Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kvm_main.c
Go to the documentation of this file.
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  * Avi Kivity <[email protected]>
12  * Yaniv Kamay <[email protected]>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2. See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88  unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
100 
101 static bool largepages_enabled = true;
102 
104 {
105  if (pfn_valid(pfn)) {
106  int reserved;
107  struct page *tail = pfn_to_page(pfn);
108  struct page *head = compound_trans_head(tail);
109  reserved = PageReserved(head);
110  if (head != tail) {
111  /*
112  * "head" is not a dangling pointer
113  * (compound_trans_head takes care of that)
114  * but the hugepage may have been splitted
115  * from under us (and we may not hold a
116  * reference count on the head page so it can
117  * be reused before we run PageReferenced), so
118  * we've to check PageTail before returning
119  * what we just read.
120  */
121  smp_rmb();
122  if (PageTail(tail))
123  return reserved;
124  }
125  return PageReserved(tail);
126  }
127 
128  return true;
129 }
130 
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136  int cpu;
137 
138  if (mutex_lock_killable(&vcpu->mutex))
139  return -EINTR;
140  if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141  /* The thread running this VCPU changed. */
142  struct pid *oldpid = vcpu->pid;
143  struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144  rcu_assign_pointer(vcpu->pid, newpid);
145  synchronize_rcu();
146  put_pid(oldpid);
147  }
148  cpu = get_cpu();
149  preempt_notifier_register(&vcpu->preempt_notifier);
150  kvm_arch_vcpu_load(vcpu, cpu);
151  put_cpu();
152  return 0;
153 }
154 
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157  preempt_disable();
158  kvm_arch_vcpu_put(vcpu);
159  preempt_notifier_unregister(&vcpu->preempt_notifier);
160  preempt_enable();
161  mutex_unlock(&vcpu->mutex);
162 }
163 
164 static void ack_flush(void *_completed)
165 {
166 }
167 
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170  int i, cpu, me;
172  bool called = true;
173  struct kvm_vcpu *vcpu;
174 
175  zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176 
177  me = get_cpu();
178  kvm_for_each_vcpu(i, vcpu, kvm) {
179  kvm_make_request(req, vcpu);
180  cpu = vcpu->cpu;
181 
182  /* Set ->requests bit before we read ->mode */
183  smp_mb();
184 
185  if (cpus != NULL && cpu != -1 && cpu != me &&
186  kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187  cpumask_set_cpu(cpu, cpus);
188  }
189  if (unlikely(cpus == NULL))
190  smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191  else if (!cpumask_empty(cpus))
192  smp_call_function_many(cpus, ack_flush, NULL, 1);
193  else
194  called = false;
195  put_cpu();
196  free_cpumask_var(cpus);
197  return called;
198 }
199 
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202  long dirty_count = kvm->tlbs_dirty;
203 
204  smp_mb();
205  if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206  ++kvm->stat.remote_tlb_flush;
207  cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209 
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212  make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214 
215 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
216 {
217  struct page *page;
218  int r;
219 
220  mutex_init(&vcpu->mutex);
221  vcpu->cpu = -1;
222  vcpu->kvm = kvm;
223  vcpu->vcpu_id = id;
224  vcpu->pid = NULL;
225  init_waitqueue_head(&vcpu->wq);
227 
228  page = alloc_page(GFP_KERNEL | __GFP_ZERO);
229  if (!page) {
230  r = -ENOMEM;
231  goto fail;
232  }
233  vcpu->run = page_address(page);
234 
235  kvm_vcpu_set_in_spin_loop(vcpu, false);
236  kvm_vcpu_set_dy_eligible(vcpu, false);
237 
238  r = kvm_arch_vcpu_init(vcpu);
239  if (r < 0)
240  goto fail_free_run;
241  return 0;
242 
243 fail_free_run:
244  free_page((unsigned long)vcpu->run);
245 fail:
246  return r;
247 }
249 
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252  put_pid(vcpu->pid);
253  kvm_arch_vcpu_uninit(vcpu);
254  free_page((unsigned long)vcpu->run);
255 }
257 
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261  return container_of(mn, struct kvm, mmu_notifier);
262 }
263 
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265  struct mm_struct *mm,
266  unsigned long address)
267 {
268  struct kvm *kvm = mmu_notifier_to_kvm(mn);
269  int need_tlb_flush, idx;
270 
271  /*
272  * When ->invalidate_page runs, the linux pte has been zapped
273  * already but the page is still allocated until
274  * ->invalidate_page returns. So if we increase the sequence
275  * here the kvm page fault will notice if the spte can't be
276  * established because the page is going to be freed. If
277  * instead the kvm page fault establishes the spte before
278  * ->invalidate_page runs, kvm_unmap_hva will release it
279  * before returning.
280  *
281  * The sequence increase only need to be seen at spin_unlock
282  * time, and not at spin_lock time.
283  *
284  * Increasing the sequence after the spin_unlock would be
285  * unsafe because the kvm page fault could then establish the
286  * pte after kvm_unmap_hva returned, without noticing the page
287  * is going to be freed.
288  */
289  idx = srcu_read_lock(&kvm->srcu);
290  spin_lock(&kvm->mmu_lock);
291 
292  kvm->mmu_notifier_seq++;
293  need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294  /* we've to flush the tlb before the pages can be freed */
295  if (need_tlb_flush)
297 
298  spin_unlock(&kvm->mmu_lock);
299  srcu_read_unlock(&kvm->srcu, idx);
300 }
301 
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303  struct mm_struct *mm,
304  unsigned long address,
305  pte_t pte)
306 {
307  struct kvm *kvm = mmu_notifier_to_kvm(mn);
308  int idx;
309 
310  idx = srcu_read_lock(&kvm->srcu);
311  spin_lock(&kvm->mmu_lock);
312  kvm->mmu_notifier_seq++;
313  kvm_set_spte_hva(kvm, address, pte);
314  spin_unlock(&kvm->mmu_lock);
315  srcu_read_unlock(&kvm->srcu, idx);
316 }
317 
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319  struct mm_struct *mm,
320  unsigned long start,
321  unsigned long end)
322 {
323  struct kvm *kvm = mmu_notifier_to_kvm(mn);
324  int need_tlb_flush = 0, idx;
325 
326  idx = srcu_read_lock(&kvm->srcu);
327  spin_lock(&kvm->mmu_lock);
328  /*
329  * The count increase must become visible at unlock time as no
330  * spte can be established without taking the mmu_lock and
331  * count is also read inside the mmu_lock critical section.
332  */
333  kvm->mmu_notifier_count++;
334  need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335  need_tlb_flush |= kvm->tlbs_dirty;
336  /* we've to flush the tlb before the pages can be freed */
337  if (need_tlb_flush)
339 
340  spin_unlock(&kvm->mmu_lock);
341  srcu_read_unlock(&kvm->srcu, idx);
342 }
343 
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345  struct mm_struct *mm,
346  unsigned long start,
347  unsigned long end)
348 {
349  struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 
351  spin_lock(&kvm->mmu_lock);
352  /*
353  * This sequence increase will notify the kvm page fault that
354  * the page that is going to be mapped in the spte could have
355  * been freed.
356  */
357  kvm->mmu_notifier_seq++;
358  smp_wmb();
359  /*
360  * The above sequence increase must be visible before the
361  * below count decrease, which is ensured by the smp_wmb above
362  * in conjunction with the smp_rmb in mmu_notifier_retry().
363  */
364  kvm->mmu_notifier_count--;
365  spin_unlock(&kvm->mmu_lock);
366 
367  BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369 
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371  struct mm_struct *mm,
372  unsigned long address)
373 {
374  struct kvm *kvm = mmu_notifier_to_kvm(mn);
375  int young, idx;
376 
377  idx = srcu_read_lock(&kvm->srcu);
378  spin_lock(&kvm->mmu_lock);
379 
380  young = kvm_age_hva(kvm, address);
381  if (young)
383 
384  spin_unlock(&kvm->mmu_lock);
385  srcu_read_unlock(&kvm->srcu, idx);
386 
387  return young;
388 }
389 
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391  struct mm_struct *mm,
392  unsigned long address)
393 {
394  struct kvm *kvm = mmu_notifier_to_kvm(mn);
395  int young, idx;
396 
397  idx = srcu_read_lock(&kvm->srcu);
398  spin_lock(&kvm->mmu_lock);
399  young = kvm_test_age_hva(kvm, address);
400  spin_unlock(&kvm->mmu_lock);
401  srcu_read_unlock(&kvm->srcu, idx);
402 
403  return young;
404 }
405 
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407  struct mm_struct *mm)
408 {
409  struct kvm *kvm = mmu_notifier_to_kvm(mn);
410  int idx;
411 
412  idx = srcu_read_lock(&kvm->srcu);
414  srcu_read_unlock(&kvm->srcu, idx);
415 }
416 
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418  .invalidate_page = kvm_mmu_notifier_invalidate_page,
419  .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420  .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
421  .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
422  .test_young = kvm_mmu_notifier_test_young,
423  .change_pte = kvm_mmu_notifier_change_pte,
424  .release = kvm_mmu_notifier_release,
425 };
426 
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429  kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430  return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432 
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434 
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437  return 0;
438 }
439 
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441 
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444  int i;
445  struct kvm_memslots *slots = kvm->memslots;
446 
447  for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448  slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450 
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453  int r, i;
454  struct kvm *kvm = kvm_arch_alloc_vm();
455 
456  if (!kvm)
457  return ERR_PTR(-ENOMEM);
458 
459  r = kvm_arch_init_vm(kvm, type);
460  if (r)
461  goto out_err_nodisable;
462 
463  r = hardware_enable_all();
464  if (r)
465  goto out_err_nodisable;
466 
467 #ifdef CONFIG_HAVE_KVM_IRQCHIP
468  INIT_HLIST_HEAD(&kvm->mask_notifier_list);
469  INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471 
472  r = -ENOMEM;
473  kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
474  if (!kvm->memslots)
475  goto out_err_nosrcu;
476  kvm_init_memslots_id(kvm);
477  if (init_srcu_struct(&kvm->srcu))
478  goto out_err_nosrcu;
479  for (i = 0; i < KVM_NR_BUSES; i++) {
480  kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
481  GFP_KERNEL);
482  if (!kvm->buses[i])
483  goto out_err;
484  }
485 
486  spin_lock_init(&kvm->mmu_lock);
487  kvm->mm = current->mm;
488  atomic_inc(&kvm->mm->mm_count);
489  kvm_eventfd_init(kvm);
490  mutex_init(&kvm->lock);
491  mutex_init(&kvm->irq_lock);
492  mutex_init(&kvm->slots_lock);
493  atomic_set(&kvm->users_count, 1);
494 
495  r = kvm_init_mmu_notifier(kvm);
496  if (r)
497  goto out_err;
498 
499  raw_spin_lock(&kvm_lock);
500  list_add(&kvm->vm_list, &vm_list);
501  raw_spin_unlock(&kvm_lock);
502 
503  return kvm;
504 
505 out_err:
506  cleanup_srcu_struct(&kvm->srcu);
507 out_err_nosrcu:
508  hardware_disable_all();
509 out_err_nodisable:
510  for (i = 0; i < KVM_NR_BUSES; i++)
511  kfree(kvm->buses[i]);
512  kfree(kvm->memslots);
513  kvm_arch_free_vm(kvm);
514  return ERR_PTR(r);
515 }
516 
517 /*
518  * Avoid using vmalloc for a small buffer.
