Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
perf_event_mipsxx.c
Go to the documentation of this file.
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29 
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33 
34 struct cpu_hw_events {
35  /* Array of events on this cpu. */
37 
38  /*
39  * Set the bit (indexed by the counter number) when the counter
40  * is used for an event.
41  */
43 
44  /*
45  * Software copy of the control register for each performance counter.
46  * MIPS CPUs vary in performance counters. They use this differently,
47  * and even may not use it.
48  */
50 };
52  .saved_ctrl = {0},
53 };
54 
55 /* The description of MIPS performance events. */
57  unsigned int event_id;
58  /*
59  * MIPS performance counters are indexed starting from 0.
60  * CNTR_EVEN indicates the indexes of the counters to be used are
61  * even numbers.
62  */
63  unsigned int cntr_mask;
64  #define CNTR_EVEN 0x55555555
65  #define CNTR_ODD 0xaaaaaaaa
66  #define CNTR_ALL 0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
68  enum {
69  T = 0,
70  V = 1,
71  P = 2,
72  } range;
73 #else
74  #define T
75  #define V
76  #define P
77 #endif
78 };
79 
80 static struct mips_perf_event raw_event;
81 static DEFINE_MUTEX(raw_event_mutex);
82 
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84 
85 struct mips_pmu {
89  const char *name;
90  int irq;
91  u64 (*read_counter)(unsigned int idx);
92  void (*write_counter)(unsigned int idx, u64 val);
93  const struct mips_perf_event *(*map_raw_event)(u64 config);
99  unsigned int num_counters;
100 };
101 
102 static struct mips_pmu mipspmu;
103 
104 #define M_CONFIG1_PC (1 << 4)
105 
106 #define M_PERFCTL_EXL (1 << 0)
107 #define M_PERFCTL_KERNEL (1 << 1)
108 #define M_PERFCTL_SUPERVISOR (1 << 2)
109 #define M_PERFCTL_USER (1 << 3)
110 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
111 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
112 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
113 
114 #ifdef CONFIG_CPU_BMIPS5000
115 #define M_PERFCTL_MT_EN(filter) 0
116 #else /* !CONFIG_CPU_BMIPS5000 */
117 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
118 #endif /* CONFIG_CPU_BMIPS5000 */
119 
120 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
121 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
122 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
123 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
124 #define M_PERFCTL_WIDE (1 << 30)
125 #define M_PERFCTL_MORE (1 << 31)
126 #define M_PERFCTL_TC (1 << 30)
127 
128 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
129  M_PERFCTL_KERNEL | \
130  M_PERFCTL_USER | \
131  M_PERFCTL_SUPERVISOR | \
132  M_PERFCTL_INTERRUPT_ENABLE)
133 
134 #ifdef CONFIG_MIPS_MT_SMP
135 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
136 #else
137 #define M_PERFCTL_CONFIG_MASK 0x1f
138 #endif
139 #define M_PERFCTL_EVENT_MASK 0xfe0
140 
141 
142 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143 static int cpu_has_mipsmt_pertccounters;
144 
145 static DEFINE_RWLOCK(pmuint_rwlock);
146 
147 #if defined(CONFIG_CPU_BMIPS5000)
148 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
149  0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150 #else
151 /*
152  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154  */
155 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
156  0 : smp_processor_id())
157 #endif
158 
159 /* Copied from op_model_mipsxx.c */
160 static unsigned int vpe_shift(void)
161 {
162  if (num_possible_cpus() > 1)
163  return 1;
164 
165  return 0;
166 }
167 
168 static unsigned int counters_total_to_per_cpu(unsigned int counters)
169 {
170  return counters >> vpe_shift();
171 }
172 
173 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174 #define vpe_id() 0
175 
176 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177 
178 static void resume_local_counters(void);
179 static void pause_local_counters(void);
180 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181 static int mipsxx_pmu_handle_shared_irq(void);
182 
183 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184 {
185  if (vpe_id() == 1)
186  idx = (idx + 2) & 3;
187  return idx;
188 }
189 
190 static u64 mipsxx_pmu_read_counter(unsigned int idx)
191 {
192  idx = mipsxx_pmu_swizzle_perf_idx(idx);
193 
194  switch (idx) {
195  case 0:
196  /*
197  * The counters are unsigned, we must cast to truncate
198  * off the high bits.
