Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ipmr.c
Go to the documentation of this file.
1 /*
2  * IP multicast routing support for mrouted 3.6/3.8
3  *
4  * (c) 1995 Alan Cox, <[email protected]>
5  * Linux Consultancy and Custom Driver Development
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  *
12  * Fixes:
13  * Michael Chastain : Incorrect size of copying.
14  * Alan Cox : Added the cache manager code
15  * Alan Cox : Fixed the clone/copy bug and device race.
16  * Mike McLagan : Routing by source
17  * Malcolm Beattie : Buffer handling fixes.
18  * Alexey Kuznetsov : Double buffer free and other fixes.
19  * SVR Anand : Fixed several multicast bugs and problems.
20  * Alexey Kuznetsov : Status, optimisations and more.
21  * Brad Parker : Better behaviour on mrouted upcall
22  * overflow.
23  * Carlos Picoto : PIMv1 Support
24  * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25  * Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ipip.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 
69 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70 #define CONFIG_IP_PIMSM 1
71 #endif
72 
73 struct mr_table {
74  struct list_head list;
75 #ifdef CONFIG_NET_NS
76  struct net *net;
77 #endif
79  struct sock __rcu *mroute_sk;
84  int maxvif;
88 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89  int mroute_reg_vif_num;
90 #endif
91 };
92 
93 struct ipmr_rule {
94  struct fib_rule common;
95 };
96 
97 struct ipmr_result {
98  struct mr_table *mrt;
99 };
100 
101 /* Big lock, protecting vif table, mrt cache and mroute socket state.
102  * Note that the changes are semaphored via rtnl_lock.
103  */
104 
105 static DEFINE_RWLOCK(mrt_lock);
106 
107 /*
108  * Multicast router control variables
109  */
110 
111 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
112 
113 /* Special spinlock for queue of unresolved entries */
114 static DEFINE_SPINLOCK(mfc_unres_lock);
115 
116 /* We return to original Alan's scheme. Hash table of resolved
117  * entries is changed only in process context and protected
118  * with weak lock mrt_lock. Queue of unresolved entries is protected
119  * with strong spinlock mfc_unres_lock.
120  *
121  * In this case data path is free of exclusive locks at all.
122  */
123 
124 static struct kmem_cache *mrt_cachep __read_mostly;
125 
126 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
127 static void ipmr_free_table(struct mr_table *mrt);
128 
129 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
130  struct sk_buff *skb, struct mfc_cache *cache,
131  int local);
132 static int ipmr_cache_report(struct mr_table *mrt,
133  struct sk_buff *pkt, vifi_t vifi, int assert);
134 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
135  struct mfc_cache *c, struct rtmsg *rtm);
136 static void mroute_clean_tables(struct mr_table *mrt);
137 static void ipmr_expire_process(unsigned long arg);
138 
139 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
140 #define ipmr_for_each_table(mrt, net) \
141  list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
142 
143 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
144 {
145  struct mr_table *mrt;
146 
147  ipmr_for_each_table(mrt, net) {
148  if (mrt->id == id)
149  return mrt;
150  }
151  return NULL;
152 }
153 
154 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
155  struct mr_table **mrt)
156 {
157  struct ipmr_result res;
158  struct fib_lookup_arg arg = { .result = &res, };
159  int err;
160 
161  err = fib_rules_lookup(net->ipv4.mr_rules_ops,
162  flowi4_to_flowi(flp4), 0, &arg);
163  if (err < 0)
164  return err;
165  *mrt = res.mrt;
166  return 0;
167 }
168 
169 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
170  int flags, struct fib_lookup_arg *arg)
171 {
172  struct ipmr_result *res = arg->result;
173  struct mr_table *mrt;
174 
175  switch (rule->action) {
176  case FR_ACT_TO_TBL:
177  break;
178  case FR_ACT_UNREACHABLE:
179  return -ENETUNREACH;
180  case FR_ACT_PROHIBIT:
181  return -EACCES;
182  case FR_ACT_BLACKHOLE:
183  default:
184  return -EINVAL;
185  }
186 
187  mrt = ipmr_get_table(rule->fr_net, rule->table);
188  if (mrt == NULL)
189  return -EAGAIN;
190  res->mrt = mrt;
191  return 0;
192 }
193 
194 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
195 {
196  return 1;
197 }
198 
199 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
201 };
202 
203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204  struct fib_rule_hdr *frh, struct nlattr **tb)
205 {
206  return 0;
207 }
208 
209 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
210  struct nlattr **tb)
211 {
212  return 1;
213 }
214 
215 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
216  struct fib_rule_hdr *frh)
217 {
218  frh->dst_len = 0;
219  frh->src_len = 0;
220  frh->tos = 0;
221  return 0;
222 }
223 
224 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
225  .family = RTNL_FAMILY_IPMR,
226  .rule_size = sizeof(struct ipmr_rule),
227  .addr_size = sizeof(u32),
228  .action = ipmr_rule_action,
229  .match = ipmr_rule_match,
230  .configure = ipmr_rule_configure,
231  .compare = ipmr_rule_compare,
232  .default_pref = fib_default_rule_pref,
233  .fill = ipmr_rule_fill,
234  .nlgroup = RTNLGRP_IPV4_RULE,
235  .policy = ipmr_rule_policy,
236  .owner = THIS_MODULE,
237 };
238 
239 static int __net_init ipmr_rules_init(struct net *net)
240 {
241  struct fib_rules_ops *ops;
242  struct mr_table *mrt;
243  int err;
244 
245  ops = fib_rules_register(&ipmr_rules_ops_template, net);
246  if (IS_ERR(ops))
247  return PTR_ERR(ops);
248 
249  INIT_LIST_HEAD(&net->ipv4.mr_tables);
250 
251  mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
252  if (mrt == NULL) {
253  err = -ENOMEM;
254  goto err1;
255  }
256 
257  err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
258  if (err < 0)
259  goto err2;
260 
261  net->ipv4.mr_rules_ops = ops;
262  return 0;
263 
264 err2:
265  kfree(mrt);
266 err1:
268  return err;
269 }
270 
271 static void __net_exit ipmr_rules_exit(struct net *net)
272 {
273  struct mr_table *mrt, *next;
274 
275  list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
276  list_del(&mrt->list);
277  ipmr_free_table(mrt);
278  }
279  fib_rules_unregister(net->ipv4.mr_rules_ops);
280 }
281 #else
282 #define ipmr_for_each_table(mrt, net) \
283  for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
284 
285 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
286 {
287  return net->ipv4.mrt;
288 }
289 
290 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
291  struct mr_table **mrt)
292 {
293  *mrt = net->ipv4.mrt;
294  return 0;
295 }
296 
297 static int __net_init ipmr_rules_init(struct net *net)
298 {
299  net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
300  return net->ipv4.mrt ? 0 : -ENOMEM;
301 }
302 
303 static void __net_exit ipmr_rules_exit(struct net *net)
304 {
305  ipmr_free_table(net->ipv4.mrt);
306 }
307 #endif
308 
309 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
310 {
311  struct mr_table *mrt;
312  unsigned int i;
313 
314  mrt = ipmr_get_table(net, id);
315  if (mrt != NULL)
316  return mrt;
317 
318  mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
319  if (mrt == NULL)
320  return NULL;
321  write_pnet(&mrt->net, net);
322  mrt->id = id;
323 
324  /* Forwarding cache */
325  for (i = 0; i < MFC_LINES; i++)
326  INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
327 
328  INIT_LIST_HEAD(&mrt->mfc_unres_queue);
329 
330  setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
331  (unsigned long)mrt);
332 
333 #ifdef CONFIG_IP_PIMSM
334  mrt->mroute_reg_vif_num = -1;
335 #endif
336 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
337  list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
338 #endif
339  return mrt;
340 }
341 
342 static void ipmr_free_table(struct mr_table *mrt)
343 {
345  mroute_clean_tables(mrt);
346  kfree(mrt);
347 }
348 
349 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
350 
351 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
352 {
353  struct net *net = dev_net(dev);
354 
355  dev_close(dev);
356 
357  dev = __dev_get_by_name(net, "tunl0");
358  if (dev) {
359  const struct net_device_ops *ops = dev->netdev_ops;
360  struct ifreq ifr;
361  struct ip_tunnel_parm p;
362 
363  memset(&p, 0, sizeof(p));
364  p.iph.daddr = v->vifc_rmt_addr.s_addr;
365  p.iph.saddr = v->vifc_lcl_addr.s_addr;
366  p.iph.version = 4;
367  p.iph.ihl = 5;
368  p.iph.protocol = IPPROTO_IPIP;
369  sprintf(p.name, "dvmrp%d", v->vifc_vifi);
370  ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
371 
372  if (ops->ndo_do_ioctl) {
373  mm_segment_t oldfs = get_fs();
374 
375  set_fs(KERNEL_DS);
376  ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
377  set_fs(oldfs);
378  }
379  }
380 }
381 
382 static
383 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
384 {
385  struct net_device *dev;
386 
387  dev = __dev_get_by_name(net, "tunl0");
388 
389  if (dev) {
390  const struct net_device_ops *ops = dev->netdev_ops;
391  int err;
392  struct ifreq ifr;