519  * Should not be used when the size is statically known.
520  */
521 void *kvm_kvzalloc(unsigned long size)
522 {
523  if (size > PAGE_SIZE)
524  return vzalloc(size);
525  else
526  return kzalloc(size, GFP_KERNEL);
527 }
528 
529 void kvm_kvfree(const void *addr)
530 {
531  if (is_vmalloc_addr(addr))
532  vfree(addr);
533  else
534  kfree(addr);
535 }
536 
537 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 {
539  if (!memslot->dirty_bitmap)
540  return;
541 
542  kvm_kvfree(memslot->dirty_bitmap);
543  memslot->dirty_bitmap = NULL;
544 }
545 
546 /*
547  * Free any memory in @free but not in @dont.
548  */
549 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
550  struct kvm_memory_slot *dont)
551 {
552  if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
553  kvm_destroy_dirty_bitmap(free);
554 
555  kvm_arch_free_memslot(free, dont);
556 
557  free->npages = 0;
558 }
559 
560 void kvm_free_physmem(struct kvm *kvm)
561 {
562  struct kvm_memslots *slots = kvm->memslots;
563  struct kvm_memory_slot *memslot;
564 
565  kvm_for_each_memslot(memslot, slots)
566  kvm_free_physmem_slot(memslot, NULL);
567 
568  kfree(kvm->memslots);
569 }
570 
571 static void kvm_destroy_vm(struct kvm *kvm)
572 {
573  int i;
574  struct mm_struct *mm = kvm->mm;
575 
577  raw_spin_lock(&kvm_lock);
578  list_del(&kvm->vm_list);
579  raw_spin_unlock(&kvm_lock);
581  for (i = 0; i < KVM_NR_BUSES; i++)
582  kvm_io_bus_destroy(kvm->buses[i]);
584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
585  mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
586 #else
588 #endif
589  kvm_arch_destroy_vm(kvm);
590  kvm_free_physmem(kvm);
591  cleanup_srcu_struct(&kvm->srcu);
592  kvm_arch_free_vm(kvm);
593  hardware_disable_all();
594  mmdrop(mm);
595 }
596 
597 void kvm_get_kvm(struct kvm *kvm)
598 {
599  atomic_inc(&kvm->users_count);
600 }
602 
603 void kvm_put_kvm(struct kvm *kvm)
604 {
605  if (atomic_dec_and_test(&kvm->users_count))
606  kvm_destroy_vm(kvm);
607 }
609 
610 
611 static int kvm_vm_release(struct inode *inode, struct file *filp)
612 {
613  struct kvm *kvm = filp->private_data;
614 
615  kvm_irqfd_release(kvm);
616 
617  kvm_put_kvm(kvm);
618  return 0;
619 }
620 
621 /*
622  * Allocation size is twice as large as the actual dirty bitmap size.
623  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
624  */
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
626 {
627 #ifndef CONFIG_S390
628  unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
629 
630  memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
631  if (!memslot->dirty_bitmap)
632  return -ENOMEM;
633 
634 #endif /* !CONFIG_S390 */
635  return 0;
636 }
637 
638 static int cmp_memslot(const void *slot1, const void *slot2)
639 {
640  struct kvm_memory_slot *s1, *s2;
641 
642  s1 = (struct kvm_memory_slot *)slot1;
643  s2 = (struct kvm_memory_slot *)slot2;
644 
645  if (s1->npages < s2->npages)
646  return 1;
647  if (s1->npages > s2->npages)
648  return -1;
649 
650  return 0;
651 }
652 
653 /*
654  * Sort the memslots base on its size, so the larger slots
655  * will get better fit.
656  */
657 static void sort_memslots(struct kvm_memslots *slots)
658 {
659  int i;
660 
662  sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
663 
664  for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
665  slots->id_to_index[slots->memslots[i].id] = i;
666 }
667 
668 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
669 {
670  if (new) {
671  int id = new->id;
672  struct kvm_memory_slot *old = id_to_memslot(slots, id);
673  unsigned long npages = old->npages;
674 
675  *old = *new;
676  if (new->npages != npages)
677  sort_memslots(slots);
678  }
679 
680  slots->generation++;
681 }
682 
683 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
684 {
685  u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
686 
687 #ifdef KVM_CAP_READONLY_MEM
688  valid_flags |= KVM_MEM_READONLY;
689 #endif
690 
691  if (mem->flags & ~valid_flags)
692  return -EINVAL;
693 
694  return 0;
695 }
696 
697 /*
698  * Allocate some memory and give it an address in the guest physical address
699  * space.
700  *
701  * Discontiguous memory is allowed, mostly for framebuffers.
702  *
703  * Must be called holding mmap_sem for write.
704  */
705 int __kvm_set_memory_region(struct kvm *kvm,
706  struct kvm_userspace_memory_region *mem,
707  int user_alloc)
708 {
709  int r;
710  gfn_t base_gfn;
711  unsigned long npages;
712  unsigned long i;
713  struct kvm_memory_slot *memslot;
714  struct kvm_memory_slot old, new;
715  struct kvm_memslots *slots, *old_memslots;
716 
717  r = check_memory_region_flags(mem);
718  if (r)
719  goto out;
720 
721  r = -EINVAL;
722  /* General sanity checks */
723  if (mem->memory_size & (PAGE_SIZE - 1))
724  goto out;
725  if (mem->guest_phys_addr & (PAGE_SIZE - 1))
726  goto out;
727  /* We can read the guest memory with __xxx_user() later on. */
728  if (user_alloc &&
729  ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
731  (void __user *)(unsigned long)mem->userspace_addr,
732  mem->memory_size)))
733  goto out;
734  if (mem->slot >= KVM_MEM_SLOTS_NUM)
735  goto out;
736  if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
737  goto out;
738 
739  memslot = id_to_memslot(kvm->memslots, mem->slot);
740  base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
741  npages = mem->memory_size >> PAGE_SHIFT;
742 
743  r = -EINVAL;
744  if (npages > KVM_MEM_MAX_NR_PAGES)
745  goto out;
746 
747  if (!npages)
749 
750  new = old = *memslot;
751 
752  new.id = mem->slot;
753  new.base_gfn = base_gfn;
754  new.npages = npages;
755  new.flags = mem->flags;
756 
757  /* Disallow changing a memory slot's size. */
758  r = -EINVAL;
759  if (npages && old.npages && npages != old.npages)
760  goto out_free;
761 
762  /* Check for overlaps */
763  r = -EEXIST;
764  for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
765  struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
766 
767  if (s == memslot || !s->npages)
768  continue;
769  if (!((base_gfn + npages <= s->base_gfn) ||
770  (base_gfn >= s->base_gfn + s->npages)))
771  goto out_free;
772  }
773 
774  /* Free page dirty bitmap if unneeded */
775  if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
776  new.dirty_bitmap = NULL;
777 
778  r = -ENOMEM;
779 
780  /* Allocate if a slot is being created */
781  if (npages && !old.npages) {
782  new.user_alloc = user_alloc;
783  new.userspace_addr = mem->userspace_addr;
784 
785  if (kvm_arch_create_memslot(&new, npages))
786  goto out_free;
787  }
788 
789  /* Allocate page dirty bitmap if needed */
790  if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
791  if (kvm_create_dirty_bitmap(&new) < 0)
792  goto out_free;
793  /* destroy any largepage mappings for dirty tracking */
794  }
795 
796  if (!npages || base_gfn != old.base_gfn) {
797  struct kvm_memory_slot *slot;
798 
799  r = -ENOMEM;
800  slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
801  GFP_KERNEL);
802  if (!slots)
803  goto out_free;
804  slot = id_to_memslot(slots, mem->slot);
805  slot->flags |= KVM_MEMSLOT_INVALID;
806 
807  update_memslots(slots, NULL);
808 
809  old_memslots = kvm->memslots;
810  rcu_assign_pointer(kvm->memslots, slots);
812  /* From this point no new shadow pages pointing to a deleted,
813  * or moved, memslot will be created.
