Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pxafb.c
Go to the documentation of this file.
1 /*
2  * linux/drivers/video/pxafb.c
3  *
4  * Copyright (C) 1999 Eric A. Thomas.
5  * Copyright (C) 2004 Jean-Frederic Clere.
6  * Copyright (C) 2004 Ian Campbell.
7  * Copyright (C) 2004 Jeff Lackey.
8  * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9  * which in turn is
10  * Based on acornfb.c Copyright (C) Russell King.
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License. See the file COPYING in the main directory of this archive for
14  * more details.
15  *
16  * Intel PXA250/210 LCD Controller Frame Buffer Driver
17  *
18  * Please direct your questions and comments on this driver to the following
19  * email address:
20  *
22  *
23  * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
24  *
25  * Copyright (C) 2004, Intel Corporation
26  *
27  * 2003/08/27: <[email protected]>
28  * 2004/03/10: <[email protected]>
29  * 2004/10/28: <[email protected]>
30  *
31  * Copyright (C) 2006-2008 Marvell International Ltd.
32  * All Rights Reserved
33  */
34 
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58 
59 #include <mach/hardware.h>
60 #include <asm/io.h>
61 #include <asm/irq.h>
62 #include <asm/div64.h>
63 #include <mach/bitfield.h>
65 
66 /*
67  * Complain if VAR is out of range.
68  */
69 #define DEBUG_VAR 1
70 
71 #include "pxafb.h"
72 
73 /* Bits which should not be set in machine configuration structures */
74 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
75  LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
76  LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
77 
78 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
79  LCCR3_PCD | LCCR3_BPP(0xf))
80 
81 static int pxafb_activate_var(struct fb_var_screeninfo *var,
82  struct pxafb_info *);
83 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
84 static void setup_base_frame(struct pxafb_info *fbi,
85  struct fb_var_screeninfo *var, int branch);
86 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
87  unsigned long offset, size_t size);
88 
89 static unsigned long video_mem_size = 0;
90 
91 static inline unsigned long
92 lcd_readl(struct pxafb_info *fbi, unsigned int off)
93 {
94  return __raw_readl(fbi->mmio_base + off);
95 }
96 
97 static inline void
98 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
99 {
100  __raw_writel(val, fbi->mmio_base + off);
101 }
102 
103 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
104 {
105  unsigned long flags;
106 
107  local_irq_save(flags);
108  /*
109  * We need to handle two requests being made at the same time.
110  * There are two important cases:
111  * 1. When we are changing VT (C_REENABLE) while unblanking
112  * (C_ENABLE) We must perform the unblanking, which will
113  * do our REENABLE for us.
114  * 2. When we are blanking, but immediately unblank before
115  * we have blanked. We do the "REENABLE" thing here as
116  * well, just to be sure.
117  */
118  if (fbi->task_state == C_ENABLE && state == C_REENABLE)
119  state = (u_int) -1;
120  if (fbi->task_state == C_DISABLE && state == C_ENABLE)
121  state = C_REENABLE;
122 
123  if (state != (u_int)-1) {
124  fbi->task_state = state;
125  schedule_work(&fbi->task);
126  }
127  local_irq_restore(flags);
128 }
129 
130 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
131 {
132  chan &= 0xffff;
133  chan >>= 16 - bf->length;
134  return chan << bf->offset;
135 }
136 
137 static int
138 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
139  u_int trans, struct fb_info *info)
140 {
141  struct pxafb_info *fbi = (struct pxafb_info *)info;
142  u_int val;
143 
144  if (regno >= fbi->palette_size)
145  return 1;
146 
147  if (fbi->fb.var.grayscale) {
148  fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
149  return 0;