393  struct ip_tunnel_parm p;
394  struct in_device *in_dev;
395 
396  memset(&p, 0, sizeof(p));
397  p.iph.daddr = v->vifc_rmt_addr.s_addr;
398  p.iph.saddr = v->vifc_lcl_addr.s_addr;
399  p.iph.version = 4;
400  p.iph.ihl = 5;
401  p.iph.protocol = IPPROTO_IPIP;
402  sprintf(p.name, "dvmrp%d", v->vifc_vifi);
403  ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
404 
405  if (ops->ndo_do_ioctl) {
406  mm_segment_t oldfs = get_fs();
407 
408  set_fs(KERNEL_DS);
409  err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
410  set_fs(oldfs);
411  } else {
412  err = -EOPNOTSUPP;
413  }
414  dev = NULL;
415 
416  if (err == 0 &&
417  (dev = __dev_get_by_name(net, p.name)) != NULL) {
418  dev->flags |= IFF_MULTICAST;
419 
420  in_dev = __in_dev_get_rtnl(dev);
421  if (in_dev == NULL)
422  goto failure;
423 
424  ipv4_devconf_setall(in_dev);
425  IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
426 
427  if (dev_open(dev))
428  goto failure;
429  dev_hold(dev);
430  }
431  }
432  return dev;
433 
434 failure:
435  /* allow the register to be completed before unregistering. */
436  rtnl_unlock();
437  rtnl_lock();
438 
439  unregister_netdevice(dev);
440  return NULL;
441 }
442 
443 #ifdef CONFIG_IP_PIMSM
444 
445 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
446 {
447  struct net *net = dev_net(dev);
448  struct mr_table *mrt;
449  struct flowi4 fl4 = {
450  .flowi4_oif = dev->ifindex,
451  .flowi4_iif = skb->skb_iif,
452  .flowi4_mark = skb->mark,
453  };
454  int err;
455 
456  err = ipmr_fib_lookup(net, &fl4, &mrt);
457  if (err < 0) {
458  kfree_skb(skb);
459  return err;
460  }
461 
462  read_lock(&mrt_lock);
463  dev->stats.tx_bytes += skb->len;
464  dev->stats.tx_packets++;
465  ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
466  read_unlock(&mrt_lock);
467  kfree_skb(skb);
468  return NETDEV_TX_OK;
469 }
470 
471 static const struct net_device_ops reg_vif_netdev_ops = {
472  .ndo_start_xmit = reg_vif_xmit,
473 };
474 
475 static void reg_vif_setup(struct net_device *dev)
476 {
477  dev->type = ARPHRD_PIMREG;
478  dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
479  dev->flags = IFF_NOARP;
480  dev->netdev_ops = &reg_vif_netdev_ops,
481  dev->destructor = free_netdev;
483 }
484 
485 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
486 {
487  struct net_device *dev;
488  struct in_device *in_dev;
489  char name[IFNAMSIZ];
490 
491  if (mrt->id == RT_TABLE_DEFAULT)
492  sprintf(name, "pimreg");
493  else
494  sprintf(name, "pimreg%u", mrt->id);
495 
496  dev = alloc_netdev(0, name, reg_vif_setup);
497 
498  if (dev == NULL)
499  return NULL;
500 
501  dev_net_set(dev, net);
502 
503  if (register_netdevice(dev)) {
504  free_netdev(dev);
505  return NULL;
506  }
507  dev->iflink = 0;
508 
509  rcu_read_lock();
510  in_dev = __in_dev_get_rcu(dev);
511  if (!in_dev) {
512  rcu_read_unlock();
513  goto failure;
514  }
515 
516  ipv4_devconf_setall(in_dev);
517  IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
518  rcu_read_unlock();
519 
520  if (dev_open(dev))
521  goto failure;
522 
523  dev_hold(dev);
524 
525  return dev;
526 
527 failure:
528  /* allow the register to be completed before unregistering. */
529  rtnl_unlock();
530  rtnl_lock();
531 
532  unregister_netdevice(dev);
533  return NULL;
534 }
535 #endif
536 
542 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
543  struct list_head *head)
544 {
545  struct vif_device *v;
546  struct net_device *dev;
547  struct in_device *in_dev;
548 
549  if (vifi < 0 || vifi >= mrt->maxvif)
550  return -EADDRNOTAVAIL;
551 
552  v = &mrt->vif_table[vifi];
553 
554  write_lock_bh(&mrt_lock);
555  dev = v->dev;
556  v->dev = NULL;
557 
558  if (!dev) {
559  write_unlock_bh(&mrt_lock);
560  return -EADDRNOTAVAIL;
561  }
562 
563 #ifdef CONFIG_IP_PIMSM
564  if (vifi == mrt->mroute_reg_vif_num)
565  mrt->mroute_reg_vif_num = -1;
566 #endif
567 
568  if (vifi + 1 == mrt->maxvif) {
569  int tmp;
570 
571  for (tmp = vifi - 1; tmp >= 0; tmp--) {
572  if (VIF_EXISTS(mrt, tmp))
573  break;
574  }
575  mrt->maxvif = tmp+1;
576  }
577 
578  write_unlock_bh(&mrt_lock);
579 
580  dev_set_allmulti(dev, -1);
581 
582  in_dev = __in_dev_get_rtnl(dev);
583  if (in_dev) {
584  IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
585  ip_rt_multicast_event(in_dev);
586  }
587 
588  if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
589  unregister_netdevice_queue(dev, head);
590 
591  dev_put(dev);
592  return 0;
593 }
594 
595 static void ipmr_cache_free_rcu(struct rcu_head *head)
596 {
597  struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
598 
599  kmem_cache_free(mrt_cachep, c);
600 }
601 
602 static inline void ipmr_cache_free(struct mfc_cache *c)
603 {
604  call_rcu(&c->rcu, ipmr_cache_free_rcu);
605 }
606 
607 /* Destroy an unresolved cache entry, killing queued skbs
608  * and reporting error to netlink readers.
609  */
610 
611 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
612 {
613  struct net *net = read_pnet(&mrt->net);
614  struct sk_buff *skb;
615  struct nlmsgerr *e;
616 
618 
619  while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
620  if (ip_hdr(skb)->version == 0) {
621  struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
622  nlh->nlmsg_type = NLMSG_ERROR;
623  nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
624  skb_trim(skb, nlh->nlmsg_len);
625  e = NLMSG_DATA(nlh);
626  e->error = -ETIMEDOUT;
627  memset(&e->msg, 0, sizeof(e->msg));
628 
629  rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
630  } else {
631  kfree_skb(skb);
632  }
633  }
634 
635  ipmr_cache_free(c);
636 }
637 
638 
639 /* Timer process for the unresolved queue. */
640 
641 static void ipmr_expire_process(unsigned long arg)
642 {
643  struct mr_table *mrt = (struct mr_table *)arg;
644  unsigned long now;
645  unsigned long expires;
646  struct mfc_cache *c, *next;
647 
648  if (!spin_trylock(&mfc_unres_lock)) {
649  mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
650  return;
651  }
652 
653  if (list_empty(&mrt->mfc_unres_queue))
654  goto out;
655 
656  now = jiffies;
657  expires = 10*HZ;
658 
660  if (time_after(c->mfc_un.unres.expires, now)) {
661  unsigned long interval = c->mfc_un.unres.expires - now;
662  if (interval < expires)
663  expires = interval;
664  continue;
665  }
666 
667  list_del(&c->list);
668  ipmr_destroy_unres(mrt, c);
669  }
670 
671  if (!list_empty(&mrt->mfc_unres_queue))
672  mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
673 
674 out:
675  spin_unlock(&mfc_unres_lock);
676 }
677 
678 /* Fill oifs list. It is called under write locked mrt_lock. */
679 
680 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
681  unsigned char *ttls)
682 {
683  int vifi;
684 
685  cache->mfc_un.res.minvif = MAXVIFS;
686  cache->mfc_un.res.maxvif = 0;
687  memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
688 
689  for (vifi = 0; vifi < mrt->maxvif; vifi++) {
690  if (VIF_EXISTS(mrt, vifi) &&
691  ttls[vifi] && ttls[vifi] < 255) {
692  cache->mfc_un.res.ttls[vifi] = ttls[vifi];
693  if (cache->mfc_un.res.minvif > vifi)
694  cache->mfc_un.res.minvif = vifi;
695  if (cache->mfc_un.res.maxvif <= vifi)
696  cache->mfc_un.res.maxvif = vifi + 1;
697  }
698  }
699 }
700 
701 static int vif_add(struct net *net, struct mr_table *mrt,
702  struct vifctl *vifc, int mrtsock)
703 {
704  int vifi = vifc->vifc_vifi;
705  struct vif_device *v = &mrt->vif_table[vifi];
706  struct net_device *dev;
707  struct in_device *in_dev;
708  int err;
709 
710  /* Is vif busy ? */
711  if (VIF_EXISTS(mrt, vifi))
712  return -EADDRINUSE;
713 
714  switch (vifc->vifc_flags) {
715 #ifdef CONFIG_IP_PIMSM
716  case VIFF_REGISTER:
717  /*
718  * Special Purpose VIF in PIM
719  * All the packets will be sent to the daemon
720  */
721  if (mrt->mroute_reg_vif_num >= 0)
722  return -EADDRINUSE;
723  dev = ipmr_reg_vif(net, mrt);
724  if (!dev)
725  return -ENOBUFS;
726  err = dev_set_allmulti(dev, 1);
727  if (err) {
728  unregister_netdevice(dev);
729  dev_put(dev);
730  return err;
731  }
732  break;
733 #endif
734  case VIFF_TUNNEL:
735  dev = ipmr_new_tunnel(net, vifc);
736  if (!dev)
737  return -ENOBUFS;
738  err = dev_set_allmulti(dev, 1);
739  if (err) {
740  ipmr_del_tunnel(dev, vifc);
741  dev_put(dev);
742  return err;
743  }
744  break;
745 
746  case VIFF_USE_IFINDEX:
747  case 0:
748  if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
749  dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
750  if (dev && __in_dev_get_rtnl(dev) == NULL) {
751  dev_put(dev);
752  return -EADDRNOTAVAIL;
753  }
754  } else {
755  dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
756  }
757  if (!dev)
758  return -EADDRNOTAVAIL;
759  err = dev_set_allmulti(dev, 1);
760  if (err) {
761  dev_put(dev);
762  return err;
763  }
764  break;
765  default:
766  return -EINVAL;
767  }
768 
769  in_dev = __in_dev_get_rtnl(dev);
770  if (!in_dev) {
771  dev_put(dev);
772  return -EADDRNOTAVAIL;
773  }
774  IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