814  *
815  * validation of sp->gfn happens in:
816  * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
817  * - kvm_is_visible_gfn (mmu_check_roots)
818  */
820  kfree(old_memslots);
821  }
822 
823  r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
824  if (r)
825  goto out_free;
826 
827  /* map/unmap the pages in iommu page table */
828  if (npages) {
829  r = kvm_iommu_map_pages(kvm, &new);
830  if (r)
831  goto out_free;
832  } else
833  kvm_iommu_unmap_pages(kvm, &old);
834 
835  r = -ENOMEM;
836  slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837  GFP_KERNEL);
838  if (!slots)
839  goto out_free;
840 
841  /* actual memory is freed via old in kvm_free_physmem_slot below */
842  if (!npages) {
843  new.dirty_bitmap = NULL;
844  memset(&new.arch, 0, sizeof(new.arch));
845  }
846 
847  update_memslots(slots, &new);
848  old_memslots = kvm->memslots;
849  rcu_assign_pointer(kvm->memslots, slots);
851 
852  kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
853 
854  kvm_free_physmem_slot(&old, &new);
855  kfree(old_memslots);
856 
857  return 0;
858 
859 out_free:
860  kvm_free_physmem_slot(&new, &old);
861 out:
862  return r;
863 
864 }
866 
867 int kvm_set_memory_region(struct kvm *kvm,
868  struct kvm_userspace_memory_region *mem,
869  int user_alloc)
870 {
871  int r;
872 
873  mutex_lock(&kvm->slots_lock);
874  r = __kvm_set_memory_region(kvm, mem, user_alloc);
875  mutex_unlock(&kvm->slots_lock);
876  return r;
877 }
879 
880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
881  struct
883  int user_alloc)
884 {
885  if (mem->slot >= KVM_MEMORY_SLOTS)
886  return -EINVAL;
887  return kvm_set_memory_region(kvm, mem, user_alloc);
888 }
889 
890 int kvm_get_dirty_log(struct kvm *kvm,
891  struct kvm_dirty_log *log, int *is_dirty)
892 {
893  struct kvm_memory_slot *memslot;
894  int r, i;
895  unsigned long n;
896  unsigned long any = 0;
897 
898  r = -EINVAL;
899  if (log->slot >= KVM_MEMORY_SLOTS)
900  goto out;
901 
902  memslot = id_to_memslot(kvm->memslots, log->slot);
903  r = -ENOENT;
904  if (!memslot->dirty_bitmap)
905  goto out;
906 
907  n = kvm_dirty_bitmap_bytes(memslot);
908 
909  for (i = 0; !any && i < n/sizeof(long); ++i)
910  any = memslot->dirty_bitmap[i];
911 
912  r = -EFAULT;
913  if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
914  goto out;
915 
916  if (any)
917  *is_dirty = 1;
918 
919  r = 0;
920 out:
921  return r;
922 }
923 
925 {
926  return largepages_enabled;
927 }
928 
930 {
931  largepages_enabled = false;
932 }
934 
935 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
936 {
937  return __gfn_to_memslot(kvm_memslots(kvm), gfn);
938 }
940 
941 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
942 {
943  struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
944 
945  if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
946  memslot->flags & KVM_MEMSLOT_INVALID)
947  return 0;
948 
949  return 1;
950 }
952 
953 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
954 {
955  struct vm_area_struct *vma;
956  unsigned long addr, size;
957 
958  size = PAGE_SIZE;
959 
960  addr = gfn_to_hva(kvm, gfn);
961  if (kvm_is_error_hva(addr))
962  return PAGE_SIZE;
963 
964  down_read(&current->mm->mmap_sem);
965  vma = find_vma(current->mm, addr);
966  if (!vma)
967  goto out;
968 
969  size = vma_kernel_pagesize(vma);
970 
971 out:
972  up_read(&current->mm->mmap_sem);
973 
974  return size;
975 }
976 
977 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
978 {
979  return slot->flags & KVM_MEM_READONLY;
980 }
981 
982 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
983  gfn_t *nr_pages, bool write)
984 {
985  if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
986  return KVM_HVA_ERR_BAD;
987 
988  if (memslot_is_readonly(slot) && write)
989  return KVM_HVA_ERR_RO_BAD;
990 
991  if (nr_pages)
992  *nr_pages = slot->npages - (gfn - slot->base_gfn);
993 
994  return __gfn_to_hva_memslot(slot, gfn);
995 }
996 
997 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
998  gfn_t *nr_pages)
999 {
1000  return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1001 }
1002 
1003 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1004  gfn_t gfn)
1005 {
1006  return gfn_to_hva_many(slot, gfn, NULL);
1007 }
1009 
1010 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1011 {
1012  return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1013 }
1015 
1016 /*
1017  * The hva returned by this function is only allowed to be read.
1018  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1019  */
1020 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1021 {
1022  return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1023 }
1024 
1025 static int kvm_read_hva(void *data, void __user *hva, int len)
1026 {
1027  return __copy_from_user(data, hva, len);
1028 }
1029 
1030 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1031 {
1032  return __copy_from_user_inatomic(data, hva, len);
1033 }
1034 
1035 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1036  unsigned long start, int write, struct page **page)
1037 {
1038  int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1039 
1040  if (write)
1041  flags |= FOLL_WRITE;
1042 
1043  return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1044 }
1045 
1046 static inline int check_user_page_hwpoison(unsigned long addr)
1047 {
1048  int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1049 
1050  rc = __get_user_pages(current, current->mm, addr, 1,
1051  flags, NULL, NULL, NULL);
1052  return rc == -EHWPOISON;
1053 }
1054 
1055 /*
1056  * The atomic path to get the writable pfn which will be stored in @pfn,
1057  * true indicates success, otherwise false is returned.
1058  */
1059 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1060  bool write_fault, bool *writable, pfn_t *pfn)
1061 {
1062  struct page *page[1];
1063  int npages;
1064 
1065  if (!(async || atomic))
1066  return false;
1067 
1068  /*
1069  * Fast pin a writable pfn only if it is a write fault request
1070  * or the caller allows to map a writable pfn for a read fault
1071  * request.
1072  */
1073  if (!(write_fault || writable))
1074  return false;
1075 
1076  npages = __get_user_pages_fast(addr, 1, 1, page);
1077  if (npages == 1) {
1078  *pfn = page_to_pfn(page[0]);
1079 
1080  if (writable)
1081  *writable = true;
1082  return true;
1083  }
1084 
1085  return false;
1086 }
1087 
1088 /*
1089  * The slow path to get the pfn of the specified host virtual address,
1090  * 1 indicates success, -errno is returned if error is detected.
1091  */
1092 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1093  bool *writable, pfn_t *pfn)
1094 {
1095  struct page *page[1];
1096  int npages = 0;
1097 
1098  might_sleep();
1099 
1100  if (writable)
1101  *writable = write_fault;
1102 
1103  if (async) {
1104  down_read(&current->mm->mmap_sem);
1105  npages = get_user_page_nowait(current, current->mm,
1106  addr, write_fault, page);
1107  up_read(&current->mm->mmap_sem);
1108  } else
1109  npages = get_user_pages_fast(addr, 1, write_fault,
1110  page);
1111  if (npages != 1)
1112  return npages;
1113 
1114  /* map read fault as writable if possible */
1115  if (unlikely(!write_fault) && writable) {
1116  struct page *wpage[1];
1117 
1118  npages = __get_user_pages_fast(addr, 1, 1, wpage);
1119  if (npages == 1) {
1120  *writable = true;
1121  put_page(page[0]);
1122  page[0] = wpage[0];
1123  }
1124 
1125  npages = 1;
1126  }
1127  *pfn = page_to_pfn(page[0]);
1128  return npages;
1129 }
1130 
1131 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1132 {
1133  if (unlikely(!(vma->vm_flags & VM_READ)))
1134  return false;
1135 
1136  if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1137  return false;
1138 
1139  return true;
1140 }
1141 
1142 /*
1143  * Pin guest page in memory and return its pfn.
1144  * @addr: host virtual address which maps memory to the guest
1145  * @atomic: whether this function can sleep
1146  * @async: whether this function need to wait IO complete if the
1147  * host page is not in the memory
1148  * @write_fault: whether we should get a writable host page
1149  * @writable: whether it allows to map a writable host page for !@write_fault
1150  *
1151  * The function will map a writable host page for these two cases:
1152  * 1): @write_fault = true
1153  * 2): @write_fault = false && @writable, @writable will tell the caller
1154  * whether the mapping is writable.