150  }
151 
152  switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
153  case LCCR4_PAL_FOR_0:
154  val = ((red >> 0) & 0xf800);
155  val |= ((green >> 5) & 0x07e0);
156  val |= ((blue >> 11) & 0x001f);
157  fbi->palette_cpu[regno] = val;
158  break;
159  case LCCR4_PAL_FOR_1:
160  val = ((red << 8) & 0x00f80000);
161  val |= ((green >> 0) & 0x0000fc00);
162  val |= ((blue >> 8) & 0x000000f8);
163  ((u32 *)(fbi->palette_cpu))[regno] = val;
164  break;
165  case LCCR4_PAL_FOR_2:
166  val = ((red << 8) & 0x00fc0000);
167  val |= ((green >> 0) & 0x0000fc00);
168  val |= ((blue >> 8) & 0x000000fc);
169  ((u32 *)(fbi->palette_cpu))[regno] = val;
170  break;
171  case LCCR4_PAL_FOR_3:
172  val = ((red << 8) & 0x00ff0000);
173  val |= ((green >> 0) & 0x0000ff00);
174  val |= ((blue >> 8) & 0x000000ff);
175  ((u32 *)(fbi->palette_cpu))[regno] = val;
176  break;
177  }
178 
179  return 0;
180 }
181 
182 static int
183 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
184  u_int trans, struct fb_info *info)
185 {
186  struct pxafb_info *fbi = (struct pxafb_info *)info;
187  unsigned int val;
188  int ret = 1;
189 
190  /*
191  * If inverse mode was selected, invert all the colours
192  * rather than the register number. The register number
193  * is what you poke into the framebuffer to produce the
194  * colour you requested.
195  */
196  if (fbi->cmap_inverse) {
197  red = 0xffff - red;
198  green = 0xffff - green;
199  blue = 0xffff - blue;
200  }
201 
202  /*
203  * If greyscale is true, then we convert the RGB value
204  * to greyscale no matter what visual we are using.
205  */
206  if (fbi->fb.var.grayscale)
207  red = green = blue = (19595 * red + 38470 * green +
208  7471 * blue) >> 16;
209 
210  switch (fbi->fb.fix.visual) {
211  case FB_VISUAL_TRUECOLOR:
212  /*
213  * 16-bit True Colour. We encode the RGB value
214  * according to the RGB bitfield information.
215  */
216  if (regno < 16) {
217  u32 *pal = fbi->fb.pseudo_palette;
218 
219  val = chan_to_field(red, &fbi->fb.var.red);
220  val |= chan_to_field(green, &fbi->fb.var.green);
221  val |= chan_to_field(blue, &fbi->fb.var.blue);
222 
223  pal[regno] = val;
224  ret = 0;
225  }
226  break;
227 
230  ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
231  break;
232  }
233 
234  return ret;
235 }
236 
237 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
238 static inline int var_to_depth(struct fb_var_screeninfo *var)
239 {
240  return var->red.length + var->green.length +
241  var->blue.length + var->transp.length;
242 }
243 
244 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
245 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
246 {
247  int bpp = -EINVAL;
248 
249  switch (var->bits_per_pixel) {
250  case 1: bpp = 0; break;
251  case 2: bpp = 1; break;
252  case 4: bpp = 2; break;
253  case 8: bpp = 3; break;
254  case 16: bpp = 4; break;
255  case 24:
256  switch (var_to_depth(var)) {
257  case 18: bpp = 6; break; /* 18-bits/pixel packed */
258  case 19: bpp = 8; break; /* 19-bits/pixel packed */
259  case 24: bpp = 9; break;
260  }
261  break;
262  case 32:
263  switch (var_to_depth(var)) {
264  case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
265  case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
266  case 25: bpp = 10; break;
267  }
268  break;
269  }
270  return bpp;
271 }
272 
273 /*
274  * pxafb_var_to_lccr3():
275  * Convert a bits per pixel value to the correct bit pattern for LCCR3
276  *
277  * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
278  * implication of the acutal use of transparency bit, which we handle it
279  * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
280  * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
281  *
282  * Transparency for palette pixel formats is not supported at the moment.