775  ip_rt_multicast_event(in_dev);
776 
777  /* Fill in the VIF structures */
778 
779  v->rate_limit = vifc->vifc_rate_limit;
780  v->local = vifc->vifc_lcl_addr.s_addr;
781  v->remote = vifc->vifc_rmt_addr.s_addr;
782  v->flags = vifc->vifc_flags;
783  if (!mrtsock)
784  v->flags |= VIFF_STATIC;
785  v->threshold = vifc->vifc_threshold;
786  v->bytes_in = 0;
787  v->bytes_out = 0;
788  v->pkt_in = 0;
789  v->pkt_out = 0;
790  v->link = dev->ifindex;
791  if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
792  v->link = dev->iflink;
793 
794  /* And finish update writing critical data */
795  write_lock_bh(&mrt_lock);
796  v->dev = dev;
797 #ifdef CONFIG_IP_PIMSM
798  if (v->flags & VIFF_REGISTER)
799  mrt->mroute_reg_vif_num = vifi;
800 #endif
801  if (vifi+1 > mrt->maxvif)
802  mrt->maxvif = vifi+1;
803  write_unlock_bh(&mrt_lock);
804  return 0;
805 }
806 
807 /* called with rcu_read_lock() */
808 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
809  __be32 origin,
810  __be32 mcastgrp)
811 {
812  int line = MFC_HASH(mcastgrp, origin);
813  struct mfc_cache *c;
814 
815  list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
816  if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
817  return c;
818  }
819  return NULL;
820 }
821 
822 /*
823  * Allocate a multicast cache entry
824  */
825 static struct mfc_cache *ipmr_cache_alloc(void)
826 {
827  struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
828 
829  if (c)
830  c->mfc_un.res.minvif = MAXVIFS;
831  return c;
832 }
833 
834 static struct mfc_cache *ipmr_cache_alloc_unres(void)
835 {
836  struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
837 
838  if (c) {
839  skb_queue_head_init(&c->mfc_un.unres.unresolved);
840  c->mfc_un.unres.expires = jiffies + 10*HZ;
841  }
842  return c;
843 }
844 
845 /*
846  * A cache entry has gone into a resolved state from queued
847  */
848 
849 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
850  struct mfc_cache *uc, struct mfc_cache *c)
851 {
852  struct sk_buff *skb;
853  struct nlmsgerr *e;
854 
855  /* Play the pending entries through our router */
856 
857  while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
858  if (ip_hdr(skb)->version == 0) {
859  struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
860 
861  if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
862  nlh->nlmsg_len = skb_tail_pointer(skb) -
863  (u8 *)nlh;
864  } else {
865  nlh->nlmsg_type = NLMSG_ERROR;
866  nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
867  skb_trim(skb, nlh->nlmsg_len);
868  e = NLMSG_DATA(nlh);
869  e->error = -EMSGSIZE;
870  memset(&e->msg, 0, sizeof(e->msg));
871  }
872 
873  rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
874  } else {
875  ip_mr_forward(net, mrt, skb, c, 0);
876  }
877  }
878 }
879 
880 /*
881  * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
882  * expects the following bizarre scheme.
883  *
884  * Called under mrt_lock.
885  */
886 
887 static int ipmr_cache_report(struct mr_table *mrt,
888  struct sk_buff *pkt, vifi_t vifi, int assert)
889 {
890  struct sk_buff *skb;
891  const int ihl = ip_hdrlen(pkt);
892  struct igmphdr *igmp;
893  struct igmpmsg *msg;
894  struct sock *mroute_sk;
895  int ret;
896 
897 #ifdef CONFIG_IP_PIMSM
898  if (assert == IGMPMSG_WHOLEPKT)
899  skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
900  else
901 #endif
902  skb = alloc_skb(128, GFP_ATOMIC);
903 
904  if (!skb)
905  return -ENOBUFS;
906 
907 #ifdef CONFIG_IP_PIMSM
908  if (assert == IGMPMSG_WHOLEPKT) {
909  /* Ugly, but we have no choice with this interface.
910  * Duplicate old header, fix ihl, length etc.
911  * And all this only to mangle msg->im_msgtype and
912  * to set msg->im_mbz to "mbz" :-)
913  */
914  skb_push(skb, sizeof(struct iphdr));
915  skb_reset_network_header(skb);
916  skb_reset_transport_header(skb);
917  msg = (struct igmpmsg *)skb_network_header(skb);
918  memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
920  msg->im_mbz = 0;
921  msg->im_vif = mrt->mroute_reg_vif_num;
922  ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
923  ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
924  sizeof(struct iphdr));
925  } else
926 #endif
927  {
928 
929  /* Copy the IP header */
930 
931  skb->network_header = skb->tail;
932  skb_put(skb, ihl);
933  skb_copy_to_linear_data(skb, pkt->data, ihl);
934  ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
935  msg = (struct igmpmsg *)skb_network_header(skb);
936  msg->im_vif = vifi;
937  skb_dst_set(skb, dst_clone(skb_dst(pkt)));
938 
939  /* Add our header */
940 
941  igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
942  igmp->type =
943  msg->im_msgtype = assert;
944  igmp->code = 0;
945  ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
946  skb->transport_header = skb->network_header;
947  }
948 
949  rcu_read_lock();
950  mroute_sk = rcu_dereference(mrt->mroute_sk);
951  if (mroute_sk == NULL) {
952  rcu_read_unlock();
953  kfree_skb(skb);
954  return -EINVAL;
955  }
956 
957  /* Deliver to mrouted */
958 
959  ret = sock_queue_rcv_skb(mroute_sk, skb);
960  rcu_read_unlock();
961  if (ret < 0) {
962  net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
963  kfree_skb(skb);
964  }
965 
966  return ret;
967 }
968 
969 /*
970  * Queue a packet for resolution. It gets locked cache entry!
971  */
972 
973 static int
974 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
975 {
976  bool found = false;
977  int err;
978  struct mfc_cache *c;
979  const struct iphdr *iph = ip_hdr(skb);
980 
981  spin_lock_bh(&mfc_unres_lock);
983  if (c->mfc_mcastgrp == iph->daddr &&
984  c->mfc_origin == iph->saddr) {
985  found = true;
986  break;
987  }
988  }
989 
990  if (!found) {
991  /* Create a new entry if allowable */
992 
993  if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
994  (c = ipmr_cache_alloc_unres()) == NULL) {
995  spin_unlock_bh(&mfc_unres_lock);
996 
997  kfree_skb(skb);
998  return -ENOBUFS;
999  }
1000 
1001  /* Fill in the new cache entry */
1002 
1003  c->mfc_parent = -1;
1004  c->mfc_origin = iph->saddr;
1005  c->mfc_mcastgrp = iph->daddr;
1006 
1007  /* Reflect first query at mrouted. */
1008 
1009  err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1010  if (err < 0) {
1011  /* If the report failed throw the cache entry
1012  out - Brad Parker
1013  */
1014  spin_unlock_bh(&mfc_unres_lock);
1015 
1016  ipmr_cache_free(c);
1017  kfree_skb(skb);
1018  return err;
1019  }
1020 
1022  list_add(&c->list, &mrt->mfc_unres_queue);
1023 
1024  if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1025  mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1026  }
1027 
1028  /* See if we can append the packet */
1029 
1030  if (c->mfc_un.unres.unresolved.qlen > 3) {
1031  kfree_skb(skb);
1032  err = -ENOBUFS;
1033  } else {
1034  skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1035  err = 0;
1036  }
1037 
1038  spin_unlock_bh(&mfc_unres_lock);
1039  return err;
1040 }
1041 
1042 /*
1043  * MFC cache manipulation by user space mroute daemon
1044  */
1045 
1046 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1047 {
1048  int line;
1049  struct mfc_cache *c, *next;
1050 
1051  line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1052 
1053  list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1054  if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1055  c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1056  list_del_rcu(&c->list);
1057 
1058  ipmr_cache_free(c);
1059  return 0;
1060  }
1061  }
1062  return -ENOENT;
1063 }
1064 
1065 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1066  struct mfcctl *mfc, int mrtsock)
1067 {
1068  bool found = false;
1069  int line;
1070  struct mfc_cache *uc, *c;
1071 
1072  if (mfc->mfcc_parent >= MAXVIFS)
1073  return -ENFILE;
1074 
1075  line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1076 
1077  list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1078  if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1079  c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1080  found = true;
1081  break;
1082  }
1083  }
1084 
1085  if (found) {
1086  write_lock_bh(&mrt_lock);
1087  c->mfc_parent = mfc->mfcc_parent;
1088  ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1089  if (!mrtsock)
1090  c->mfc_flags |= MFC_STATIC;
1091  write_unlock_bh(&mrt_lock);
1092  return 0;
1093  }
1094 
1095  if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1096  return -EINVAL;
1097 
1098  c = ipmr_cache_alloc();
1099  if (c == NULL)
1100  return -ENOMEM;
1101 
1102  c->mfc_origin = mfc->mfcc_origin.s_addr;
1103  c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1104  c->mfc_parent = mfc->mfcc_parent;
1105  ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1106  if (!mrtsock)
1107  c->mfc_flags |= MFC_STATIC;
1108 
1109  list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1110 
1111  /*
1112  * Check to see if we resolved a queued list. If so we
1113  * need to send on the frames and tidy up.