199  */
200  return (u32)read_c0_perfcntr0();
201  case 1:
202  return (u32)read_c0_perfcntr1();
203  case 2:
204  return (u32)read_c0_perfcntr2();
205  case 3:
206  return (u32)read_c0_perfcntr3();
207  default:
208  WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209  return 0;
210  }
211 }
212 
213 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214 {
215  idx = mipsxx_pmu_swizzle_perf_idx(idx);
216 
217  switch (idx) {
218  case 0:
219  return read_c0_perfcntr0_64();
220  case 1:
221  return read_c0_perfcntr1_64();
222  case 2:
223  return read_c0_perfcntr2_64();
224  case 3:
225  return read_c0_perfcntr3_64();
226  default:
227  WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228  return 0;
229  }
230 }
231 
232 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233 {
234  idx = mipsxx_pmu_swizzle_perf_idx(idx);
235 
236  switch (idx) {
237  case 0:
238  write_c0_perfcntr0(val);
239  return;
240  case 1:
241  write_c0_perfcntr1(val);
242  return;
243  case 2:
244  write_c0_perfcntr2(val);
245  return;
246  case 3:
247  write_c0_perfcntr3(val);
248  return;
249  }
250 }
251 
252 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253 {
254  idx = mipsxx_pmu_swizzle_perf_idx(idx);
255 
256  switch (idx) {
257  case 0:
259  return;
260  case 1:
262  return;
263  case 2:
265  return;
266  case 3:
268  return;
269  }
270 }
271 
272 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273 {
274  idx = mipsxx_pmu_swizzle_perf_idx(idx);
275 
276  switch (idx) {
277  case 0:
278  return read_c0_perfctrl0();
279  case 1:
280  return read_c0_perfctrl1();
281  case 2:
282  return read_c0_perfctrl2();
283  case 3:
284  return read_c0_perfctrl3();
285  default:
286  WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287  return 0;
288  }
289 }
290 
291 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292 {
293  idx = mipsxx_pmu_swizzle_perf_idx(idx);
294 
295  switch (idx) {
296  case 0:
297  write_c0_perfctrl0(val);
298  return;
299  case 1:
300  write_c0_perfctrl1(val);
301  return;
302  case 2:
303  write_c0_perfctrl2(val);
304  return;
305  case 3:
306  write_c0_perfctrl3(val);
307  return;
308  }
309 }
310 
311 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312  struct hw_perf_event *hwc)
313 {
314  int i;
315 
316  /*
317  * We only need to care the counter mask. The range has been
318  * checked definitely.
319  */
320  unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321 
322  for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323  /*
324  * Note that some MIPS perf events can be counted by both
325  * even and odd counters, wheresas many other are only by
326  * even _or_ odd counters. This introduces an issue that
327  * when the former kind of event takes the counter the
328  * latter kind of event wants to use, then the "counter
329  * allocation" for the latter event will fail. In fact if
330  * they can be dynamically swapped, they both feel happy.
331  * But here we leave this issue alone for now.
332  */
333  if (test_bit(i, &cntr_mask) &&
334  !test_and_set_bit(i, cpuc->used_mask))
335  return i;
336  }
337 
338  return -EAGAIN;
339 }
340 
341 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342 {
343  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
344 
345  WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346 
347  cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348  (evt->config_base & M_PERFCTL_CONFIG_MASK) |
349  /* Make sure interrupt enabled. */
351  if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352  /* enable the counter for the calling thread */
353  cpuc->saved_ctrl[idx] |=
354  (1 << (12 + vpe_id())) | M_PERFCTL_TC;
355 
356  /*
357  * We do not actually let the counter run. Leave it until start().
358  */
359 }
360 
361 static void mipsxx_pmu_disable_event(int idx)
362 {
363  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
364  unsigned long flags;
365 
366  WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367 
368  local_irq_save(flags);
369  cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
371  mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372  local_irq_restore(flags);
373 }
374 
375 static int mipspmu_event_set_period(struct perf_event *event,
376  struct hw_perf_event *hwc,
377  int idx)
378 {
379  u64 left = local64_read(&hwc->period_left);
380  u64 period = hwc->sample_period;
381  int ret = 0;
382 
383  if (unlikely((left + period) & (1ULL << 63))) {
384  /* left underflowed by more than period. */
385  left = period;
386  local64_set(&hwc->period_left, left);
387  hwc->last_period = period;
388  ret = 1;
389  } else if (unlikely((left + period) <= period)) {
390  /* left underflowed by less than period. */
391  left += period;
392  local64_set(&hwc->period_left, left);
393  hwc->last_period = period;
394  ret = 1;
395  }
396 
397  if (left > mipspmu.max_period) {
398  left = mipspmu.max_period;
399  local64_set(&hwc->period_left, left);
400  }
401 
402  local64_set(&hwc->prev_count, mipspmu.overflow - left);
403 
404  mipspmu.write_counter(idx, mipspmu.overflow - left);
405 
407 
408  return ret;
409 }
410 
411 static void mipspmu_event_update(struct perf_event *event,
412  struct hw_perf_event *hwc,
413  int idx)
414 {
415  u64 prev_raw_count, new_raw_count;
416  u64 delta;
417 
418 again:
419  prev_raw_count = local64_read(&hwc->prev_count);
420  new_raw_count = mipspmu.read_counter(idx);
421 
422  if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423  new_raw_count) != prev_raw_count)
424  goto again;
425 
426  delta = new_raw_count - prev_raw_count;
427 
428  local64_add(delta, &event->count);
429  local64_sub(delta, &hwc->period_left);
430 }
431 
432 static void mipspmu_start(struct perf_event *event, int flags)
433 {
434  struct hw_perf_event *hwc = &event->hw;
435 
436  if (flags & PERF_EF_RELOAD)
437  WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438 
439  hwc->state = 0;
440 
441  /* Set the period for the event. */
442  mipspmu_event_set_period(event, hwc, hwc->idx);
443 
444  /* Enable the event. */
445  mipsxx_pmu_enable_event(hwc, hwc->idx);
446 }
447 
448 static void mipspmu_stop(struct perf_event *event, int flags)
449 {
450  struct hw_perf_event *hwc = &event->hw;
451 
452  if (!(hwc->state & PERF_HES_STOPPED)) {
453  /* We are working on a local event. */
454  mipsxx_pmu_disable_event(hwc->idx);
455  barrier();
456  mipspmu_event_update(event, hwc, hwc->idx);
457  hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458  }
459 }
460 
461 static int mipspmu_add(struct perf_event *event, int flags)
462 {
463  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
464  struct hw_perf_event *hwc = &event->hw;
465  int idx;
466  int err = 0;
467 
468  perf_pmu_disable(event->pmu);
469 
470  /* To look for a free counter for this event. */
471  idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472  if (idx < 0) {
473  err = idx;
474  goto out;
475  }
476 
477  /*
478  * If there is an event in the counter we are going to use then
479  * make sure it is disabled.
