_table);
1488 
1489 static int ips_blacklist_callback(const struct dmi_system_id *id)
1490 {
1491  pr_info("Blacklisted intel_ips for %s\n", id->ident);
1492  return 1;
1493 }
1494 
1495 static const struct dmi_system_id ips_blacklist[] = {
1496  {
1497  .callback = ips_blacklist_callback,
1498  .ident = "HP ProBook",
1499  .matches = {
1500  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1501  DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1502  },
1503  },
1504  { } /* terminating entry */
1505 };
1506 
1507 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1508 {
1510  struct ips_driver *ips;
1511  u32 hts;
1512  int ret = 0;
1513  u16 htshi, trc, trc_required_mask;
1514  u8 tse;
1515 
1516  if (dmi_check_system(ips_blacklist))
1517  return -ENODEV;
1518 
1519  ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1520  if (!ips)
1521  return -ENOMEM;
1522 
1523  pci_set_drvdata(dev, ips);
1524  ips->dev = dev;
1525 
1526  ips->limits = ips_detect_cpu(ips);
1527  if (!ips->limits) {
1528  dev_info(&dev->dev, "IPS not supported on this CPU\n");
1529  ret = -ENXIO;
1530  goto error_free;
1531  }
1532 
1534 
1535  ret = pci_enable_device(dev);
1536  if (ret) {
1537  dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1538  goto error_free;
1539  }
1540 
1541  if (!pci_resource_start(dev, 0)) {
1542  dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1543  ret = -ENXIO;
1544  goto error_free;
1545  }
1546 
1547  ret = pci_request_regions(dev, "ips thermal sensor");
1548  if (ret) {
1549  dev_err(&dev->dev, "thermal resource busy, aborting\n");
1550  goto error_free;
1551  }
1552 
1553 
1554  ips->regmap = ioremap(pci_resource_start(dev, 0),
1555  pci_resource_len(dev, 0));
1556  if (!ips->regmap) {
1557  dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1558  ret = -EBUSY;
1559  goto error_release;
1560  }
1561 
1562  tse = thm_readb(THM_TSE);
1563  if (tse != TSE_EN) {
1564  dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1565  ret = -ENXIO;
1566  goto error_unmap;
1567  }
1568 
1569  trc = thm_readw(THM_TRC);
1570  trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1571  if ((trc & trc_required_mask) != trc_required_mask) {
1572  dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1573  ret = -ENXIO;
1574  goto error_unmap;
1575  }
1576 
1577  if (trc & TRC_CORE2_EN)
1578  ips->second_cpu = true;
1579 
1580  update_turbo_limits(ips);
1581  dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1582  ips->mcp_power_limit / 10);
1583  dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1584  ips->core_power_limit / 10);
1585  /* BIOS may update limits at runtime */
1586  if (thm_readl(THM_PSC) & PSP_PBRT)
1587  ips->poll_turbo_status = true;
1588 
1589  if (!ips_get_i915_syms(ips)) {
1590  dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1591  ips->gpu_turbo_enabled = false;
1592  } else {
1593  dev_dbg(&dev->dev, "graphics turbo enabled\n");
1594  ips->gpu_turbo_enabled = true;
1595  }
1596 
1597  /*
1598  * Check PLATFORM_INFO MSR to make sure this chip is
1599  * turbo capable.
1600  */
1601  rdmsrl(PLATFORM_INFO, platform_info);
1602  if (!(platform_info & PLATFORM_TDP)) {
1603  dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1604  ret = -ENODEV;
1605  goto error_unmap;
1606  }
1607 
1608  /*
1609  * IRQ handler for ME interaction
1610  * Note: don't use MSI here as the PCH has bugs.
1611  */
1612  pci_disable_msi(dev);
1613  ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1614  ips);
1615  if (ret) {
1616  dev_err(&dev->dev, "request irq failed, aborting\n");
1617  goto error_unmap;
1618  }
1619 
1620  /* Enable aux, hot & critical interrupts */
1624 
1625  /* Collect adjustment values */
1626  ips->cta_val = thm_readw(THM_CTA);
1627  ips->pta_val = thm_readw(THM_PTA);
1628  ips->mgta_val = thm_readw(THM_MGTA);
1629 
1630  /* Save turbo limits & ratios */
1632 
1633  ips_disable_cpu_turbo(ips);
1634  ips->cpu_turbo_enabled = false;
1635 
1636  /* Create thermal adjust thread */
1637  ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1638  if (IS_ERR(ips->adjust)) {
1639  dev_err(&dev->dev,
1640  "failed to create thermal adjust thread, aborting\n");
1641  ret = -ENOMEM;
1642  goto error_free_irq;
1643 
1644  }
1645 
1646  /*
1647  * Set up the work queue and monitor thread. The monitor thread
1648  * will wake up ips_adjust thread.
1649  */
1650  ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1651  if (IS_ERR(ips->monitor)) {
1652  dev_err(&dev->dev,
1653  "failed to create thermal monitor thread, aborting\n");
1654  ret = -ENOMEM;
1655  goto error_thread_cleanup;
1656  }
1657 
1658  hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1659  (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1661 
1662  thm_writew(THM_HTSHI, htshi);
1663  thm_writel(THM_HTS, hts);
1664 
1665  ips_debugfs_init(ips);
1666 
1667  dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1668  ips->mcp_temp_limit);
1669  return ret;
1670 
1671 error_thread_cleanup:
1672  kthread_stop(ips->adjust);
1673 error_free_irq:
1674  free_irq(ips->dev->irq, ips);
1675 error_unmap:
1676  iounmap(ips->regmap);
1677 error_release:
1678  pci_release_regions(dev);
1679 error_free:
1680  kfree(ips);
1681  return ret;
1682 }
1683 
1684 static void ips_remove(struct pci_dev *dev)
1685 {
1686  struct ips_driver *ips = pci_get_drvdata(dev);
1687  u64 turbo_override;
1688 
1689  if (!ips)
1690  return;
1691 
1692  ips_debugfs_cleanup(ips);
1693 
1694  /* Release i915 driver */
1695  if (ips->read_mch_val)
1697  if (ips->gpu_raise)
1699  if (ips->gpu_lower)
1701  if (ips->gpu_busy)
1703  if (ips->gpu_turbo_disable)
1705 
1706  rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1707  turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1708  wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1710 
1711  free_irq(ips->dev->irq, ips);
1712  if (ips->adjust)
1713  kthread_stop(ips->adjust);
1714  if (ips->monitor)
1715  kthread_stop(ips->monitor);
1716  iounmap(ips->regmap);
1717  pci_release_regions(dev);
1718  kfree(ips);
1719  dev_dbg(&dev->dev, "IPS driver removed\n");
1720 }
1721 
1722 static void ips_shutdown(struct pci_dev *dev)
1723 {
1724 }
1725 
1726 static struct pci_driver ips_pci_driver = {
1727  .name = "intel ips",
1728  .id_table = ips_id_table,
1729  .probe = ips_probe,
1730  .remove = ips_remove,
1731  .shutdown = ips_shutdown,
1732 };
1733 
1734 static int __init ips_init(void)
1735 {
1736  return pci_register_driver(&ips_pci_driver);
1737 }
1738 module_init(ips_init);
1739 
1740 static void ips_exit(void)
1741 {
1742  pci_unregister_driver(&ips_pci_driver);
1743  return;
1744 }
1745 module_exit(ips_exit);
1746 
1747 MODULE_LICENSE("GPL");
1748 MODULE_AUTHOR("Jesse Barnes <[email protected]>");
1749 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");