1114  */
1115  found = false;
1116  spin_lock_bh(&mfc_unres_lock);
1118  if (uc->mfc_origin == c->mfc_origin &&
1119  uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1120  list_del(&uc->list);
1122  found = true;
1123  break;
1124  }
1125  }
1126  if (list_empty(&mrt->mfc_unres_queue))
1128  spin_unlock_bh(&mfc_unres_lock);
1129 
1130  if (found) {
1131  ipmr_cache_resolve(net, mrt, uc, c);
1132  ipmr_cache_free(uc);
1133  }
1134  return 0;
1135 }
1136 
1137 /*
1138  * Close the multicast socket, and clear the vif tables etc
1139  */
1140 
1141 static void mroute_clean_tables(struct mr_table *mrt)
1142 {
1143  int i;
1144  LIST_HEAD(list);
1145  struct mfc_cache *c, *next;
1146 
1147  /* Shut down all active vif entries */
1148 
1149  for (i = 0; i < mrt->maxvif; i++) {
1150  if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1151  vif_delete(mrt, i, 0, &list);
1152  }
1154 
1155  /* Wipe the cache */
1156 
1157  for (i = 0; i < MFC_LINES; i++) {
1158  list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1159  if (c->mfc_flags & MFC_STATIC)
1160  continue;
1161  list_del_rcu(&c->list);
1162  ipmr_cache_free(c);
1163  }
1164  }
1165 
1166  if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1167  spin_lock_bh(&mfc_unres_lock);
1168  list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1169  list_del(&c->list);
1170  ipmr_destroy_unres(mrt, c);
1171  }
1172  spin_unlock_bh(&mfc_unres_lock);
1173  }
1174 }
1175 
1176 /* called from ip_ra_control(), before an RCU grace period,
1177  * we dont need to call synchronize_rcu() here
1178  */
1179 static void mrtsock_destruct(struct sock *sk)
1180 {
1181  struct net *net = sock_net(sk);
1182  struct mr_table *mrt;
1183 
1184  rtnl_lock();
1185  ipmr_for_each_table(mrt, net) {
1186  if (sk == rtnl_dereference(mrt->mroute_sk)) {
1187  IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1189  mroute_clean_tables(mrt);
1190  }
1191  }
1192  rtnl_unlock();
1193 }
1194 
1195 /*
1196  * Socket options and virtual interface manipulation. The whole
1197  * virtual interface system is a complete heap, but unfortunately
1198  * that's how BSD mrouted happens to think. Maybe one day with a proper
1199  * MOSPF/PIM router set up we can clean this up.
1200  */
1201 
1202 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1203 {
1204  int ret;
1205  struct vifctl vif;
1206  struct mfcctl mfc;
1207  struct net *net = sock_net(sk);
1208  struct mr_table *mrt;
1209 
1210  mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1211  if (mrt == NULL)
1212  return -ENOENT;
1213 
1214  if (optname != MRT_INIT) {
1215  if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1217  return -EACCES;
1218  }
1219 
1220  switch (optname) {
1221  case MRT_INIT:
1222  if (sk->sk_type != SOCK_RAW ||
1223  inet_sk(sk)->inet_num != IPPROTO_IGMP)
1224  return -EOPNOTSUPP;
1225  if (optlen != sizeof(int))
1226  return -ENOPROTOOPT;
1227 
1228  rtnl_lock();
1229  if (rtnl_dereference(mrt->mroute_sk)) {
1230  rtnl_unlock();
1231  return -EADDRINUSE;
1232  }
1233 
1234  ret = ip_ra_control(sk, 1, mrtsock_destruct);
1235  if (ret == 0) {
1236  rcu_assign_pointer(mrt->mroute_sk, sk);
1237  IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1238  }
1239  rtnl_unlock();
1240  return ret;
1241  case MRT_DONE:
1242  if (sk != rcu_access_pointer(mrt->mroute_sk))
1243  return -EACCES;
1244  return ip_ra_control(sk, 0, NULL);
1245  case MRT_ADD_VIF:
1246  case MRT_DEL_VIF:
1247  if (optlen != sizeof(vif))
1248  return -EINVAL;
1249  if (copy_from_user(&vif, optval, sizeof(vif)))
1250  return -EFAULT;
1251  if (vif.vifc_vifi >= MAXVIFS)
1252  return -ENFILE;
1253  rtnl_lock();
1254  if (optname == MRT_ADD_VIF) {
1255  ret = vif_add(net, mrt, &vif,
1256  sk == rtnl_dereference(mrt->mroute_sk));
1257  } else {
1258  ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1259  }
1260  rtnl_unlock();
1261  return ret;
1262 
1263  /*
1264  * Manipulate the forwarding caches. These live
1265  * in a sort of kernel/user symbiosis.
1266  */
1267  case MRT_ADD_MFC:
1268  case MRT_DEL_MFC:
1269  if (optlen != sizeof(mfc))
1270  return -EINVAL;
1271  if (copy_from_user(&mfc, optval, sizeof(mfc)))
1272  return -EFAULT;
1273  rtnl_lock();
1274  if (optname == MRT_DEL_MFC)
1275  ret = ipmr_mfc_delete(mrt, &mfc);
1276  else
1277  ret = ipmr_mfc_add(net, mrt, &mfc,
1278  sk == rtnl_dereference(mrt->mroute_sk));
1279  rtnl_unlock();
1280  return ret;
1281  /*
1282  * Control PIM assert.
1283  */
1284  case MRT_ASSERT:
1285  {
1286  int v;
1287  if (get_user(v, (int __user *)optval))
1288  return -EFAULT;
1289  mrt->mroute_do_assert = (v) ? 1 : 0;
1290  return 0;
1291  }
1292 #ifdef CONFIG_IP_PIMSM
1293  case MRT_PIM:
1294  {
1295  int v;
1296 
1297  if (get_user(v, (int __user *)optval))
1298  return -EFAULT;
1299  v = (v) ? 1 : 0;
1300 
1301  rtnl_lock();
1302  ret = 0;
1303  if (v != mrt->mroute_do_pim) {
1304  mrt->mroute_do_pim = v;
1305  mrt->mroute_do_assert = v;
1306  }
1307  rtnl_unlock();
1308  return ret;
1309  }
1310 #endif
1311 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1312  case MRT_TABLE:
1313  {
1314  u32 v;
1315 
1316  if (optlen != sizeof(u32))
1317  return -EINVAL;
1318  if (get_user(v, (u32 __user *)optval))
1319  return -EFAULT;
1320 
1321  /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1322  if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1323  return -EINVAL;
1324 
1325  rtnl_lock();
1326  ret = 0;
1327  if (sk == rtnl_dereference(mrt->mroute_sk)) {
1328  ret = -EBUSY;
1329  } else {
1330  if (!ipmr_new_table(net, v))
1331  ret = -ENOMEM;
1332  raw_sk(sk)->ipmr_table = v;
1333  }
1334  rtnl_unlock();
1335  return ret;
1336  }
1337 #endif
1338  /*
1339  * Spurious command, or MRT_VERSION which you cannot
1340  * set.
1341  */
1342  default:
1343  return -ENOPROTOOPT;
1344  }
1345 }
1346 
1347 /*
1348  * Getsock opt support for the multicast routing system.
1349  */
1350 
1351 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1352 {
1353  int olr;
1354  int val;
1355  struct net *net = sock_net(sk);
1356  struct mr_table *mrt;
1357 
1358  mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1359  if (mrt == NULL)
1360  return -ENOENT;
1361 
1362  if (optname != MRT_VERSION &&
1363 #ifdef CONFIG_IP_PIMSM
1364  optname != MRT_PIM &&
1365 #endif
1366  optname != MRT_ASSERT)
1367  return -ENOPROTOOPT;
1368 
1369  if (get_user(olr, optlen))
1370  return -EFAULT;
1371 
1372  olr = min_t(unsigned int, olr, sizeof(int));
1373  if (olr < 0)
1374  return -EINVAL;
1375 
1376  if (put_user(olr, optlen))
1377  return -EFAULT;
1378  if (optname == MRT_VERSION)
1379  val = 0x0305;
1380 #ifdef CONFIG_IP_PIMSM
1381  else if (optname == MRT_PIM)
1382  val = mrt->mroute_do_pim;
1383 #endif
1384  else
1385  val = mrt->mroute_do_assert;
1386  if (copy_to_user(optval, &val, olr))
1387  return -EFAULT;
1388  return 0;
1389 }
1390 
1391 /*
1392  * The IP multicast ioctl support routines.