480  */
481  event->hw.idx = idx;
482  mipsxx_pmu_disable_event(idx);
483  cpuc->events[idx] = event;
484 
485  hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486  if (flags & PERF_EF_START)
487  mipspmu_start(event, PERF_EF_RELOAD);
488 
489  /* Propagate our changes to the userspace mapping. */
491 
492 out:
493  perf_pmu_enable(event->pmu);
494  return err;
495 }
496 
497 static void mipspmu_del(struct perf_event *event, int flags)
498 {
499  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
500  struct hw_perf_event *hwc = &event->hw;
501  int idx = hwc->idx;
502 
503  WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504 
505  mipspmu_stop(event, PERF_EF_UPDATE);
506  cpuc->events[idx] = NULL;
507  clear_bit(idx, cpuc->used_mask);
508 
510 }
511 
512 static void mipspmu_read(struct perf_event *event)
513 {
514  struct hw_perf_event *hwc = &event->hw;
515 
516  /* Don't read disabled counters! */
517  if (hwc->idx < 0)
518  return;
519 
520  mipspmu_event_update(event, hwc, hwc->idx);
521 }
522 
523 static void mipspmu_enable(struct pmu *pmu)
524 {
525 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526  write_unlock(&pmuint_rwlock);
527 #endif
528  resume_local_counters();
529 }
530 
531 /*
532  * MIPS performance counters can be per-TC. The control registers can
533  * not be directly accessed accross CPUs. Hence if we want to do global
534  * control, we need cross CPU calls. on_each_cpu() can help us, but we
535  * can not make sure this function is called with interrupts enabled. So
536  * here we pause local counters and then grab a rwlock and leave the
537  * counters on other CPUs alone. If any counter interrupt raises while
538  * we own the write lock, simply pause local counters on that CPU and
539  * spin in the handler. Also we know we won't be switched to another
540  * CPU after pausing local counters and before grabbing the lock.
541  */
542 static void mipspmu_disable(struct pmu *pmu)
543 {
544  pause_local_counters();
545 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546  write_lock(&pmuint_rwlock);
547 #endif
548 }
549 
550 static atomic_t active_events = ATOMIC_INIT(0);
551 static DEFINE_MUTEX(pmu_reserve_mutex);
552 static int (*save_perf_irq)(void);
553 
554 static int mipspmu_get_irq(void)
555 {
556  int err;
557 
558  if (mipspmu.irq >= 0) {
559  /* Request my own irq handler. */
560  err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
562  "mips_perf_pmu", NULL);
563  if (err) {
564  pr_warning("Unable to request IRQ%d for MIPS "
565  "performance counters!\n", mipspmu.irq);
566  }
567  } else if (cp0_perfcount_irq < 0) {
568  /*
569  * We are sharing the irq number with the timer interrupt.
570  */
571  save_perf_irq = perf_irq;
572  perf_irq = mipsxx_pmu_handle_shared_irq;
573  err = 0;
574  } else {
575  pr_warning("The platform hasn't properly defined its "
576  "interrupt controller.\n");
577  err = -ENOENT;
578  }
579 
580  return err;
581 }
582 
583 static void mipspmu_free_irq(void)
584 {
585  if (mipspmu.irq >= 0)
586  free_irq(mipspmu.irq, NULL);
587  else if (cp0_perfcount_irq < 0)
588  perf_irq = save_perf_irq;
589 }
590 
591 /*
592  * mipsxx/rm9000/loongson2 have different performance counters, they have
593  * specific low-level init routines.
594  */
595 static void reset_counters(void *arg);
596 static int __hw_perf_event_init(struct perf_event *event);
597 
598 static void hw_perf_event_destroy(struct perf_event *event)
599 {
600  if (atomic_dec_and_mutex_lock(&active_events,
601  &pmu_reserve_mutex)) {
602  /*
603  * We must not call the destroy function with interrupts
604  * disabled.