1155  */
1156 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1157  bool write_fault, bool *writable)
1158 {
1159  struct vm_area_struct *vma;
1160  pfn_t pfn = 0;
1161  int npages;
1162 
1163  /* we can do it either atomically or asynchronously, not both */
1164  BUG_ON(atomic && async);
1165 
1166  if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1167  return pfn;
1168 
1169  if (atomic)
1170  return KVM_PFN_ERR_FAULT;
1171 
1172  npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1173  if (npages == 1)
1174  return pfn;
1175 
1176  down_read(&current->mm->mmap_sem);
1177  if (npages == -EHWPOISON ||
1178  (!async && check_user_page_hwpoison(addr))) {
1179  pfn = KVM_PFN_ERR_HWPOISON;
1180  goto exit;
1181  }
1182 
1183  vma = find_vma_intersection(current->mm, addr, addr + 1);
1184 
1185  if (vma == NULL)
1186  pfn = KVM_PFN_ERR_FAULT;
1187  else if ((vma->vm_flags & VM_PFNMAP)) {
1188  pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1189  vma->vm_pgoff;
1190  BUG_ON(!kvm_is_mmio_pfn(pfn));
1191  } else {
1192  if (async && vma_is_valid(vma, write_fault))
1193  *async = true;
1194  pfn = KVM_PFN_ERR_FAULT;
1195  }
1196 exit:
1197  up_read(&current->mm->mmap_sem);
1198  return pfn;
1199 }
1200 
1201 static pfn_t
1202 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1203  bool *async, bool write_fault, bool *writable)
1204 {
1205  unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1206 
1207  if (addr == KVM_HVA_ERR_RO_BAD)
1208  return KVM_PFN_ERR_RO_FAULT;
1209 
1210  if (kvm_is_error_hva(addr))
1211  return KVM_PFN_ERR_BAD;
1212 
1213  /* Do not map writable pfn in the readonly memslot. */
1214  if (writable && memslot_is_readonly(slot)) {
1215  *writable = false;
1216  writable = NULL;
1217  }
1218 
1219  return hva_to_pfn(addr, atomic, async, write_fault,
1220  writable);
1221 }
1222 
1223 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1224  bool write_fault, bool *writable)
1225 {
1226  struct kvm_memory_slot *slot;
1227 
1228  if (async)
1229  *async = false;
1230 
1231  slot = gfn_to_memslot(kvm, gfn);
1232 
1233  return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1234  writable);
1235 }
1236 
1237 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1238 {
1239  return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1240 }
1242 
1243 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1244  bool write_fault, bool *writable)
1245 {
1246  return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1247 }
1249 
1250 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1251 {
1252  return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1253 }
1255 
1256 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1257  bool *writable)
1258 {
1259  return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1260 }
1262 
1264 {
1265  return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1266 }
1267 
1269 {
1270  return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1271 }
1273 
1274 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1275  int nr_pages)
1276 {
1277  unsigned long addr;
1278  gfn_t entry;
1279 
1280  addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1281  if (kvm_is_error_hva(addr))
1282  return -1;
1283 
1284  if (entry < nr_pages)
1285  return 0;
1286 
1287  return __get_user_pages_fast(addr, nr_pages, 1, pages);
1288 }
1290 
1291 static struct page *kvm_pfn_to_page(pfn_t pfn)
1292 {
1293  if (is_error_pfn(pfn))
1294  return KVM_ERR_PTR_BAD_PAGE;
1295 
1296  if (kvm_is_mmio_pfn(pfn)) {
1297  WARN_ON(1);
1298  return KVM_ERR_PTR_BAD_PAGE;
1299  }
1300 
1301  return pfn_to_page(pfn);
1302 }
1303 
1304 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1305 {
1306  pfn_t pfn;
1307 
1308  pfn = gfn_to_pfn(kvm, gfn);
1309 
1310  return kvm_pfn_to_page(pfn);
1311 }
1312 
1314 
1315 void kvm_release_page_clean(struct page *page)
1316 {
1317  WARN_ON(is_error_page(page));
1318 
1320 }
1322 
1324 {
1325  if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1326  put_page(pfn_to_page(pfn));
1327 }
1329 
1330 void kvm_release_page_dirty(struct page *page)
1331 {
1332  WARN_ON(is_error_page(page));
1333 
1335 }
1337 
1339 {
1340  kvm_set_pfn_dirty(pfn);
1341  kvm_release_pfn_clean(pfn);
1342 }
1344 
1345 void kvm_set_page_dirty(struct page *page)
1346 {
1348 }
1350 
1352 {
1353  if (!kvm_is_mmio_pfn(pfn)) {
1354  struct page *page = pfn_to_page(pfn);
1355  if (!PageReserved(page))
1356  SetPageDirty(page);
1357  }
1358 }
1360 
1362 {
1363  if (!kvm_is_mmio_pfn(pfn))
1365 }
1367 
1369 {
1370  if (!kvm_is_mmio_pfn(pfn))
1371  get_page(pfn_to_page(pfn));
1372 }
1374 
1375 static int next_segment(unsigned long len, int offset)
1376 {
1377  if (len > PAGE_SIZE - offset)
1378  return PAGE_SIZE - offset;
1379  else
1380  return len;
1381 }
1382 
1383 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1384  int len)
1385 {
1386  int r;
1387  unsigned long addr;
1388 
1389  addr = gfn_to_hva_read(kvm, gfn);
1390  if (kvm_is_error_hva(addr))
1391  return -EFAULT;
1392  r = kvm_read_hva(data, (void __user *)addr + offset, len);
1393  if (r)
1394  return -EFAULT;
1395  return 0;
1396 }
1398 
1399 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1400 {
1401  gfn_t gfn = gpa >> PAGE_SHIFT;
1402  int seg;
1403  int offset = offset_in_page(gpa);
1404  int ret;
1405 
1406  while ((seg = next_segment(len, offset)) != 0) {
1407  ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1408  if (ret < 0)
1409  return ret;
1410  offset = 0;
1411  len -= seg;
1412  data += seg;
1413  ++gfn;
1414  }
1415  return 0;
1416 }
1418 
1419 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1420  unsigned long len)
1421 {
1422  int r;
1423  unsigned long addr;
1424  gfn_t gfn = gpa >> PAGE_SHIFT;
1425  int offset = offset_in_page(gpa);
1426 
1427  addr = gfn_to_hva_read(kvm, gfn);
1428  if (kvm_is_error_hva(addr))
1429  return -EFAULT;
1430  pagefault_disable();
1431  r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1432  pagefault_enable();
1433  if (r)
1434  return -EFAULT;
1435  return 0;
1436 }
1438 
1439 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1440  int offset, int len)
1441 {
1442  int r;
1443  unsigned long addr;
1444 
1445  addr = gfn_to_hva(kvm, gfn);
1446  if (kvm_is_error_hva(addr))
1447  return -EFAULT;
1448  r = __copy_to_user((void __user *)addr + offset, data, len);
1449  if (r)
1450  return -EFAULT;
1451  mark_page_dirty(kvm, gfn);
1452  return 0;
1453 }
1455 
1456 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1457  unsigned long len)
1458 {
1459  gfn_t gfn = gpa >> PAGE_SHIFT;
1460  int seg;
1461  int offset = offset_in_page(gpa);
1462  int ret;
1463 
1464  while ((seg = next_segment(len, offset)) != 0) {
1465  ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1466  if (ret < 0)
1467  return ret;
1468  offset = 0;
1469  len -= seg;
1470  data += seg;
1471  ++gfn;
1472  }
1473  return 0;
1474 }
1475 
1476 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1477  gpa_t gpa)
1478 {
1479  struct kvm_memslots *slots = kvm_memslots(kvm);
1480  int offset = offset_in_page(gpa);
1481  gfn_t gfn = gpa >> PAGE_SHIFT;
1482 
1483  ghc->gpa = gpa;
1484  ghc->generation = slots->generation;
1485  ghc->memslot = gfn_to_memslot(kvm, gfn);
1486  ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1487  if (!kvm_is_error_hva(ghc->hva))
1488  ghc->hva += offset;
1489  else
1490  return -EFAULT;
1491 
1492  return 0;
1493 }
1495 
1496 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1497  void *data, unsigned long len)
1498 {
1499  struct kvm_memslots *slots = kvm_memslots(kvm);
1500  int r;
1501 
1502  if (slots->generation != ghc->generation)
1503  kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1504 
1505  if (kvm_is_error_hva(ghc->hva))
1506  return -EFAULT;
1507 
1508  r = __copy_to_user((void __user *)ghc->hva, data, len);
1509  if (r)
1510  return -EFAULT;
1511  mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1512 
1513  return 0;
1514 }
1516 
1517 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1518  void *data, unsigned long len)
1519 {
1520  struct kvm_memslots *slots = kvm_memslots(kvm);
1521  int r;
1522 
1523  if (slots->generation != ghc->generation)
1524  kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1525 
1526  if (kvm_is_error_hva(ghc->hva))
1527  return -EFAULT;
1528 
1529  r = __copy_from_user(data, (void __user *)ghc->hva, len);
1530  if (r)
1531  return -EFAULT;
1532 
1533  return 0;
1534 }
1536 
1537 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1538 {
1539  return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1540  offset, len);
1541 }
1543 
1544 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1545 {
1546  gfn_t gfn = gpa >> PAGE_SHIFT;
1547  int seg;
1548  int offset = offset_in_page(gpa);
1549  int ret;
1550 
1551  while ((seg = next_segment(len, offset)) != 0) {
1552  ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1553  if (ret < 0)
1554  return ret;
1555  offset = 0;
1556  len -= seg;
1557  ++gfn;
1558  }
1559  return 0;
1560 }
1562 
1563 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1564  gfn_t gfn)
1565 {
1566  if (memslot && memslot->dirty_bitmap) {
1567  unsigned long rel_gfn = gfn - memslot->base_gfn;
1568 
1569  set_bit_le(rel_gfn, memslot->dirty_bitmap);
1570  }
1571 }
1572 
1573 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1574 {
1575  struct kvm_memory_slot *memslot;
1576 
1577  memslot = gfn_to_memslot(kvm, gfn);
1578  mark_page_dirty_in_slot(kvm, memslot, gfn);
1579 }
1580 
1581 /*
1582  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1583  */
1584 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1585 {
1586  DEFINE_WAIT(wait);
1587 
1588  for (;;) {
1590 
1591  if (kvm_arch_vcpu_runnable(vcpu)) {
1592  kvm_make_request(KVM_REQ_UNHALT, vcpu);
1593  break;
1594  }
1595  if (kvm_cpu_has_pending_timer(vcpu))
1596  break;
1597  if (signal_pending(current))
1598  break;
1599 
1600  schedule();
1601  }
1602 
1603  finish_wait(&vcpu->wq, &wait);
1604 }
1605 
1606 #ifndef CONFIG_S390
1607 /*
1608  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1609  */
1610 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1611 {
1612  int me;
1613  int cpu = vcpu->cpu;
1614  wait_queue_head_t *wqp;
1615 
1616  wqp = kvm_arch_vcpu_wq(vcpu);
1617  if (waitqueue_active(wqp)) {
1618  wake_up_interruptible(wqp);
1619  ++vcpu->stat.halt_wakeup;
1620  }
1621 
1622  me = get_cpu();
1623  if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1624  if (kvm_arch_vcpu_should_kick(vcpu))
1625  smp_send_reschedule(cpu);
1626  put_cpu();
1627 }
1628 #endif /* !CONFIG_S390 */
1629 
1630 void kvm_resched(struct kvm_vcpu *vcpu)
1631 {
1632  if (!need_resched())
1633  return;
1634  cond_resched();
1635 }
1637 
1639 {
1640  struct pid *pid;
1641  struct task_struct *task = NULL;
1642 
1643  rcu_read_lock();
1644  pid = rcu_dereference(target->pid);
1645  if (pid)
1646  task = get_pid_task(target->pid, PIDTYPE_PID);
1647  rcu_read_unlock();
1648  if (!task)
1649  return false;
1650  if (task->flags & PF_VCPU) {
1651  put_task_struct(task);
1652  return false;
1653  }
1654  if (yield_to(task, 1)) {
1655  put_task_struct(task);
1656  return true;
1657  }
1658  put_task_struct(task);
1659  return false;
1660 }
1662 
1663 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1664 /*
1665  * Helper that checks whether a VCPU is eligible for directed yield.