1393  */
1394 
1395 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1396 {
1397  struct sioc_sg_req sr;
1398  struct sioc_vif_req vr;
1399  struct vif_device *vif;
1400  struct mfc_cache *c;
1401  struct net *net = sock_net(sk);
1402  struct mr_table *mrt;
1403 
1404  mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1405  if (mrt == NULL)
1406  return -ENOENT;
1407 
1408  switch (cmd) {
1409  case SIOCGETVIFCNT:
1410  if (copy_from_user(&vr, arg, sizeof(vr)))
1411  return -EFAULT;
1412  if (vr.vifi >= mrt->maxvif)
1413  return -EINVAL;
1414  read_lock(&mrt_lock);
1415  vif = &mrt->vif_table[vr.vifi];
1416  if (VIF_EXISTS(mrt, vr.vifi)) {
1417  vr.icount = vif->pkt_in;
1418  vr.ocount = vif->pkt_out;
1419  vr.ibytes = vif->bytes_in;
1420  vr.obytes = vif->bytes_out;
1421  read_unlock(&mrt_lock);
1422 
1423  if (copy_to_user(arg, &vr, sizeof(vr)))
1424  return -EFAULT;
1425  return 0;
1426  }
1427  read_unlock(&mrt_lock);
1428  return -EADDRNOTAVAIL;
1429  case SIOCGETSGCNT:
1430  if (copy_from_user(&sr, arg, sizeof(sr)))
1431  return -EFAULT;
1432 
1433  rcu_read_lock();
1434  c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1435  if (c) {
1436  sr.pktcnt = c->mfc_un.res.pkt;
1437  sr.bytecnt = c->mfc_un.res.bytes;
1438  sr.wrong_if = c->mfc_un.res.wrong_if;
1439  rcu_read_unlock();
1440 
1441  if (copy_to_user(arg, &sr, sizeof(sr)))
1442  return -EFAULT;
1443  return 0;
1444  }
1445  rcu_read_unlock();
1446  return -EADDRNOTAVAIL;
1447  default:
1448  return -ENOIOCTLCMD;
1449  }
1450 }
1451 
1452 #ifdef CONFIG_COMPAT
1453 struct compat_sioc_sg_req {
1454  struct in_addr src;
1455  struct in_addr grp;
1456  compat_ulong_t pktcnt;
1458  compat_ulong_t wrong_if;
1459 };
1460 
1461 struct compat_sioc_vif_req {
1462  vifi_t vifi; /* Which iface */
1463  compat_ulong_t icount;
1464  compat_ulong_t ocount;
1465  compat_ulong_t ibytes;
1466  compat_ulong_t obytes;
1467 };
1468 
1469 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1470 {
1471  struct compat_sioc_sg_req sr;
1472  struct compat_sioc_vif_req vr;
1473  struct vif_device *vif;
1474  struct mfc_cache *c;
1475  struct net *net = sock_net(sk);
1476  struct mr_table *mrt;
1477 
1478  mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1479  if (mrt == NULL)
1480  return -ENOENT;
1481 
1482  switch (cmd) {
1483  case SIOCGETVIFCNT:
1484  if (copy_from_user(&vr, arg, sizeof(vr)))
1485  return -EFAULT;
1486  if (vr.vifi >= mrt->maxvif)
1487  return -EINVAL;
1488  read_lock(&mrt_lock);
1489  vif = &mrt->vif_table[vr.vifi];
1490  if (VIF_EXISTS(mrt, vr.vifi)) {
1491  vr.icount = vif->pkt_in;
1492  vr.ocount = vif->pkt_out;
1493  vr.ibytes = vif->bytes_in;
1494  vr.obytes = vif->bytes_out;
1495  read_unlock(&mrt_lock);
1496 
1497  if (copy_to_user(arg, &vr, sizeof(vr)))
1498  return -EFAULT;
1499  return 0;
1500  }
1501  read_unlock(&mrt_lock);
1502  return -EADDRNOTAVAIL;
1503  case SIOCGETSGCNT:
1504  if (copy_from_user(&sr, arg, sizeof(sr)))
1505  return -EFAULT;
1506 
1507  rcu_read_lock();
1508  c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1509  if (c) {
1510  sr.pktcnt = c->mfc_un.res.pkt;
1511  sr.bytecnt = c->mfc_un.res.bytes;
1512  sr.wrong_if = c->mfc_un.res.wrong_if;
1513  rcu_read_unlock();
1514 
1515  if (copy_to_user(arg, &sr, sizeof(sr)))
1516  return -EFAULT;
1517  return 0;
1518  }
1519  rcu_read_unlock();
1520  return -EADDRNOTAVAIL;
1521  default:
1522  return -ENOIOCTLCMD;
1523  }
1524 }
1525 #endif
1526 
1527 
1528 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1529 {
1530  struct net_device *dev = ptr;
1531  struct net *net = dev_net(dev);
1532  struct mr_table *mrt;
1533  struct vif_device *v;
1534  int ct;
1535 
1536  if (event != NETDEV_UNREGISTER)
1537  return NOTIFY_DONE;
1538 
1539  ipmr_for_each_table(mrt, net) {
1540  v = &mrt->vif_table[0];
1541  for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1542  if (v->dev == dev)
1543  vif_delete(mrt, ct, 1, NULL);
1544  }
1545  }
1546  return NOTIFY_DONE;
1547 }
1548 
1549 
1550 static struct notifier_block ip_mr_notifier = {
1551  .notifier_call = ipmr_device_event,
1552 };
1553 
1554 /*
1555  * Encapsulate a packet by attaching a valid IPIP header to it.
1556  * This avoids tunnel drivers and other mess and gives us the speed so
1557  * important for multicast video.
1558  */
1559 
1560 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1561 {
1562  struct iphdr *iph;
1563  const struct iphdr *old_iph = ip_hdr(skb);
1564 
1565  skb_push(skb, sizeof(struct iphdr));
1566  skb->transport_header = skb->network_header;
1567  skb_reset_network_header(skb);
1568  iph = ip_hdr(skb);
1569 
1570  iph->version = 4;
1571  iph->tos = old_iph->tos;
1572  iph->ttl = old_iph->ttl;
1573  iph->frag_off = 0;
1574  iph->daddr = daddr;
1575  iph->saddr = saddr;
1576  iph->protocol = IPPROTO_IPIP;
1577  iph->ihl = 5;
1578  iph->tot_len = htons(skb->len);
1579  ip_select_ident(iph, skb_dst(skb), NULL);
1580  ip_send_check(iph);
1581 
1582  memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1583  nf_reset(skb);
1584 }
1585 
1586 static inline int ipmr_forward_finish(struct sk_buff *skb)
1587 {
1588  struct ip_options *opt = &(IPCB(skb)->opt);
1589 
1590  IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1591  IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1592 
1593  if (unlikely(opt->optlen))
1594  ip_forward_options(skb);
1595 
1596  return dst_output(skb);
1597 }
1598 
1599 /*
1600  * Processing handlers for ipmr_forward
1601  */
1602 
1603 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1604  struct sk_buff *skb, struct mfc_cache *c, int vifi)
1605 {
1606  const struct iphdr *iph = ip_hdr(skb);
1607  struct vif_device *vif = &mrt->vif_table[vifi];
1608  struct net_device *dev;
1609  struct rtable *rt;
1610  struct flowi4 fl4;
1611  int encap = 0;
1612 
1613  if (vif->dev == NULL)
1614  goto out_free;
1615 
1616 #ifdef CONFIG_IP_PIMSM
1617  if (vif->flags & VIFF_REGISTER) {
1618  vif->pkt_out++;
1619  vif->bytes_out += skb->len;
1620  vif->dev->stats.tx_bytes += skb->len;
1621  vif->dev->stats.tx_packets++;
1622  ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1623  goto out_free;
1624  }
1625 #endif
1626 
1627  if (vif->flags & VIFF_TUNNEL) {
1628  rt = ip_route_output_ports(net, &fl4, NULL,
1629  vif->remote, vif->local,
1630  0, 0,
1631  IPPROTO_IPIP,
1632  RT_TOS(iph->tos), vif->link);
1633  if (IS_ERR(rt))
1634  goto out_free;
1635  encap = sizeof(struct iphdr);
1636  } else {
1637  rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1638  0, 0,
1639  IPPROTO_IPIP,
1640  RT_TOS(iph->tos), vif->link);
1641  if (IS_ERR(rt))
1642  goto out_free;
1643  }
1644 
1645  dev = rt->dst.dev;
1646 
1647  if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1648  /* Do not fragment multicasts. Alas, IPv4 does not
1649  * allow to send ICMP, so that packets will disappear
1650  * to blackhole.
1651  */
1652 
1653  IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1654  ip_rt_put(rt);
1655  goto out_free;
1656  }
1657 
1658  encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1659 
1660  if (skb_cow(skb, encap)) {
1661  ip_rt_put(rt);
1662  goto out_free;
1663  }
1664 
1665  vif->pkt_out++;
1666  vif->bytes_out += skb->len;
1667 
1668  skb_dst_drop(skb);
1669  skb_dst_set(skb, &rt->dst);
1670  ip_decrease_ttl(ip_hdr(skb));
1671 
1672  /* FIXME: forward and output firewalls used to be called here.