605  */
606  on_each_cpu(reset_counters,
607  (void *)(long)mipspmu.num_counters, 1);
608  mipspmu_free_irq();
609  mutex_unlock(&pmu_reserve_mutex);
610  }
611 }
612 
613 static int mipspmu_event_init(struct perf_event *event)
614 {
615  int err = 0;
616 
617  /* does not support taken branch sampling */
618  if (has_branch_stack(event))
619  return -EOPNOTSUPP;
620 
621  switch (event->attr.type) {
622  case PERF_TYPE_RAW:
623  case PERF_TYPE_HARDWARE:
624  case PERF_TYPE_HW_CACHE:
625  break;
626 
627  default:
628  return -ENOENT;
629  }
630 
631  if (event->cpu >= nr_cpumask_bits ||
632  (event->cpu >= 0 && !cpu_online(event->cpu)))
633  return -ENODEV;
634 
635  if (!atomic_inc_not_zero(&active_events)) {
636  mutex_lock(&pmu_reserve_mutex);
637  if (atomic_read(&active_events) == 0)
638  err = mipspmu_get_irq();
639 
640  if (!err)
641  atomic_inc(&active_events);
642  mutex_unlock(&pmu_reserve_mutex);
643  }
644 
645  if (err)
646  return err;
647 
648  return __hw_perf_event_init(event);
649 }
650 
651 static struct pmu pmu = {
652  .pmu_enable = mipspmu_enable,
653  .pmu_disable = mipspmu_disable,
654  .event_init = mipspmu_event_init,
655  .add = mipspmu_add,
656  .del = mipspmu_del,
657  .start = mipspmu_start,
658  .stop = mipspmu_stop,
659  .read = mipspmu_read,
660 };
661 
662 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
663 {
664 /*
665  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
666  * event_id.
667  */
668 #ifdef CONFIG_MIPS_MT_SMP
669  return ((unsigned int)pev->range << 24) |
670  (pev->cntr_mask & 0xffff00) |
671  (pev->event_id & 0xff);
672 #else
673  return (pev->cntr_mask & 0xffff00) |
674  (pev->event_id & 0xff);
675 #endif
676 }
677 
678 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
679 {
680 
681  if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
682  return ERR_PTR(-EOPNOTSUPP);
683  return &(*mipspmu.general_event_map)[idx];
684 }
685 
686 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687 {
688  unsigned int cache_type, cache_op, cache_result;
689  const struct mips_perf_event *pev;
690 
691  cache_type = (config >> 0) & 0xff;
692  if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693  return ERR_PTR(-EINVAL);
694 
695  cache_op = (config >> 8) & 0xff;
696  if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697  return ERR_PTR(-EINVAL);
698 
699  cache_result = (config >> 16) & 0xff;
700  if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701  return ERR_PTR(-EINVAL);
702 
703  pev = &((*mipspmu.cache_event_map)
704  [cache_type]
705  [cache_op]
706  [cache_result]);
707 
708  if (pev->cntr_mask == 0)
709  return ERR_PTR(-EOPNOTSUPP);
710 
711  return pev;
712 
713 }
714 
715 static int validate_group(struct perf_event *event)
716 {
717  struct perf_event *sibling, *leader = event->group_leader;
718  struct cpu_hw_events fake_cpuc;
719 
720  memset(&fake_cpuc, 0, sizeof(fake_cpuc));
721 
722  if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
723  return -EINVAL;
724 
725  list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
726  if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
727  return -EINVAL;
728  }
729 
730  if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
731  return -EINVAL;
732 
733  return 0;
734 }
735 
736 /* This is needed by specific irq handlers in perf_event_*.c */
737 static void handle_associated_event(struct cpu_hw_events *cpuc,
738  int idx, struct perf_sample_data *data,
739  struct pt_regs *regs)
740 {
741  struct perf_event *event = cpuc->events[idx];
742  struct hw_perf_event *hwc = &event->hw;
743 
744  mipspmu_event_update(event, hwc, idx);
745  data->period = event->hw.last_period;
746  if (!mipspmu_event_set_period(event, hwc, idx))
747  return;
748 
749  if (perf_event_overflow(event, data, regs))
750  mipsxx_pmu_disable_event(idx);
751 }
752 
753 
754 static int __n_counters(void)
755 {
756  if (!(read_c0_config1() & M_CONFIG1_PC))
757  return 0;
759  return 1;
761  return 2;
763  return 3;
764 
765  return 4;
766 }
767 
768 static int n_counters(void)
769 {
770  int counters;
771 
772  switch (current_cpu_type()) {
773  case CPU_R10000:
774  counters = 2;
775  break;
776 
777  case CPU_R12000:
778  case CPU_R14000:
779  counters = 4;
780  break;
781 
782  default:
783  counters = __n_counters();
784  }
785 
786  return counters;
787 }
788 
789 static void reset_counters(void *arg)
790 {
791  int counters = (int)(long)arg;
792  switch (counters) {
793  case 4:
794  mipsxx_pmu_write_control(3, 0);
795  mipspmu.write_counter(3, 0);
796  case 3:
797  mipsxx_pmu_write_control(2, 0);
798  mipspmu.write_counter(2, 0);
799  case 2:
800  mipsxx_pmu_write_control(1, 0);
801  mipspmu.write_counter(1, 0);
802  case 1:
803  mipsxx_pmu_write_control(0, 0);
804  mipspmu.write_counter(0, 0);
805  }
806 }
807 
808 /* 24K/34K/1004K cores can share the same event map. */
809 static const struct mips_perf_event mipsxxcore_event_map
810  [PERF_COUNT_HW_MAX] = {
811  [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
814  [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
815 };
816 
817 /* 74K core has different branch event code. */
818 static const struct mips_perf_event mipsxx74Kcore_event_map
819  [PERF_COUNT_HW_MAX] = {
820  [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
823  [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
824 };
825 
826 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
827  [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
828  [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
830  [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
833  [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
834 };
835 
836 static const struct mips_perf_event bmips5000_event_map
837  [PERF_COUNT_HW_MAX] = {
838  [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
840  [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
841 };
842 
843 /* 24K/34K/1004K cores can share the same cache event map. */
844 static const struct mips_perf_event mipsxxcore_cache_map
848 [C(L1D)] = {
849  /*
850  * Like some other architectures (e.g. ARM), the performance
851  * counters don't differentiate between read and write
852  * accesses/misses, so this isn't strictly correct, but it's the
853  * best we can do. Writes and reads get combined.