1666  * Most eligible candidate to yield is decided by following heuristics:
1667  *
1668  * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1669  * (preempted lock holder), indicated by @in_spin_loop.
1670  * Set at the beiginning and cleared at the end of interception/PLE handler.
1671  *
1672  * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1673  * chance last time (mostly it has become eligible now since we have probably
1674  * yielded to lockholder in last iteration. This is done by toggling
1675  * @dy_eligible each time a VCPU checked for eligibility.)
1676  *
1677  * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1678  * to preempted lock-holder could result in wrong VCPU selection and CPU
1679  * burning. Giving priority for a potential lock-holder increases lock
1680  * progress.
1681  *
1682  * Since algorithm is based on heuristics, accessing another VCPU data without
1683  * locking does not harm. It may result in trying to yield to same VCPU, fail
1684  * and continue with next VCPU and so on.
1685  */
1686 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1687 {
1688  bool eligible;
1689 
1690  eligible = !vcpu->spin_loop.in_spin_loop ||
1691  (vcpu->spin_loop.in_spin_loop &&
1692  vcpu->spin_loop.dy_eligible);
1693 
1694  if (vcpu->spin_loop.in_spin_loop)
1695  kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1696 
1697  return eligible;
1698 }
1699 #endif
1700 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1701 {
1702  struct kvm *kvm = me->kvm;
1703  struct kvm_vcpu *vcpu;
1704  int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1705  int yielded = 0;
1706  int pass;
1707  int i;
1708 
1709  kvm_vcpu_set_in_spin_loop(me, true);
1710  /*
1711  * We boost the priority of a VCPU that is runnable but not
1712  * currently running, because it got preempted by something
1713  * else and called schedule in __vcpu_run. Hopefully that
1714  * VCPU is holding the lock that we need and will release it.
1715  * We approximate round-robin by starting at the last boosted VCPU.
1716  */
1717  for (pass = 0; pass < 2 && !yielded; pass++) {
1718  kvm_for_each_vcpu(i, vcpu, kvm) {
1719  if (!pass && i <= last_boosted_vcpu) {
1720  i = last_boosted_vcpu;
1721  continue;
1722  } else if (pass && i > last_boosted_vcpu)
1723  break;
1724  if (vcpu == me)
1725  continue;
1726  if (waitqueue_active(&vcpu->wq))
1727  continue;
1728  if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1729  continue;
1730  if (kvm_vcpu_yield_to(vcpu)) {
1731  kvm->last_boosted_vcpu = i;
1732  yielded = 1;
1733  break;
1734  }
1735  }
1736  }
1737  kvm_vcpu_set_in_spin_loop(me, false);
1738 
1739  /* Ensure vcpu is not eligible during next spinloop */
1740  kvm_vcpu_set_dy_eligible(me, false);
1741 }
1743 
1744 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1745 {
1746  struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1747  struct page *page;
1748 
1749  if (vmf->pgoff == 0)
1750  page = virt_to_page(vcpu->run);
1751 #ifdef CONFIG_X86
1752  else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1753  page = virt_to_page(vcpu->arch.pio_data);
1754 #endif
1755 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1756  else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1757  page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1758 #endif
1759  else
1760  return kvm_arch_vcpu_fault(vcpu, vmf);
1761  get_page(page);
1762  vmf->page = page;
1763  return 0;
1764 }
1765 
1766 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1767  .fault = kvm_vcpu_fault,
1768 };
1769 
1770 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1771 {
1772  vma->vm_ops = &kvm_vcpu_vm_ops;
1773  return 0;
1774 }
1775 
1776 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1777 {
1778  struct kvm_vcpu *vcpu = filp->private_data;
1779 
1780  kvm_put_kvm(vcpu->kvm);
1781  return 0;
1782 }
1783 
1784 static struct file_operations kvm_vcpu_fops = {
1785  .release = kvm_vcpu_release,
1786  .unlocked_ioctl = kvm_vcpu_ioctl,
1787 #ifdef CONFIG_COMPAT
1788  .compat_ioctl = kvm_vcpu_compat_ioctl,
1789 #endif
1790  .mmap = kvm_vcpu_mmap,
1791  .llseek = noop_llseek,
1792 };
1793 
1794 /*
1795  * Allocates an inode for the vcpu.
1796  */
1797 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1798 {
1799  return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1800 }
1801 
1802 /*
1803  * Creates some virtual cpus. Good luck creating more than one.
1804  */
1805 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1806 {
1807  int r;
1808  struct kvm_vcpu *vcpu, *v;
1809 
1810  vcpu = kvm_arch_vcpu_create(kvm, id);
1811  if (IS_ERR(vcpu))
1812  return PTR_ERR(vcpu);
1813 
1814  preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1815 
1816  r = kvm_arch_vcpu_setup(vcpu);
1817  if (r)
1818  goto vcpu_destroy;
1819 
1820  mutex_lock(&kvm->lock);
1821  if (!kvm_vcpu_compatible(vcpu)) {
1822  r = -EINVAL;
1823  goto unlock_vcpu_destroy;
1824  }
1825  if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1826  r = -EINVAL;
1827  goto unlock_vcpu_destroy;
1828  }
1829 
1830  kvm_for_each_vcpu(r, v, kvm)
1831  if (v->vcpu_id == id) {
1832  r = -EEXIST;
1833  goto unlock_vcpu_destroy;
1834  }
1835 
1836  BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1837 
1838  /* Now it's all set up, let userspace reach it */
1839  kvm_get_kvm(kvm);
1840  r = create_vcpu_fd(vcpu);
1841  if (r < 0) {
1842  kvm_put_kvm(kvm);
1843  goto unlock_vcpu_destroy;
1844  }
1845 
1846  kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1847  smp_wmb();
1848  atomic_inc(&kvm->online_vcpus);
1849 
1850  mutex_unlock(&kvm->lock);
1851  return r;
1852 
1853 unlock_vcpu_destroy:
1854  mutex_unlock(&kvm->lock);
1855 vcpu_destroy:
1856  kvm_arch_vcpu_destroy(vcpu);
1857  return r;
1858 }
1859 
1860 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1861 {
1862  if (sigset) {
1863  sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1864  vcpu->sigset_active = 1;
1865  vcpu->sigset = *sigset;
1866  } else
1867  vcpu->sigset_active = 0;
1868  return 0;
1869 }
1870 
1871 static long kvm_vcpu_ioctl(struct file *filp,
1872  unsigned int ioctl, unsigned long arg)
1873 {
1874  struct kvm_vcpu *vcpu = filp->private_data;
1875  void __user *argp = (void __user *)arg;
1876  int r;
1877  struct kvm_fpu *fpu = NULL;
1878  struct kvm_sregs *kvm_sregs = NULL;
1879 
1880  if (vcpu->kvm->mm != current->mm)
1881  return -EIO;
1882 
1883 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1884  /*
1885  * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1886  * so vcpu_load() would break it.