1673  * What do we do with netfilter? -- RR
1674  */
1675  if (vif->flags & VIFF_TUNNEL) {
1676  ip_encap(skb, vif->local, vif->remote);
1677  /* FIXME: extra output firewall step used to be here. --RR */
1678  vif->dev->stats.tx_packets++;
1679  vif->dev->stats.tx_bytes += skb->len;
1680  }
1681 
1682  IPCB(skb)->flags |= IPSKB_FORWARDED;
1683 
1684  /*
1685  * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1686  * not only before forwarding, but after forwarding on all output
1687  * interfaces. It is clear, if mrouter runs a multicasting
1688  * program, it should receive packets not depending to what interface
1689  * program is joined.
1690  * If we will not make it, the program will have to join on all
1691  * interfaces. On the other hand, multihoming host (or router, but
1692  * not mrouter) cannot join to more than one interface - it will
1693  * result in receiving multiple packets.
1694  */
1695  NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1696  ipmr_forward_finish);
1697  return;
1698 
1699 out_free:
1700  kfree_skb(skb);
1701 }
1702 
1703 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1704 {
1705  int ct;
1706 
1707  for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1708  if (mrt->vif_table[ct].dev == dev)
1709  break;
1710  }
1711  return ct;
1712 }
1713 
1714 /* "local" means that we should preserve one skb (for local delivery) */
1715 
1716 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1717  struct sk_buff *skb, struct mfc_cache *cache,
1718  int local)
1719 {
1720  int psend = -1;
1721  int vif, ct;
1722 
1723  vif = cache->mfc_parent;
1724  cache->mfc_un.res.pkt++;
1725  cache->mfc_un.res.bytes += skb->len;
1726 
1727  /*
1728  * Wrong interface: drop packet and (maybe) send PIM assert.
1729  */
1730  if (mrt->vif_table[vif].dev != skb->dev) {
1731  int true_vifi;
1732 
1733  if (rt_is_output_route(skb_rtable(skb))) {
1734  /* It is our own packet, looped back.
1735  * Very complicated situation...
1736  *
1737  * The best workaround until routing daemons will be
1738  * fixed is not to redistribute packet, if it was
1739  * send through wrong interface. It means, that
1740  * multicast applications WILL NOT work for
1741  * (S,G), which have default multicast route pointing
1742  * to wrong oif. In any case, it is not a good
1743  * idea to use multicasting applications on router.
1744  */
1745  goto dont_forward;
1746  }
1747 
1748  cache->mfc_un.res.wrong_if++;
1749  true_vifi = ipmr_find_vif(mrt, skb->dev);
1750 
1751  if (true_vifi >= 0 && mrt->mroute_do_assert &&
1752  /* pimsm uses asserts, when switching from RPT to SPT,
1753  * so that we cannot check that packet arrived on an oif.
1754  * It is bad, but otherwise we would need to move pretty
1755  * large chunk of pimd to kernel. Ough... --ANK
1756  */
1757  (mrt->mroute_do_pim ||
1758  cache->mfc_un.res.ttls[true_vifi] < 255) &&
1759  time_after(jiffies,
1760  cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1761  cache->mfc_un.res.last_assert = jiffies;
1762  ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1763  }
1764  goto dont_forward;
1765  }
1766 
1767  mrt->vif_table[vif].pkt_in++;
1768  mrt->vif_table[vif].bytes_in += skb->len;
1769 
1770  /*
1771  * Forward the frame
1772  */
1773  for (ct = cache->mfc_un.res.maxvif - 1;
1774  ct >= cache->mfc_un.res.minvif; ct--) {
1775  if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1776  if (psend != -1) {
1777  struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1778 
1779  if (skb2)
1780  ipmr_queue_xmit(net, mrt, skb2, cache,
1781  psend);
1782  }
1783  psend = ct;
1784  }
1785  }
1786  if (psend != -1) {
1787  if (local) {
1788  struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1789 
1790  if (skb2)
1791  ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1792  } else {
1793  ipmr_queue_xmit(net, mrt, skb, cache, psend);
1794  return 0;
1795  }
1796  }
1797 
1798 dont_forward:
1799  if (!local)
1800  kfree_skb(skb);
1801  return 0;
1802 }
1803 
1804 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1805 {
1806  struct rtable *rt = skb_rtable(skb);
1807  struct iphdr *iph = ip_hdr(skb);
1808  struct flowi4 fl4 = {
1809  .daddr = iph->daddr,
1810  .saddr = iph->saddr,
1811  .flowi4_tos = RT_TOS(iph->tos),
1812  .flowi4_oif = (rt_is_output_route(rt) ?
1813  skb->dev->ifindex : 0),
1814  .flowi4_iif = (rt_is_output_route(rt) ?
1816  skb->dev->ifindex),
1817  .flowi4_mark = skb->mark,
1818  };
1819  struct mr_table *mrt;
1820  int err;
1821 
1822  err = ipmr_fib_lookup(net, &fl4, &mrt);
1823  if (err)
1824  return ERR_PTR(err);
1825  return mrt;
1826 }
1827 
1828 /*
1829  * Multicast packets for forwarding arrive here
1830  * Called with rcu_read_lock();
1831  */
1832 
1833 int ip_mr_input(struct sk_buff *skb)
1834 {
1835  struct mfc_cache *cache;
1836  struct net *net = dev_net(skb->dev);
1837  int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1838  struct mr_table *mrt;
1839 
1840  /* Packet is looped back after forward, it should not be
1841  * forwarded second time, but still can be delivered locally.
1842  */
1843  if (IPCB(skb)->flags & IPSKB_FORWARDED)
1844  goto dont_forward;
1845 
1846  mrt = ipmr_rt_fib_lookup(net, skb);
1847  if (IS_ERR(mrt)) {
1848  kfree_skb(skb);
1849  return PTR_ERR(mrt);
1850  }
1851  if (!local) {
1852  if (IPCB(skb)->opt.router_alert) {
1853  if (ip_call_ra_chain(skb))
1854  return 0;
1855  } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1856  /* IGMPv1 (and broken IGMPv2 implementations sort of
1857  * Cisco IOS <= 11.2(8)) do not put router alert
1858  * option to IGMP packets destined to routable
1859  * groups. It is very bad, because it means
1860  * that we can forward NO IGMP messages.
1861  */
1862  struct sock *mroute_sk;
1863 
1864  mroute_sk = rcu_dereference(mrt->mroute_sk);
1865  if (mroute_sk) {
1866  nf_reset(skb);
1867  raw_rcv(mroute_sk, skb);
1868  return 0;
1869  }
1870  }
1871  }
1872 
1873  /* already under rcu_read_lock() */
1874  cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1875 
1876  /*
1877  * No usable cache entry
1878  */
1879  if (cache == NULL) {
1880  int vif;
1881 
1882  if (local) {
1883  struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1884  ip_local_deliver(skb);
1885  if (skb2 == NULL)
1886  return -ENOBUFS;
1887  skb = skb2;
1888  }
1889 
1890  read_lock(&mrt_lock);
1891  vif = ipmr_find_vif(mrt, skb->dev);
1892  if (vif >= 0) {
1893  int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1894  read_unlock(&mrt_lock);
1895 
1896  return err2;
1897  }
1898  read_unlock(&mrt_lock);
1899  kfree_skb(skb);
1900  return -ENODEV;
1901  }
1902 
1903  read_lock(&mrt_lock);
1904  ip_mr_forward(net, mrt, skb, cache, local);
1905  read_unlock(&mrt_lock);
1906 
1907  if (local)
1908  return ip_local_deliver(skb);
1909 
1910  return 0;
1911 
1912 dont_forward:
1913  if (local)
1914  return ip_local_deliver(skb);
1915  kfree_skb(skb);
1916  return 0;
1917 }
1918 
1919 #ifdef CONFIG_IP_PIMSM
1920 /* called with rcu_read_lock() */
1921 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1922  unsigned int pimlen)
1923 {
1924  struct net_device *reg_dev = NULL;
1925  struct iphdr *encap;
1926 
1927  encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1928  /*
1929  * Check that:
1930  * a. packet is really sent to a multicast group
1931  * b. packet is not a NULL-REGISTER
1932  * c. packet is not truncated
1933  */
1934  if (!ipv4_is_multicast(encap->daddr) ||
1935  encap->tot_len == 0 ||
1936  ntohs(encap->tot_len) + pimlen > skb->len)
1937  return 1;
1938 
1939  read_lock(&mrt_lock);
1940  if (mrt->mroute_reg_vif_num >= 0)
1941  reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1942  read_unlock(&mrt_lock);
1943 
1944  if (reg_dev == NULL)
1945  return 1;
1946 
1947  skb->mac_header = skb->network_header;
1948  skb_pull(skb, (u8 *)encap - skb->data);
1949  skb_reset_network_header(skb);
1950  skb->protocol = htons(ETH_P_IP);
1951  skb->ip_summed = CHECKSUM_NONE;
1952  skb->pkt_type = PACKET_HOST;
1953 
1954  skb_tunnel_rx(skb, reg_dev);
1955 
1956  netif_rx(skb);