854  */
855  [C(OP_READ)] = {
856  [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
857  [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
858  },
859  [C(OP_WRITE)] = {
860  [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
861  [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
862  },
863 },
864 [C(L1I)] = {
865  [C(OP_READ)] = {
866  [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
867  [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
868  },
869  [C(OP_WRITE)] = {
870  [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
871  [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
872  },
873  [C(OP_PREFETCH)] = {
874  [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
875  /*
876  * Note that MIPS has only "hit" events countable for
877  * the prefetch operation.
878  */
879  },
880 },
881 [C(LL)] = {
882  [C(OP_READ)] = {
883  [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
884  [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
885  },
886  [C(OP_WRITE)] = {
887  [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
888  [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
889  },
890 },
891 [C(DTLB)] = {
892  [C(OP_READ)] = {
893  [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
894  [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
895  },
896  [C(OP_WRITE)] = {
897  [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
898  [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
899  },
900 },
901 [C(ITLB)] = {
902  [C(OP_READ)] = {
903  [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
904  [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
905  },
906  [C(OP_WRITE)] = {
907  [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
908  [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
909  },
910 },
911 [C(BPU)] = {
912  /* Using the same code for *HW_BRANCH* */
913  [C(OP_READ)] = {
914  [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
915  [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
916  },
917  [C(OP_WRITE)] = {
918  [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
919  [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
920  },
921 },
922 };
923 
924 /* 74K core has completely different cache event map. */
925 static const struct mips_perf_event mipsxx74Kcore_cache_map
929 [C(L1D)] = {
930  /*
931  * Like some other architectures (e.g. ARM), the performance
932  * counters don't differentiate between read and write
933  * accesses/misses, so this isn't strictly correct, but it's the
934  * best we can do. Writes and reads get combined.
935  */
936  [C(OP_READ)] = {
937  [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
938  [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
939  },
940  [C(OP_WRITE)] = {
941  [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
942  [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
943  },
944 },
945 [C(L1I)] = {
946  [C(OP_READ)] = {
947  [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
948  [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
949  },
950  [C(OP_WRITE)] = {
951  [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
952  [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
953  },
954  [C(OP_PREFETCH)] = {
955  [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
956  /*
957  * Note that MIPS has only "hit" events countable for
958  * the prefetch operation.
959  */
960  },
961 },
962 [C(LL)] = {
963  [C(OP_READ)] = {
964  [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
965  [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
966  },
967  [C(OP_WRITE)] = {
968  [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
969  [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
970  },
971 },
972 [C(ITLB)] = {
973  [C(OP_READ)] = {
974  [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
975  [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
976  },
977  [C(OP_WRITE)] = {
978  [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
979  [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
980  },
981 },
982 [C(BPU)] = {
983  /* Using the same code for *HW_BRANCH* */
984  [C(OP_READ)] = {
985  [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
986  [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
987  },
988  [C(OP_WRITE)] = {
989  [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
990  [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
991  },
992 },
993 };
994 
995 /* BMIPS5000 */
996 static const struct mips_perf_event bmips5000_cache_map
1000 [C(L1D)] = {
1001  /*
1002  * Like some other architectures (e.g. ARM), the performance
1003  * counters don't differentiate between read and write
1004  * accesses/misses, so this isn't strictly correct, but it's the
1005  * best we can do. Writes and reads get combined.
1006  */
1007  [C(OP_READ)] = {
1008  [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1009  [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1010  },
1011  [C(OP_WRITE)] = {
1012  [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1013  [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1014  },
1015 },
1016 [C(L1I)] = {
1017  [C(OP_READ)] = {
1018  [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1019  [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1020  },
1021  [C(OP_WRITE)] = {
1022  [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1023  [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1024  },
1025  [C(OP_PREFETCH)] = {
1026  [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1027  /*
1028  * Note that MIPS has only "hit" events countable for
1029  * the prefetch operation.