1887  */
1888  if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1889  return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1890 #endif
1891 
1892 
1893  r = vcpu_load(vcpu);
1894  if (r)
1895  return r;
1896  switch (ioctl) {
1897  case KVM_RUN:
1898  r = -EINVAL;
1899  if (arg)
1900  goto out;
1901  r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1902  trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1903  break;
1904  case KVM_GET_REGS: {
1905  struct kvm_regs *kvm_regs;
1906 
1907  r = -ENOMEM;
1908  kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1909  if (!kvm_regs)
1910  goto out;
1911  r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1912  if (r)
1913  goto out_free1;
1914  r = -EFAULT;
1915  if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1916  goto out_free1;
1917  r = 0;
1918 out_free1:
1919  kfree(kvm_regs);
1920  break;
1921  }
1922  case KVM_SET_REGS: {
1923  struct kvm_regs *kvm_regs;
1924 
1925  r = -ENOMEM;
1926  kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1927  if (IS_ERR(kvm_regs)) {
1928  r = PTR_ERR(kvm_regs);
1929  goto out;
1930  }
1931  r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1932  if (r)
1933  goto out_free2;
1934  r = 0;
1935 out_free2:
1936  kfree(kvm_regs);
1937  break;
1938  }
1939  case KVM_GET_SREGS: {
1940  kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1941  r = -ENOMEM;
1942  if (!kvm_sregs)
1943  goto out;
1944  r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1945  if (r)
1946  goto out;
1947  r = -EFAULT;
1948  if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1949  goto out;
1950  r = 0;
1951  break;
1952  }
1953  case KVM_SET_SREGS: {
1954  kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1955  if (IS_ERR(kvm_sregs)) {
1956  r = PTR_ERR(kvm_sregs);
1957  goto out;
1958  }
1959  r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1960  if (r)
1961  goto out;
1962  r = 0;
1963  break;
1964  }
1965  case KVM_GET_MP_STATE: {
1966  struct kvm_mp_state mp_state;
1967 
1969  if (r)
1970  goto out;
1971  r = -EFAULT;
1972  if (copy_to_user(argp, &mp_state, sizeof mp_state))
1973  goto out;
1974  r = 0;
1975  break;
1976  }
1977  case KVM_SET_MP_STATE: {
1978  struct kvm_mp_state mp_state;
1979 
1980  r = -EFAULT;
1981  if (copy_from_user(&mp_state, argp, sizeof mp_state))
1982  goto out;
1984  if (r)
1985  goto out;
1986  r = 0;
1987  break;
1988  }
1989  case KVM_TRANSLATE: {
1990  struct kvm_translation tr;
1991 
1992  r = -EFAULT;
1993  if (copy_from_user(&tr, argp, sizeof tr))
1994  goto out;
1995  r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1996  if (r)
1997  goto out;
1998  r = -EFAULT;
1999  if (copy_to_user(argp, &tr, sizeof tr))
2000  goto out;
2001  r = 0;
2002  break;
2003  }
2004  case KVM_SET_GUEST_DEBUG: {
2005  struct kvm_guest_debug dbg;
2006 
2007  r = -EFAULT;
2008  if (copy_from_user(&dbg, argp, sizeof dbg))
2009  goto out;
2011  if (r)
2012  goto out;
2013  r = 0;
2014  break;
2015  }
2016  case KVM_SET_SIGNAL_MASK: {
2017  struct kvm_signal_mask __user *sigmask_arg = argp;
2018  struct kvm_signal_mask kvm_sigmask;
2019  sigset_t sigset, *p;
2020 
2021  p = NULL;
2022  if (argp) {
2023  r = -EFAULT;
2024  if (copy_from_user(&kvm_sigmask, argp,
2025  sizeof kvm_sigmask))
2026  goto out;
2027  r = -EINVAL;
2028  if (kvm_sigmask.len != sizeof sigset)
2029  goto out;
2030  r = -EFAULT;
2031  if (copy_from_user(&sigset, sigmask_arg->sigset,
2032  sizeof sigset))
2033  goto out;
2034  p = &sigset;
2035  }
2036  r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2037  break;
2038  }
2039  case KVM_GET_FPU: {
2040  fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2041  r = -ENOMEM;
2042  if (!fpu)
2043  goto out;
2044  r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2045  if (r)
2046  goto out;
2047  r = -EFAULT;
2048  if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2049  goto out;
2050  r = 0;
2051  break;
2052  }
2053  case KVM_SET_FPU: {
2054  fpu = memdup_user(argp, sizeof(*fpu));
2055  if (IS_ERR(fpu)) {
2056  r = PTR_ERR(fpu);
2057  goto out;
2058  }
2059  r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2060  if (r)
2061  goto out;
2062  r = 0;
2063  break;
2064  }
2065  default:
2066  r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2067  }
2068 out:
2069  vcpu_put(vcpu);
2070  kfree(fpu);
2071  kfree(kvm_sregs);
2072  return r;
2073 }
2074 
2075 #ifdef CONFIG_COMPAT
2076 static long kvm_vcpu_compat_ioctl(struct file *filp,
2077  unsigned int ioctl, unsigned long arg)
2078 {
2079  struct kvm_vcpu *vcpu = filp->private_data;
2080  void __user *argp = compat_ptr(arg);
2081  int r;
2082 
2083  if (vcpu->kvm->mm != current->mm)
2084  return -EIO;
2085 
2086  switch (ioctl) {
2087  case KVM_SET_SIGNAL_MASK: {
2088  struct kvm_signal_mask __user *sigmask_arg = argp;
2089  struct kvm_signal_mask kvm_sigmask;
2090  compat_sigset_t csigset;
2091  sigset_t sigset;
2092 
2093  if (argp) {
2094  r = -EFAULT;
2095  if (copy_from_user(&kvm_sigmask, argp,
2096  sizeof kvm_sigmask))
2097  goto out;
2098  r = -EINVAL;
2099  if (kvm_sigmask.len != sizeof csigset)
2100  goto out;
2101  r = -EFAULT;
2102  if (copy_from_user(&csigset, sigmask_arg->sigset,
2103  sizeof csigset))
2104  goto out;
2105  sigset_from_compat(&sigset, &csigset);
2106  r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2107  } else
2108  r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2109  break;
2110  }
2111  default:
2112  r = kvm_vcpu_ioctl(filp, ioctl, arg);
2113  }
2114 
2115 out:
2116  return r;
2117 }
2118 #endif
2119 
2120 static long kvm_vm_ioctl(struct file *filp,
2121  unsigned int ioctl, unsigned long arg)
2122 {
2123  struct kvm *kvm = filp->private_data;
2124  void __user *argp = (void __user *)arg;
2125  int r;
2126 
2127  if (kvm->mm != current->mm)
2128  return -EIO;
2129  switch (ioctl) {
2130  case KVM_CREATE_VCPU:
2131  r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2132  if (r < 0)
2133  goto out;
2134  break;
2136  struct kvm_userspace_memory_region kvm_userspace_mem;
2137 
2138  r = -EFAULT;
2139  if (copy_from_user(&kvm_userspace_mem, argp,
2140  sizeof kvm_userspace_mem))
2141  goto out;
2142 
2143  r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2144  if (r)
2145  goto out;
2146  break;
2147  }
2148  case KVM_GET_DIRTY_LOG: {
2149  struct kvm_dirty_log log;
2150 
2151  r = -EFAULT;
2152  if (copy_from_user(&log, argp, sizeof log))
2153  goto out;
2154  r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2155  if (r)
2156  goto out;
2157  break;
2158  }
2159 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2162  r = -EFAULT;
2163  if (copy_from_user(&zone, argp, sizeof zone))
2164  goto out;
2166  if (r)
2167  goto out;
2168  r = 0;
2169  break;
2170  }
2173  r = -EFAULT;
2174  if (copy_from_user(&zone, argp, sizeof zone))
2175  goto out;
2177  if (r)
2178  goto out;
2179  r = 0;
2180  break;
2181  }
2182 #endif
2183  case KVM_IRQFD: {
2184  struct kvm_irqfd data;
2185 
2186  r = -EFAULT;
2187  if (copy_from_user(&data, argp, sizeof data))
2188  goto out;
2189  r = kvm_irqfd(kvm, &data);
2190  break;
2191  }
2192  case KVM_IOEVENTFD: {
2193  struct kvm_ioeventfd data;
2194 
2195  r = -EFAULT;
2196  if (copy_from_user(&data, argp, sizeof data))
2197  goto out;
2198  r = kvm_ioeventfd(kvm, &data);
2199  break;
2200  }
2201 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2202  case KVM_SET_BOOT_CPU_ID:
2203  r = 0;
2204  mutex_lock(&kvm->lock);
2205  if (atomic_read(&kvm->online_vcpus) != 0)
2206  r = -EBUSY;
2207  else
2208  kvm->bsp_vcpu_id = arg;
2209  mutex_unlock(&kvm->lock);
2210  break;
2211 #endif
2212 #ifdef CONFIG_HAVE_KVM_MSI
2213  case KVM_SIGNAL_MSI: {
2214  struct kvm_msi msi;
2215 
2216  r = -EFAULT;
2217  if (copy_from_user(&msi, argp, sizeof msi))
2218  goto out;
2219  r = kvm_send_userspace_msi(kvm, &msi);
2220  break;
2221  }
2222 #endif
2223 #ifdef __KVM_HAVE_IRQ_LINE
2224  case KVM_IRQ_LINE_STATUS:
2225  case KVM_IRQ_LINE: {
2226  struct kvm_irq_level irq_event;
2227 
2228  r = -EFAULT;
2229  if (copy_from_user(&irq_event, argp, sizeof irq_event))
2230  goto out;
2231 
2232  r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2233  if (r)
2234  goto out;
2235 
2236  r = -EFAULT;
2237  if (ioctl == KVM_IRQ_LINE_STATUS) {
2238  if (copy_to_user(argp, &irq_event, sizeof irq_event))
2239  goto out;
2240  }
2241 
2242  r = 0;
2243  break;
2244  }
2245 #endif
2246  default:
2247  r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2248  if (r == -ENOTTY)
2249  r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2250  }
2251 out:
2252  return r;
2253 }
2254 
2255 #ifdef CONFIG_COMPAT
2256 struct compat_kvm_dirty_log {
2257  __u32 slot;
2258  __u32 padding1;
2259  union {
2260  compat_uptr_t dirty_bitmap; /* one bit per page */
2261  __u64 padding2;
2262  };
2263 };
2264 
2265 static long kvm_vm_compat_ioctl(struct file *filp,
2266  unsigned int ioctl, unsigned long arg)
2267 {
2268  struct kvm *kvm = filp->private_data;
2269  int r;
2270 
2271  if (kvm->mm != current->mm)
2272  return -EIO;
2273  switch (ioctl) {
2274  case KVM_GET_DIRTY_LOG: {
2275  struct compat_kvm_dirty_log compat_log;
2276  struct kvm_dirty_log log;
2277 
2278  r = -EFAULT;
2279  if (copy_from_user(&compat_log, (void __user *)arg,
2280  sizeof(compat_log)))
2281  goto out;
2282  log.slot = compat_log.slot;
2283  log.padding1 = compat_log.padding1;
2284  log.padding2 = compat_log.padding2;
2285  log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2286 
2287  r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2288  if (r)
2289  goto out;
2290  break;
2291  }
2292  default:
2293  r = kvm_vm_ioctl(filp, ioctl, arg);
2294  }
2295 
2296 out:
2297  return r;
2298 }
2299 #endif
2300 
2301 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2302 {
2303  struct page *page[1];
2304  unsigned long addr;
2305  int npages;
2306  gfn_t gfn = vmf->pgoff;
2307  struct kvm *kvm = vma->vm_file->private_data;
2308 
2309  addr = gfn_to_hva(kvm, gfn);
2310  if (kvm_is_error_hva(addr))
2311  return VM_FAULT_SIGBUS;
2312 
2313  npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2314  NULL);
2315  if (unlikely(npages != 1))
2316  return VM_FAULT_SIGBUS;
2317 
2318  vmf->page = page[0];
2319  return 0;
2320 }
2321 
2322 static const struct vm_operations_struct kvm_vm_vm_ops = {
2323  .fault = kvm_vm_fault,
2324 };
2325 
2326 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2327 {
2328  vma->vm_ops = &kvm_vm_vm_ops;
2329  return 0;
2330 }
2331 
2332 static struct file_operations kvm_vm_fops = {
2333  .release = kvm_vm_release,
2334  .unlocked_ioctl = kvm_vm_ioctl,
2335 #ifdef CONFIG_COMPAT
2336  .compat_ioctl = kvm_vm_compat_ioctl,
2337 #endif
2338  .mmap = kvm_vm_mmap,
2339  .llseek = noop_llseek,
2340 };
2341 
2342 static int kvm_dev_ioctl_create_vm(unsigned long type)
2343 {
2344  int r;
2345  struct kvm *kvm;
2346 
2347  kvm = kvm_create_vm(type);
2348  if (IS_ERR(kvm))
2349  return PTR_ERR(kvm);
2350 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2351  r = kvm_coalesced_mmio_init(kvm);
2352  if (r < 0) {
2353  kvm_put_kvm(kvm);
2354  return r;
2355  }
2356 #endif
2357  r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2358  if (r < 0)
2359  kvm_put_kvm(kvm);
2360 
2361  return r;
2362 }
2363 
2364 static long kvm_dev_ioctl_check_extension_generic(long arg)
2365 {
2366  switch (arg) {
2367  case KVM_CAP_USER_MEMORY:
2370 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2372 #endif
2374 #ifdef CONFIG_HAVE_KVM_MSI
2375  case KVM_CAP_SIGNAL_MSI:
2376 #endif
2377  return 1;
2378 #ifdef KVM_CAP_IRQ_ROUTING
2379  case KVM_CAP_IRQ_ROUTING:
2380  return KVM_MAX_IRQ_ROUTES;
2381 #endif
2382  default:
2383  break;
2384  }
2385  return kvm_dev_ioctl_check_extension(arg);
2386 }
2387 
2388 static long kvm_dev_ioctl(struct file *filp,
2389  unsigned int ioctl, unsigned long arg)
2390 {
2391  long r = -EINVAL;
2392 
2393  switch (ioctl) {
2394  case KVM_GET_API_VERSION:
2395  r = -EINVAL;
2396  if (arg)
2397  goto out;
2398  r = KVM_API_VERSION;
2399  break;
2400  case KVM_CREATE_VM:
2401  r = kvm_dev_ioctl_create_vm(arg);
2402  break;
2403  case KVM_CHECK_EXTENSION:
2404  r = kvm_dev_ioctl_check_extension_generic(arg);
2405  break;
2407  r = -EINVAL;
2408  if (arg)
2409  goto out;
2410  r = PAGE_SIZE; /* struct kvm_run */
2411 #ifdef CONFIG_X86
2412  r += PAGE_SIZE; /* pio data page */
2413 #endif
2414 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2415  r += PAGE_SIZE; /* coalesced mmio ring page */
2416 #endif
2417  break;
2418  case KVM_TRACE_ENABLE:
2419  case KVM_TRACE_PAUSE:
2420  case KVM_TRACE_DISABLE:
2421  r = -EOPNOTSUPP;
2422  break;
2423  default:
2424  return kvm_arch_dev_ioctl(filp, ioctl, arg);
2425  }
2426 out:
2427  return r;
2428 }
2429 
2430 static struct file_operations kvm_chardev_ops = {
2431  .unlocked_ioctl = kvm_dev_ioctl,
2432  .compat_ioctl = kvm_dev_ioctl,
2433  .llseek = noop_llseek,
2434 };
2435 
2436 static struct miscdevice kvm_dev = {
2437  KVM_MINOR,
2438  "kvm",
2439  &kvm_chardev_ops,
2440 };
2441 
2442 static void hardware_enable_nolock(void *junk)
2443 {
2444  int cpu = raw_smp_processor_id();
2445  int r;
2446 
2447  if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2448  return;
2449 
2450  cpumask_set_cpu(cpu, cpus_hardware_enabled);
2451 
2453 
2454  if (r) {
2455  cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2456  atomic_inc(&hardware_enable_failed);
2457  printk(KERN_INFO "kvm: enabling virtualization on "
2458  "CPU%d failed\n", cpu);
2459  }
2460 }
2461 
2462 static void hardware_enable(void *junk)
2463 {
2464  raw_spin_lock(&kvm_lock);
2465  hardware_enable_nolock(junk);
2466  raw_spin_unlock(&kvm_lock);
2467 }
2468 
2469 static void hardware_disable_nolock(void *junk)
2470 {
2471  int cpu = raw_smp_processor_id();
2472 
2473  if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2474  return;
2475  cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2477 }
2478 
2479 static void hardware_disable(void *junk)
2480 {
2481  raw_spin_lock(&kvm_lock);
2482  hardware_disable_nolock(junk);
2483  raw_spin_unlock(&kvm_lock);
2484 }
2485 
2486 static void hardware_disable_all_nolock(void)
2487 {
2488  BUG_ON(!kvm_usage_count);
2489 
2490  kvm_usage_count--;
2491  if (!kvm_usage_count)
2492  on_each_cpu(hardware_disable_nolock, NULL, 1);
2493 }
2494 
2495 static void hardware_disable_all(void)
2496 {
2497  raw_spin_lock(&kvm_lock);
2498  hardware_disable_all_nolock();
2499  raw_spin_unlock(&kvm_lock);
2500 }
2501 
2502 static int hardware_enable_all(void)
2503 {
2504  int r = 0;
2505 
2506  raw_spin_lock(&kvm_lock);
2507 
2508  kvm_usage_count++;
2509  if (kvm_usage_count == 1) {
2510  atomic_set(&hardware_enable_failed, 0);
2511  on_each_cpu(hardware_enable_nolock, NULL, 1);
2512 
2513  if (atomic_read(&hardware_enable_failed)) {
2514  hardware_disable_all_nolock();
2515  r = -EBUSY;
2516  }
2517  }
2518 
2519  raw_spin_unlock(&kvm_lock);
2520 
2521  return r;
2522 }
2523 
2524 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2525  void *v)
2526 {
2527  int cpu = (long)v;
2528 
2529  if (!kvm_usage_count)
2530  return NOTIFY_OK;
2531 
2532  val &= ~CPU_TASKS_FROZEN;
2533  switch (val) {
2534  case CPU_DYING:
2535  printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2536  cpu);
2537  hardware_disable(NULL);
2538  break;
2539  case CPU_STARTING:
2540  printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2541  cpu);
2542  hardware_enable(NULL);
2543  break;
2544  }
2545  return NOTIFY_OK;
2546 }
2547 
2548 
2550 {
2551  /* Fault while not rebooting. We want the trace. */
2552  BUG();
2553 }
2555 
2556 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2557  void *v)
2558 {
2559  /*
2560  * Some (well, at least mine) BIOSes hang on reboot if
2561  * in vmx root mode.
2562  *
2563  * And Intel TXT required VMX off for all cpu when system shutdown.