1957 
1958  return NET_RX_SUCCESS;
1959 }
1960 #endif
1961 
1962 #ifdef CONFIG_IP_PIMSM_V1
1963 /*
1964  * Handle IGMP messages of PIMv1
1965  */
1966 
1967 int pim_rcv_v1(struct sk_buff *skb)
1968 {
1969  struct igmphdr *pim;
1970  struct net *net = dev_net(skb->dev);
1971  struct mr_table *mrt;
1972 
1973  if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1974  goto drop;
1975 
1976  pim = igmp_hdr(skb);
1977 
1978  mrt = ipmr_rt_fib_lookup(net, skb);
1979  if (IS_ERR(mrt))
1980  goto drop;
1981  if (!mrt->mroute_do_pim ||
1982  pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1983  goto drop;
1984 
1985  if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1986 drop:
1987  kfree_skb(skb);
1988  }
1989  return 0;
1990 }
1991 #endif
1992 
1993 #ifdef CONFIG_IP_PIMSM_V2
1994 static int pim_rcv(struct sk_buff *skb)
1995 {
1996  struct pimreghdr *pim;
1997  struct net *net = dev_net(skb->dev);
1998  struct mr_table *mrt;
1999 
2000  if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2001  goto drop;
2002 
2003  pim = (struct pimreghdr *)skb_transport_header(skb);
2004  if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2005  (pim->flags & PIM_NULL_REGISTER) ||
2006  (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2007  csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2008  goto drop;
2009 
2010  mrt = ipmr_rt_fib_lookup(net, skb);
2011  if (IS_ERR(mrt))
2012  goto drop;
2013  if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2014 drop:
2015  kfree_skb(skb);
2016  }
2017  return 0;
2018 }
2019 #endif
2020 
2021 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2022  struct mfc_cache *c, struct rtmsg *rtm)
2023 {
2024  int ct;
2025  struct rtnexthop *nhp;
2026  struct nlattr *mp_attr;
2027 
2028  /* If cache is unresolved, don't try to parse IIF and OIF */
2029  if (c->mfc_parent >= MAXVIFS)
2030  return -ENOENT;
2031 
2032  if (VIF_EXISTS(mrt, c->mfc_parent) &&
2033  nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2034  return -EMSGSIZE;
2035 
2036  if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2037  return -EMSGSIZE;
2038 
2039  for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2040  if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2041  if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2042  nla_nest_cancel(skb, mp_attr);
2043  return -EMSGSIZE;
2044  }
2045 
2046  nhp->rtnh_flags = 0;
2047  nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2048  nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2049  nhp->rtnh_len = sizeof(*nhp);
2050  }
2051  }
2052 
2053  nla_nest_end(skb, mp_attr);
2054 
2055  rtm->rtm_type = RTN_MULTICAST;
2056  return 1;
2057 }
2058 
2059 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2060  __be32 saddr, __be32 daddr,
2061  struct rtmsg *rtm, int nowait)
2062 {
2063  struct mfc_cache *cache;
2064  struct mr_table *mrt;
2065  int err;
2066 
2067  mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2068  if (mrt == NULL)
2069  return -ENOENT;
2070 
2071  rcu_read_lock();
2072  cache = ipmr_cache_find(mrt, saddr, daddr);
2073 
2074  if (cache == NULL) {
2075  struct sk_buff *skb2;
2076  struct iphdr *iph;
2077  struct net_device *dev;
2078  int vif = -1;
2079 
2080  if (nowait) {
2081  rcu_read_unlock();
2082  return -EAGAIN;
2083  }
2084 
2085  dev = skb->dev;
2086  read_lock(&mrt_lock);
2087  if (dev)
2088  vif = ipmr_find_vif(mrt, dev);
2089  if (vif < 0) {
2090  read_unlock(&mrt_lock);
2091  rcu_read_unlock();
2092  return -ENODEV;
2093  }
2094  skb2 = skb_clone(skb, GFP_ATOMIC);
2095  if (!skb2) {
2096  read_unlock(&mrt_lock);
2097  rcu_read_unlock();
2098  return -ENOMEM;
2099  }
2100 
2101  skb_push(skb2, sizeof(struct iphdr));
2102  skb_reset_network_header(skb2);
2103  iph = ip_hdr(skb2);
2104  iph->ihl = sizeof(struct iphdr) >> 2;
2105  iph->saddr = saddr;
2106  iph->daddr = daddr;
2107  iph->version = 0;
2108  err = ipmr_cache_unresolved(mrt, vif, skb2);
2109  read_unlock(&mrt_lock);
2110  rcu_read_unlock();
2111  return err;
2112  }
2113 
2114  read_lock(&mrt_lock);
2115  if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2116  cache->mfc_flags |= MFC_NOTIFY;
2117  err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2118  read_unlock(&mrt_lock);
2119  rcu_read_unlock();
2120  return err;
2121 }
2122 
2123 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2124  u32 portid, u32 seq, struct mfc_cache *c)
2125 {
2126  struct nlmsghdr *nlh;
2127  struct rtmsg *rtm;
2128 
2129  nlh = nlmsg_put(skb, portid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2130  if (nlh == NULL)
2131  return -EMSGSIZE;
2132 
2133  rtm = nlmsg_data(nlh);
2135  rtm->rtm_dst_len = 32;
2136  rtm->rtm_src_len = 32;
2137  rtm->rtm_tos = 0;
2138  rtm->rtm_table = mrt->id;
2139  if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2140  goto nla_put_failure;
2141  rtm->rtm_type = RTN_MULTICAST;
2143  rtm->rtm_protocol = RTPROT_UNSPEC;
2144  rtm->rtm_flags = 0;
2145 
2146  if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2147  nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2148  goto nla_put_failure;
2149  if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2150  goto nla_put_failure;
2151 
2152  return nlmsg_end(skb, nlh);
2153 
2154 nla_put_failure:
2155  nlmsg_cancel(skb, nlh);
2156  return -EMSGSIZE;
2157 }
2158 
2159 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2160 {
2161  struct net *net = sock_net(skb->sk);
2162  struct mr_table *mrt;
2163  struct mfc_cache *mfc;
2164  unsigned int t = 0, s_t;
2165  unsigned int h = 0, s_h;
2166  unsigned int e = 0, s_e;
2167 
2168  s_t = cb->args[0];
2169  s_h = cb->args[1];
2170  s_e = cb->args[2];
2171 
2172  rcu_read_lock();
2173  ipmr_for_each_table(mrt, net) {
2174  if (t < s_t)
2175  goto next_table;
2176  if (t > s_t)
2177  s_h = 0;
2178  for (h = s_h; h < MFC_LINES; h++) {
2179  list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2180  if (e < s_e)
2181  goto next_entry;
2182  if (ipmr_fill_mroute(mrt, skb,
2183  NETLINK_CB(cb->skb).portid,
2184  cb->nlh->nlmsg_seq,
2185  mfc) < 0)
2186  goto done;
2187 next_entry:
2188  e++;
2189  }
2190  e = s_e = 0;
2191  }
2192  s_h = 0;
2193 next_table:
2194  t++;
2195  }
2196 done:
2197  rcu_read_unlock();
2198 
2199  cb->args[2] = e;
2200  cb->args[1] = h;
2201  cb->args[0] = t;
2202 
2203  return skb->len;
2204 }
2205 
2206 #ifdef CONFIG_PROC_FS
2207 /*
2208  * The /proc interfaces to multicast routing :
2209  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2210  */
2211 struct ipmr_vif_iter {
2212  struct seq_net_private p;
2213  struct mr_table *mrt;
2214  int ct;
2215 };
2216 
2217 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2218  struct ipmr_vif_iter *iter,
2219  loff_t pos)
2220 {
2221  struct mr_table *mrt = iter->mrt;
2222 
2223  for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2224  if (!VIF_EXISTS(mrt, iter->ct))
2225  continue;
2226  if (pos-- == 0)
2227  return &mrt->vif_table[iter->ct];
2228  }
2229  return NULL;
2230 }
2231 
2232 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2233  __acquires(mrt_lock)
2234 {
2235  struct ipmr_vif_iter *iter = seq->private;
2236  struct net *net = seq_file_net(seq);
2237  struct mr_table *mrt;
2238 
2239  mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2240  if (mrt == NULL)
2241  return ERR_PTR(-ENOENT);
2242 
2243  iter->mrt = mrt;
2244 
2245  read_lock(&mrt_lock);
2246  return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2247  : SEQ_START_TOKEN;
2248 }
2249 
2250 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2251 {
2252  struct ipmr_vif_iter *iter = seq->private;
2253  struct net *net = seq_file_net(seq);
2254  struct mr_table *mrt = iter->mrt;
2255 
2256  ++*pos;
2257  if (v == SEQ_START_TOKEN)
2258  return ipmr_vif_seq_idx(net, iter, 0);
2259 
2260  while (++iter->ct < mrt->maxvif) {
2261  if (!VIF_EXISTS(mrt, iter->ct))
2262  continue;
2263  return &mrt->vif_table[iter->ct];
2264  }
2265  return NULL;
2266 }
2267 
2268 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2269  __releases(mrt_lock)
2270 {