1030  */
1031  },
1032 },
1033 [C(LL)] = {
1034  [C(OP_READ)] = {
1035  [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1036  [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1037  },
1038  [C(OP_WRITE)] = {
1039  [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1040  [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1041  },
1042 },
1043 [C(BPU)] = {
1044  /* Using the same code for *HW_BRANCH* */
1045  [C(OP_READ)] = {
1046  [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1047  },
1048  [C(OP_WRITE)] = {
1049  [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1050  },
1051 },
1052 };
1053 
1054 
1055 static const struct mips_perf_event octeon_cache_map
1059 [C(L1D)] = {
1060  [C(OP_READ)] = {
1061  [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1062  [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1063  },
1064  [C(OP_WRITE)] = {
1065  [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1066  },
1067 },
1068 [C(L1I)] = {
1069  [C(OP_READ)] = {
1070  [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1071  },
1072  [C(OP_PREFETCH)] = {
1073  [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1074  },
1075 },
1076 [C(DTLB)] = {
1077  /*
1078  * Only general DTLB misses are counted use the same event for
1079  * read and write.
1080  */
1081  [C(OP_READ)] = {
1082  [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1083  },
1084  [C(OP_WRITE)] = {
1085  [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1086  },
1087 },
1088 [C(ITLB)] = {
1089  [C(OP_READ)] = {
1090  [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1091  },
1092 },
1093 };
1094 
1095 #ifdef CONFIG_MIPS_MT_SMP
1096 static void check_and_calc_range(struct perf_event *event,
1097  const struct mips_perf_event *pev)
1098 {
1099  struct hw_perf_event *hwc = &event->hw;
1100 
1101  if (event->cpu >= 0) {
1102  if (pev->range > V) {
1103  /*
1104  * The user selected an event that is processor
1105  * wide, while expecting it to be VPE wide.
1106  */
1107  hwc->config_base |= M_TC_EN_ALL;
1108  } else {
1109  /*
1110  * FIXME: cpu_data[event->cpu].vpe_id reports 0
1111  * for both CPUs.
1112  */
1113  hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1114  hwc->config_base |= M_TC_EN_VPE;
1115  }
1116  } else
1117  hwc->config_base |= M_TC_EN_ALL;
1118 }
1119 #else
1120 static void check_and_calc_range(struct perf_event *event,
1121  const struct mips_perf_event *pev)
1122 {
1123 }
1124 #endif
1125 
1126 static int __hw_perf_event_init(struct perf_event *event)
1127 {
1128  struct perf_event_attr *attr = &event->attr;
1129  struct hw_perf_event *hwc = &event->hw;
1130  const struct mips_perf_event *pev;
1131  int err;
1132 
1133  /* Returning MIPS event descriptor for generic perf event. */
1134  if (PERF_TYPE_HARDWARE == event->attr.type) {
1135  if (event->attr.config >= PERF_COUNT_HW_MAX)
1136  return -EINVAL;
1137  pev = mipspmu_map_general_event(event->attr.config);
1138  } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1139  pev = mipspmu_map_cache_event(event->attr.config);
1140  } else if (PERF_TYPE_RAW == event->attr.type) {
1141  /* We are working on the global raw event. */
1142  mutex_lock(&raw_event_mutex);
1143  pev = mipspmu.map_raw_event(event->attr.config);
1144  } else {
1145  /* The event type is not (yet) supported. */
1146  return -EOPNOTSUPP;
1147  }
1148 
1149  if (IS_ERR(pev)) {
1150  if (PERF_TYPE_RAW == event->attr.type)
1151  mutex_unlock(&raw_event_mutex);
1152  return PTR_ERR(pev);
1153  }
1154 
1155  /*
1156  * We allow max flexibility on how each individual counter shared
1157  * by the single CPU operates (the mode exclusion and the range).
1158  */
1159  hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1160 
1161  /* Calculate range bits and validate it. */
1162  if (num_possible_cpus() > 1)
1163  check_and_calc_range(event, pev);
1164 
1165  hwc->event_base = mipspmu_perf_event_encode(pev);
1166  if (PERF_TYPE_RAW == event->attr.type)
1167  mutex_unlock(&raw_event_mutex);
1168 
1169  if (!attr->exclude_user)
1170  hwc->config_base |= M_PERFCTL_USER;
1171  if (!attr->exclude_kernel) {
1172  hwc->config_base |= M_PERFCTL_KERNEL;
1173  /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1174  hwc->config_base |= M_PERFCTL_EXL;
1175  }
1176  if (!attr->exclude_hv)
1177  hwc->config_base |= M_PERFCTL_SUPERVISOR;
1178 
1179  hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1180  /*
1181  * The event can belong to another cpu. We do not assign a local
1182  * counter for it for now.
1183  */
1184  hwc->idx = -1;
1185  hwc->config = 0;
1186 
1187  if (!hwc->sample_period) {
1188  hwc->sample_period = mipspmu.max_period;
1189  hwc->last_period = hwc->sample_period;
1190  local64_set(&hwc->period_left, hwc->sample_period);
1191  }
1192 
1193  err = 0;
1194  if (event->group_leader != event)
1195  err = validate_group(event);
1196 
1197  event->destroy = hw_perf_event_destroy;
1198 
1199  if (err)
1200  event->destroy(event);
1201 
1202  return err;
1203 }
1204 
1205 static void pause_local_counters(void)
1206 {
1207  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1208  int ctr = mipspmu.num_counters;
1209  unsigned long flags;
1210 
1211  local_irq_save(flags);
1212  do {
1213  ctr--;
1214  cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1215  mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1217  } while (ctr > 0);
1218  local_irq_restore(flags);
1219 }
1220 
1221 static void resume_local_counters(void)
1222 {
1223  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1224  int ctr = mipspmu.num_counters;
1225 
1226  do {
1227  ctr--;
1228  mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1229  } while (ctr > 0);
1230 }
1231 
1232 static int mipsxx_pmu_handle_shared_irq(void)
1233 {
1234  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1235  struct perf_sample_data data;
1236  unsigned int counters = mipspmu.num_counters;
1237  u64 counter;
1238  int handled = IRQ_NONE;
1239  struct pt_regs *regs;
1240 
1242  return handled;
1243  /*
1244  * First we pause the local counters, so that when we are locked
1245  * here, the counters are all paused. When it gets locked due to
1246  * perf_disable(), the timer interrupt handler will be delayed.