2564  */
2565  printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2566  kvm_rebooting = true;
2567  on_each_cpu(hardware_disable_nolock, NULL, 1);
2568  return NOTIFY_OK;
2569 }
2570 
2571 static struct notifier_block kvm_reboot_notifier = {
2572  .notifier_call = kvm_reboot,
2573  .priority = 0,
2574 };
2575 
2576 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2577 {
2578  int i;
2579 
2580  for (i = 0; i < bus->dev_count; i++) {
2581  struct kvm_io_device *pos = bus->range[i].dev;
2582 
2583  kvm_iodevice_destructor(pos);
2584  }
2585  kfree(bus);
2586 }
2587 
2588 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2589 {
2590  const struct kvm_io_range *r1 = p1;
2591  const struct kvm_io_range *r2 = p2;
2592 
2593  if (r1->addr < r2->addr)
2594  return -1;
2595  if (r1->addr + r1->len > r2->addr + r2->len)
2596  return 1;
2597  return 0;
2598 }
2599 
2601  gpa_t addr, int len)
2602 {
2603  bus->range[bus->dev_count++] = (struct kvm_io_range) {
2604  .addr = addr,
2605  .len = len,
2606  .dev = dev,
2607  };
2608 
2609  sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2611 
2612  return 0;
2613 }
2614 
2616  gpa_t addr, int len)
2617 {
2618  struct kvm_io_range *range, key;
2619  int off;
2620 
2621  key = (struct kvm_io_range) {
2622  .addr = addr,
2623  .len = len,
2624  };
2625 
2626  range = bsearch(&key, bus->range, bus->dev_count,
2627  sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2628  if (range == NULL)
2629  return -ENOENT;
2630 
2631  off = range - bus->range;
2632 
2633  while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2634  off--;
2635 
2636  return off;
2637 }
2638 
2639 /* kvm_io_bus_write - called under kvm->slots_lock */
2640 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2641  int len, const void *val)
2642 {
2643  int idx;
2644  struct kvm_io_bus *bus;
2645  struct kvm_io_range range;
2646 
2647  range = (struct kvm_io_range) {
2648  .addr = addr,
2649  .len = len,
2650  };
2651 
2652  bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2653  idx = kvm_io_bus_get_first_dev(bus, addr, len);
2654  if (idx < 0)
2655  return -EOPNOTSUPP;
2656 
2657  while (idx < bus->dev_count &&
2658  kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2659  if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2660  return 0;
2661  idx++;
2662  }
2663 
2664  return -EOPNOTSUPP;
2665 }
2666 
2667 /* kvm_io_bus_read - called under kvm->slots_lock */
2668 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2669  int len, void *val)
2670 {
2671  int idx;
2672  struct kvm_io_bus *bus;
2673  struct kvm_io_range range;
2674 
2675  range = (struct kvm_io_range) {
2676  .addr = addr,
2677  .len = len,
2678  };
2679 
2680  bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2681  idx = kvm_io_bus_get_first_dev(bus, addr, len);
2682  if (idx < 0)
2683  return -EOPNOTSUPP;
2684 
2685  while (idx < bus->dev_count &&
2686  kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2687  if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2688  return 0;
2689  idx++;
2690  }
2691 
2692  return -EOPNOTSUPP;
2693 }
2694 
2695 /* Caller must hold slots_lock. */
2696 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2697  int len, struct kvm_io_device *dev)
2698 {
2699  struct kvm_io_bus *new_bus, *bus;
2700 
2701  bus = kvm->buses[bus_idx];
2702  if (bus->dev_count > NR_IOBUS_DEVS - 1)
2703  return -ENOSPC;
2704 
2705  new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2706  sizeof(struct kvm_io_range)), GFP_KERNEL);
2707  if (!new_bus)
2708  return -ENOMEM;
2709  memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2710  sizeof(struct kvm_io_range)));
2711  kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2712  rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2714  kfree(bus);
2715 
2716  return 0;
2717 }
2718 
2719 /* Caller must hold slots_lock. */
2720 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2721  struct kvm_io_device *dev)
2722 {
2723  int i, r;
2724  struct kvm_io_bus *new_bus, *bus;
2725 
2726  bus = kvm->buses[bus_idx];
2727  r = -ENOENT;
2728  for (i = 0; i < bus->dev_count; i++)
2729  if (bus->range[i].dev == dev) {
2730  r = 0;
2731  break;
2732  }
2733 
2734  if (r)
2735  return r;
2736 
2737  new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2738  sizeof(struct kvm_io_range)), GFP_KERNEL);
2739  if (!new_bus)
2740  return -ENOMEM;
2741 
2742  memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2743  new_bus->dev_count--;
2744  memcpy(new_bus->range + i, bus->range + i + 1,
2745  (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2746 
2747  rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2749  kfree(bus);
2750  return r;
2751 }
2752 
2753 static struct notifier_block kvm_cpu_notifier = {
2754  .notifier_call = kvm_cpu_hotplug,
2755 };
2756 
2757 static int vm_stat_get(void *_offset, u64 *val)
2758 {
2759  unsigned offset = (long)_offset;
2760  struct kvm *kvm;
2761 
2762  *val = 0;
2763  raw_spin_lock(&kvm_lock);
2765  *val += *(u32 *)((void *)kvm + offset);
2766  raw_spin_unlock(&kvm_lock);
2767  return 0;
2768 }
2769 
2770 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2771 
2772 static int vcpu_stat_get(void *_offset, u64 *val)
2773 {
2774  unsigned offset = (long)_offset;
2775  struct kvm *kvm;
2776  struct kvm_vcpu *vcpu;
2777  int i;
2778 
2779  *val = 0;
2780  raw_spin_lock(&kvm_lock);
2781  list_for_each_entry(kvm, &vm_list, vm_list)
2782  kvm_for_each_vcpu(i, vcpu, kvm)
2783  *val += *(u32 *)((void *)vcpu + offset);
2784 
2785  raw_spin_unlock(&kvm_lock);
2786  return 0;
2787 }
2788 
2789 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2790 
2791 static const struct file_operations *stat_fops[] = {
2792  [KVM_STAT_VCPU] = &vcpu_stat_fops,
2793  [KVM_STAT_VM] = &vm_stat_fops,
2794 };
2795 
2796 static int kvm_init_debug(void)
2797 {
2798  int r = -EFAULT;
2799  struct kvm_stats_debugfs_item *p;
2800 
2801  kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2802  if (kvm_debugfs_dir == NULL)
2803  goto out;
2804 
2805  for (p = debugfs_entries; p->name; ++p) {
2806  p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2807  (void *)(long)p->offset,
2808  stat_fops[p->kind]);
2809  if (p->dentry == NULL)
2810  goto out_dir;
2811  }
2812 
2813  return 0;
2814 
2815 out_dir:
2816  debugfs_remove_recursive(kvm_debugfs_dir);
2817 out:
2818  return r;
2819 }
2820 
2821 static void kvm_exit_debug(void)
2822 {
2823  struct kvm_stats_debugfs_item *p;
2824 
2825  for (p = debugfs_entries; p->name; ++p)
2826  debugfs_remove(p->dentry);
2827  debugfs_remove(kvm_debugfs_dir);
2828 }
2829 
2830 static int kvm_suspend(void)
2831 {
2832  if (kvm_usage_count)
2833  hardware_disable_nolock(NULL);
2834  return 0;
2835 }
2836 
2837 static void kvm_resume(void)
2838 {
2839  if (kvm_usage_count) {
2840  WARN_ON(raw_spin_is_locked(&kvm_lock));
2841  hardware_enable_nolock(NULL);
2842  }
2843 }
2844 
2845 static struct syscore_ops kvm_syscore_ops = {
2846  .suspend = kvm_suspend,
2847  .resume = kvm_resume,
2848 };
2849 
2850 static inline
2851 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2852 {
2853  return container_of(pn, struct kvm_vcpu, preempt_notifier);
2854 }
2855 
2856 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2857 {
2858  struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2859 
2860  kvm_arch_vcpu_load(vcpu, cpu);
2861 }
2862 
2863 static void kvm_sched_out(struct preempt_notifier *pn,
2864  struct task_struct *next)
2865 {
2866  struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2867 
2868  kvm_arch_vcpu_put(vcpu);
2869 }
2870 
2871 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2872  struct module *module)
2873 {
2874  int r;
2875  int cpu;
2876 
2877  r = kvm_arch_init(opaque);
2878  if (r)
2879  goto out_fail;
2880 
2881  if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2882  r = -ENOMEM;
2883  goto out_free_0;
2884  }
2885 
2887  if (r < 0)
2888  goto out_free_0a;
2889 
2890  for_each_online_cpu(cpu) {
2893  &r, 1);
2894  if (r < 0)
2895  goto out_free_1;
2896  }
2897 
2898  r = register_cpu_notifier(&kvm_cpu_notifier);
2899  if (r)
2900  goto out_free_2;
2901  register_reboot_notifier(&kvm_reboot_notifier);
2902 
2903  /* A kmem cache lets us meet the alignment requirements of fx_save. */
2904  if (!vcpu_align)
2905  vcpu_align = __alignof__(struct kvm_vcpu);
2906  kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2907  0, NULL);
2908  if (!kvm_vcpu_cache) {
2909  r = -ENOMEM;
2910  goto out_free_3;
2911  }
2912 
2913  r = kvm_async_pf_init();
2914  if (r)
2915  goto out_free;
2916 
2917  kvm_chardev_ops.owner = module;
2918  kvm_vm_fops.owner = module;
2919  kvm_vcpu_fops.owner = module;
2920 
2921  r = misc_register(&kvm_dev);
2922  if (r) {
2923  printk(KERN_ERR "kvm: misc device register failed\n");
2924  goto out_unreg;
2925  }
2926 
2927  register_syscore_ops(&kvm_syscore_ops);
2928 
2929  kvm_preempt_ops.sched_in = kvm_sched_in;
2930  kvm_preempt_ops.sched_out = kvm_sched_out;
2931 
2932  r = kvm_init_debug();
2933  if (r) {
2934  printk(KERN_ERR "kvm: create debugfs files failed\n");
2935  goto out_undebugfs;
2936  }
2937 
2938  return 0;
2939 
2940 out_undebugfs:
2941  unregister_syscore_ops(&kvm_syscore_ops);
2942 out_unreg:
2944 out_free:
2945  kmem_cache_destroy(kvm_vcpu_cache);
2946 out_free_3:
2947  unregister_reboot_notifier(&kvm_reboot_notifier);
2948  unregister_cpu_notifier(&kvm_cpu_notifier);
2949 out_free_2:
2950 out_free_1:
2952 out_free_0a:
2953  free_cpumask_var(cpus_hardware_enabled);
2954 out_free_0:
2955  kvm_arch_exit();
2956 out_fail:
2957  return r;
2958 }
2960 
2961 void kvm_exit(void)
2962 {
2963  kvm_exit_debug();
2964  misc_deregister(&kvm_dev);
2965  kmem_cache_destroy(kvm_vcpu_cache);
2967  unregister_syscore_ops(&kvm_syscore_ops);
2968  unregister_reboot_notifier(&kvm_reboot_notifier);
2969  unregister_cpu_notifier(&kvm_cpu_notifier);
2970  on_each_cpu(hardware_disable_nolock, NULL, 1);
2972  kvm_arch_exit();
2973  free_cpumask_var(cpus_hardware_enabled);
2974 }