2271  read_unlock(&mrt_lock);
2272 }
2273 
2274 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2275 {
2276  struct ipmr_vif_iter *iter = seq->private;
2277  struct mr_table *mrt = iter->mrt;
2278 
2279  if (v == SEQ_START_TOKEN) {
2280  seq_puts(seq,
2281  "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2282  } else {
2283  const struct vif_device *vif = v;
2284  const char *name = vif->dev ? vif->dev->name : "none";
2285 
2286  seq_printf(seq,
2287  "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2288  vif - mrt->vif_table,
2289  name, vif->bytes_in, vif->pkt_in,
2290  vif->bytes_out, vif->pkt_out,
2291  vif->flags, vif->local, vif->remote);
2292  }
2293  return 0;
2294 }
2295 
2296 static const struct seq_operations ipmr_vif_seq_ops = {
2297  .start = ipmr_vif_seq_start,
2298  .next = ipmr_vif_seq_next,
2299  .stop = ipmr_vif_seq_stop,
2300  .show = ipmr_vif_seq_show,
2301 };
2302 
2303 static int ipmr_vif_open(struct inode *inode, struct file *file)
2304 {
2305  return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2306  sizeof(struct ipmr_vif_iter));
2307 }
2308 
2309 static const struct file_operations ipmr_vif_fops = {
2310  .owner = THIS_MODULE,
2311  .open = ipmr_vif_open,
2312  .read = seq_read,
2313  .llseek = seq_lseek,
2314  .release = seq_release_net,
2315 };
2316 
2317 struct ipmr_mfc_iter {
2318  struct seq_net_private p;
2319  struct mr_table *mrt;
2320  struct list_head *cache;
2321  int ct;
2322 };
2323 
2324 
2325 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2326  struct ipmr_mfc_iter *it, loff_t pos)
2327 {
2328  struct mr_table *mrt = it->mrt;
2329  struct mfc_cache *mfc;
2330 
2331  rcu_read_lock();
2332  for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2333  it->cache = &mrt->mfc_cache_array[it->ct];
2334  list_for_each_entry_rcu(mfc, it->cache, list)
2335  if (pos-- == 0)
2336  return mfc;
2337  }
2338  rcu_read_unlock();
2339 
2340  spin_lock_bh(&mfc_unres_lock);
2341  it->cache = &mrt->mfc_unres_queue;
2342  list_for_each_entry(mfc, it->cache, list)
2343  if (pos-- == 0)
2344  return mfc;
2345  spin_unlock_bh(&mfc_unres_lock);
2346 
2347  it->cache = NULL;
2348  return NULL;
2349 }
2350 
2351 
2352 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2353 {
2354  struct ipmr_mfc_iter *it = seq->private;
2355  struct net *net = seq_file_net(seq);
2356  struct mr_table *mrt;
2357 
2358  mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2359  if (mrt == NULL)
2360  return ERR_PTR(-ENOENT);
2361 
2362  it->mrt = mrt;
2363  it->cache = NULL;
2364  it->ct = 0;
2365  return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2366  : SEQ_START_TOKEN;
2367 }
2368 
2369 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2370 {
2371  struct mfc_cache *mfc = v;
2372  struct ipmr_mfc_iter *it = seq->private;
2373  struct net *net = seq_file_net(seq);
2374  struct mr_table *mrt = it->mrt;
2375 
2376  ++*pos;
2377 
2378  if (v == SEQ_START_TOKEN)
2379  return ipmr_mfc_seq_idx(net, seq->private, 0);
2380 
2381  if (mfc->list.next != it->cache)
2382  return list_entry(mfc->list.next, struct mfc_cache, list);
2383 
2384  if (it->cache == &mrt->mfc_unres_queue)
2385  goto end_of_list;
2386 
2387  BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2388 
2389  while (++it->ct < MFC_LINES) {
2390  it->cache = &mrt->mfc_cache_array[it->ct];
2391  if (list_empty(it->cache))
2392  continue;
2393  return list_first_entry(it->cache, struct mfc_cache, list);
2394  }
2395 
2396  /* exhausted cache_array, show unresolved */
2397  rcu_read_unlock();
2398  it->cache = &mrt->mfc_unres_queue;
2399  it->ct = 0;
2400 
2401  spin_lock_bh(&mfc_unres_lock);
2402  if (!list_empty(it->cache))
2403  return list_first_entry(it->cache, struct mfc_cache, list);
2404 
2405 end_of_list:
2406  spin_unlock_bh(&mfc_unres_lock);
2407  it->cache = NULL;
2408 
2409  return NULL;
2410 }
2411 
2412 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2413 {
2414  struct ipmr_mfc_iter *it = seq->private;
2415  struct mr_table *mrt = it->mrt;
2416 
2417  if (it->cache == &mrt->mfc_unres_queue)
2418  spin_unlock_bh(&mfc_unres_lock);
2419  else if (it->cache == &mrt->mfc_cache_array[it->ct])
2420  rcu_read_unlock();
2421 }
2422 
2423 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2424 {
2425  int n;
2426 
2427  if (v == SEQ_START_TOKEN) {
2428  seq_puts(seq,
2429  "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2430  } else {
2431  const struct mfc_cache *mfc = v;
2432  const struct ipmr_mfc_iter *it = seq->private;
2433  const struct mr_table *mrt = it->mrt;
2434 
2435  seq_printf(seq, "%08X %08X %-3hd",
2436  (__force u32) mfc->mfc_mcastgrp,
2437  (__force u32) mfc->mfc_origin,
2438  mfc->mfc_parent);
2439 
2440  if (it->cache != &mrt->mfc_unres_queue) {
2441  seq_printf(seq, " %8lu %8lu %8lu",
2442  mfc->mfc_un.res.pkt,
2443  mfc->mfc_un.res.bytes,
2444  mfc->mfc_un.res.wrong_if);
2445  for (n = mfc->mfc_un.res.minvif;
2446  n < mfc->mfc_un.res.maxvif; n++) {
2447  if (VIF_EXISTS(mrt, n) &&
2448  mfc->mfc_un.res.ttls[n] < 255)
2449  seq_printf(seq,
2450  " %2d:%-3d",
2451  n, mfc->mfc_un.res.ttls[n]);
2452  }
2453  } else {
2454  /* unresolved mfc_caches don't contain
2455  * pkt, bytes and wrong_if values
2456  */
2457  seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2458  }
2459  seq_putc(seq, '\n');
2460  }
2461  return 0;
2462 }
2463 
2464 static const struct seq_operations ipmr_mfc_seq_ops = {
2465  .start = ipmr_mfc_seq_start,
2466  .next = ipmr_mfc_seq_next,
2467  .stop = ipmr_mfc_seq_stop,
2468  .show = ipmr_mfc_seq_show,
2469 };
2470 
2471 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2472 {
2473  return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2474  sizeof(struct ipmr_mfc_iter));
2475 }
2476 
2477 static const struct file_operations ipmr_mfc_fops = {
2478  .owner = THIS_MODULE,
2479  .open = ipmr_mfc_open,
2480  .read = seq_read,
2481  .llseek = seq_lseek,
2482  .release = seq_release_net,
2483 };
2484 #endif
2485 
2486 #ifdef CONFIG_IP_PIMSM_V2
2487 static const struct net_protocol pim_protocol = {
2488  .handler = pim_rcv,
2489  .netns_ok = 1,
2490 };
2491 #endif
2492 
2493 
2494 /*
2495  * Setup for IP multicast routing
2496  */
2497 static int __net_init ipmr_net_init(struct net *net)
2498 {
2499  int err;
2500 
2501  err = ipmr_rules_init(net);
2502  if (err < 0)
2503  goto fail;
2504 
2505 #ifdef CONFIG_PROC_FS
2506  err = -ENOMEM;
2507  if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2508  goto proc_vif_fail;
2509  if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2510  goto proc_cache_fail;
2511 #endif
2512  return 0;
2513 
2514 #ifdef CONFIG_PROC_FS
2515 proc_cache_fail:
2516  proc_net_remove(net, "ip_mr_vif");
2517 proc_vif_fail:
2518  ipmr_rules_exit(net);
2519 #endif
2520 fail:
2521  return err;
2522 }
2523 
2524 static void __net_exit ipmr_net_exit(struct net *net)
2525 {
2526 #ifdef CONFIG_PROC_FS
2527  proc_net_remove(net, "ip_mr_cache");
2528  proc_net_remove(net, "ip_mr_vif");
2529 #endif
2530  ipmr_rules_exit(net);
2531 }
2532 
2533 static struct pernet_operations ipmr_net_ops = {
2534  .init = ipmr_net_init,
2535  .exit = ipmr_net_exit,
2536 };
2537 
2539 {
2540  int err;
2541 
2542  mrt_cachep = kmem_cache_create("ip_mrt_cache",
2543  sizeof(struct mfc_cache),
2545  NULL);
2546  if (!mrt_cachep)
2547  return -ENOMEM;
2548 
2549  err = register_pernet_subsys(&ipmr_net_ops);
2550  if (err)
2551  goto reg_pernet_fail;
2552 
2553  err = register_netdevice_notifier(&ip_mr_notifier);
2554  if (err)
2555  goto reg_notif_fail;
2556 #ifdef CONFIG_IP_PIMSM_V2
2557  if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2558  pr_err("%s: can't add PIM protocol\n", __func__);
2559  err = -EAGAIN;
2560  goto add_proto_fail;
2561  }
2562 #endif
2564  NULL, ipmr_rtm_dumproute, NULL);
2565  return 0;
2566 
2567 #ifdef CONFIG_IP_PIMSM_V2
2568 add_proto_fail:
2569  unregister_netdevice_notifier(&ip_mr_notifier);
2570 #endif
2571 reg_notif_fail:
2572  unregister_pernet_subsys(&ipmr_net_ops);
2573 reg_pernet_fail:
2574  kmem_cache_destroy(mrt_cachep);
2575  return err;
2576 }