1247  *
1248  * See also mipsxx_pmu_start().
1249  */
1250  pause_local_counters();
1251 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1252  read_lock(&pmuint_rwlock);
1253 #endif
1254 
1255  regs = get_irq_regs();
1256 
1257  perf_sample_data_init(&data, 0, 0);
1258 
1259  switch (counters) {
1260 #define HANDLE_COUNTER(n) \
1261  case n + 1: \
1262  if (test_bit(n, cpuc->used_mask)) { \
1263  counter = mipspmu.read_counter(n); \
1264  if (counter & mipspmu.overflow) { \
1265  handle_associated_event(cpuc, n, &data, regs); \
1266  handled = IRQ_HANDLED; \
1267  } \
1268  }
1269  HANDLE_COUNTER(3)
1270  HANDLE_COUNTER(2)
1271  HANDLE_COUNTER(1)
1272  HANDLE_COUNTER(0)
1273  }
1274 
1275  /*
1276  * Do all the work for the pending perf events. We can do this
1277  * in here because the performance counter interrupt is a regular
1278  * interrupt, not NMI.
1279  */
1280  if (handled == IRQ_HANDLED)
1281  irq_work_run();
1282 
1283 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1284  read_unlock(&pmuint_rwlock);
1285 #endif
1286  resume_local_counters();
1287  return handled;
1288 }
1289 
1290 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1291 {
1292  return mipsxx_pmu_handle_shared_irq();
1293 }
1294 
1295 /* 24K */
1296 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1297  ((b) == 0 || (b) == 1 || (b) == 11)
1298 
1299 /* 34K */
1300 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1301  ((b) == 0 || (b) == 1 || (b) == 11)
1302 #ifdef CONFIG_MIPS_MT_SMP
1303 #define IS_RANGE_P_34K_EVENT(r, b) \
1304  ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1305  (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1306  (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1307  ((b) >= 64 && (b) <= 67))
1308 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1309 #endif
1310 
1311 /* 74K */
1312 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1313  ((b) == 0 || (b) == 1)
1314 
1315 /* 1004K */
1316 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1317  ((b) == 0 || (b) == 1 || (b) == 11)
1318 #ifdef CONFIG_MIPS_MT_SMP
1319 #define IS_RANGE_P_1004K_EVENT(r, b) \
1320  ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1321  (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1322  (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1323  (r) == 188 || (b) == 61 || (b) == 62 || \
1324  ((b) >= 64 && (b) <= 67))
1325 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1326 #endif
1327 
1328 /* BMIPS5000 */
1329 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1330  ((b) == 0 || (b) == 1)
1331 
1332 
1333 /*
1334  * User can use 0-255 raw events, where 0-127 for the events of even
1335  * counters, and 128-255 for odd counters. Note that bit 7 is used to
1336  * indicate the parity. So, for example, when user wants to take the
1337  * Event Num of 15 for odd counters (by referring to the user manual),
1338  * then 128 needs to be added to 15 as the input for the event config,
1339  * i.e., 143 (0x8F) to be used.
1340  */
1341 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1342 {
1343  unsigned int raw_id = config & 0xff;
1344  unsigned int base_id = raw_id & 0x7f;
1345 
1346  raw_event.event_id = base_id;
1347 
1348  switch (current_cpu_type()) {
1349  case CPU_24K:
1350  if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1351  raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1352  else
1353  raw_event.cntr_mask =
1354  raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1355 #ifdef CONFIG_MIPS_MT_SMP
1356  /*
1357  * This is actually doing nothing. Non-multithreading
1358  * CPUs will not check and calculate the range.
1359  */
1360  raw_event.range = P;
1361 #endif
1362  break;
1363  case CPU_34K:
1364  if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1365  raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1366  else
1367  raw_event.cntr_mask =
1368  raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1369 #ifdef CONFIG_MIPS_MT_SMP
1370  if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1371  raw_event.range = P;
1372  else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1373  raw_event.range = V;
1374  else
1375  raw_event.range = T;
1376 #endif
1377  break;
1378  case CPU_74K:
1379  if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1380  raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1381  else
1382  raw_event.cntr_mask =
1383  raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1384 #ifdef CONFIG_MIPS_MT_SMP
1385  raw_event.range = P;
1386 #endif
1387  break;
1388  case CPU_1004K:
1389  if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1390  raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1391  else
1392  raw_event.cntr_mask =
1393  raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1394 #ifdef CONFIG_MIPS_MT_SMP
1395  if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1396  raw_event.range = P;
1397  else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1398  raw_event.range = V;
1399  else
1400  raw_event.range = T;
1401 #endif
1402  break;
1403  case CPU_BMIPS5000:
1404  if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1405  raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1406  else
1407  raw_event.cntr_mask =
1408  raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1409  }
1410 
1411  return &raw_event;
1412 }
1413 
1414 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1415 {
1416  unsigned int raw_id = config & 0xff;
1417  unsigned int base_id = raw_id & 0x7f;
1418 
1419 
1420  raw_event.cntr_mask = CNTR_ALL;
1421  raw_event.event_id = base_id;
1422 
1424  if (base_id > 0x42)
1425  return ERR_PTR(-EOPNOTSUPP);
1426  } else {
1427  if (base_id > 0x3a)
1428  return ERR_PTR(-EOPNOTSUPP);
1429  }
1430 
1431  switch (base_id) {
1432  case 0x00:
1433  case 0x0f:
1434  case 0x1e:
1435  case 0x1f:
1436  case 0x2f:
1437  case 0x34:
1438  case 0x3b ... 0x3f:
1439  return ERR_PTR(-EOPNOTSUPP);
1440  default:
1441  break;
1442  }
1443 
1444  return &raw_event;
1445 }
1446 
1447 static int __init
1448 init_hw_perf_events(void)
1449 {
1450  int counters, irq;
1451  int counter_bits;
1452 
1453  pr_info("Performance counters: ");
1454 
1455  counters = n_counters();
1456  if (counters == 0) {
1457  pr_cont("No available PMU.\n");
1458  return -ENODEV;
1459  }
1460 
1461 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1462  cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1463  if (!cpu_has_mipsmt_pertccounters)
1464  counters = counters_total_to_per_cpu(counters);
1465 #endif
1466 
1467 #ifdef MSC01E_INT_BASE
1468  if (cpu_has_veic) {
1469  /*
1470  * Using platform specific interrupt controller defines.
1471  */
1473  } else {
1474 #endif
1475  if ((cp0_perfcount_irq >= 0) &&
1478  else
1479  irq = -1;
1480 #ifdef MSC01E_INT_BASE
1481  }
1482 #endif
1483 
1484  mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1485 
1486  switch (current_cpu_type()) {
1487  case CPU_24K:
1488  mipspmu.name = "mips/24K";
1489  mipspmu.general_event_map = &mipsxxcore_event_map;
1490  mipspmu.cache_event_map = &mipsxxcore_cache_map;
1491  break;
1492  case CPU_34K:
1493  mipspmu.name = "mips/34K";
1494  mipspmu.general_event_map = &mipsxxcore_event_map;
1495  mipspmu.cache_event_map = &mipsxxcore_cache_map;
1496  break;
1497  case CPU_74K:
1498  mipspmu.name = "mips/74K";
1499  mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1500  mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1501  break;
1502  case CPU_1004K:
1503  mipspmu.name = "mips/1004K";
1504  mipspmu.general_event_map = &mipsxxcore_event_map;
1505  mipspmu.cache_event_map = &mipsxxcore_cache_map;
1506  break;
1507  case CPU_LOONGSON1:
1508  mipspmu.name = "mips/loongson1";
1509  mipspmu.general_event_map = &mipsxxcore_event_map;
1510  mipspmu.cache_event_map = &mipsxxcore_cache_map;
1511  break;
1512  case CPU_CAVIUM_OCTEON:
1514  case CPU_CAVIUM_OCTEON2:
1515  mipspmu.name = "octeon";
1516  mipspmu.general_event_map = &octeon_event_map;
1517  mipspmu.cache_event_map = &octeon_cache_map;
1518  mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1519  break;
1520  case CPU_BMIPS5000:
1521  mipspmu.name = "BMIPS5000";
1522  mipspmu.general_event_map = &bmips5000_event_map;
1523  mipspmu.cache_event_map = &bmips5000_cache_map;
1524  break;
1525  default:
1526  pr_cont("Either hardware does not support performance "
1527  "counters, or not yet implemented.\n");
1528  return -ENODEV;
1529  }
1530 
1531  mipspmu.num_counters = counters;
1532  mipspmu.irq = irq;
1533 
1535  mipspmu.max_period = (1ULL << 63) - 1;
1536  mipspmu.valid_count = (1ULL << 63) - 1;
1537  mipspmu.overflow = 1ULL << 63;
1538  mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1539  mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1540  counter_bits = 64;
1541  } else {
1542  mipspmu.max_period = (1ULL << 31) - 1;
1543  mipspmu.valid_count = (1ULL << 31) - 1;
1544  mipspmu.overflow = 1ULL << 31;
1545  mipspmu.read_counter = mipsxx_pmu_read_counter;
1546  mipspmu.write_counter = mipsxx_pmu_write_counter;
1547  counter_bits = 32;
1548  }
1549 
1550  on_each_cpu(reset_counters, (void *)(long)counters, 1);
1551 
1552  pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1553  "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1554  irq < 0 ? " (share with timer interrupt)" : "");
1555 
1556  perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1557 
1558  return 0;
1559 }