283  */
284 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
285 {
286  int bpp = pxafb_var_to_bpp(var);
287  uint32_t lccr3;
288 
289  if (bpp < 0)
290  return 0;
291 
292  lccr3 = LCCR3_BPP(bpp);
293 
294  switch (var_to_depth(var)) {
295  case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
296  case 18: lccr3 |= LCCR3_PDFOR_3; break;
297  case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
298  break;
299  case 19:
300  case 25: lccr3 |= LCCR3_PDFOR_0; break;
301  }
302  return lccr3;
303 }
304 
305 #define SET_PIXFMT(v, r, g, b, t) \
306 ({ \
307  (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
308  (v)->transp.length = (t) ? (t) : 0; \
309  (v)->blue.length = (b); (v)->blue.offset = 0; \
310  (v)->green.length = (g); (v)->green.offset = (b); \
311  (v)->red.length = (r); (v)->red.offset = (b) + (g); \
312 })
313 
314 /* set the RGBT bitfields of fb_var_screeninf according to
315  * var->bits_per_pixel and given depth
316  */
317 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
318 {
319  if (depth == 0)
320  depth = var->bits_per_pixel;
321 
322  if (var->bits_per_pixel < 16) {
323  /* indexed pixel formats */
324  var->red.offset = 0; var->red.length = 8;
325  var->green.offset = 0; var->green.length = 8;
326  var->blue.offset = 0; var->blue.length = 8;
327  var->transp.offset = 0; var->transp.length = 8;
328  }
329 
330  switch (depth) {
331  case 16: var->transp.length ?
332  SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */
333  SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */
334  case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */
335  case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */
336  case 24: var->transp.length ?
337  SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */
338  SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */
339  case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */
340  }
341 }
342 
343 #ifdef CONFIG_CPU_FREQ
344 /*
345  * pxafb_display_dma_period()
346  * Calculate the minimum period (in picoseconds) between two DMA
347  * requests for the LCD controller. If we hit this, it means we're
348  * doing nothing but LCD DMA.
349  */
350 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
351 {
352  /*
353  * Period = pixclock * bits_per_byte * bytes_per_transfer
354  * / memory_bits_per_pixel;
355  */
356  return var->pixclock * 8 * 16 / var->bits_per_pixel;
357 }
358 #endif
359 
360 /*
361  * Select the smallest mode that allows the desired resolution to be
362  * displayed. If desired parameters can be rounded up.
363  */
364 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
365  struct fb_var_screeninfo *var)
366 {
367  struct pxafb_mode_info *mode = NULL;
368  struct pxafb_mode_info *modelist = mach->modes;
369  unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
370  unsigned int i;
371 
372  for (i = 0; i < mach->num_modes; i++) {
373  if (modelist[i].xres >= var->xres &&
374  modelist[i].yres >= var->yres &&
375  modelist[i].xres < best_x &&
376  modelist[i].yres < best_y &&
377  modelist[i].bpp >= var->bits_per_pixel) {
378  best_x = modelist[i].xres;
379  best_y = modelist[i].yres;
380  mode = &modelist[i];
381  }
382  }
383 
384  return mode;
385 }
386 
387 static void pxafb_setmode(struct fb_var_screeninfo *var,
388  struct pxafb_mode_info *mode)
389 {
390  var->xres = mode->xres;
391  var->yres = mode->yres;
392  var->bits_per_pixel = mode->bpp;
393  var->pixclock = mode->pixclock;
394  var->hsync_len = mode->hsync_len;
395  var->left_margin = mode->left_margin;
396  var->right_margin = mode->right_margin;
397  var->vsync_len = mode->vsync_len;
398  var->upper_margin = mode->upper_margin;
399  var->lower_margin = mode->lower_margin;
400  var->sync = mode->sync;
401  var->grayscale = mode->cmap_greyscale;
402  var->transp.length = mode->transparency;
403 
404  /* set the initial RGBA bitfields */
405  pxafb_set_pixfmt(var, mode->depth);
406 }
407 
408 static int pxafb_adjust_timing(struct pxafb_info *fbi,
409  struct fb_var_screeninfo *var)
410 {
411  int line_length;
412 
413  var->xres = max_t(int, var->xres, MIN_XRES);
414  var->yres = max_t(int, var->yres, MIN_YRES);
415 
416  if (!(fbi->lccr0 & LCCR0_LCDT)) {
417  clamp_val(var->hsync_len, 1, 64);
418  clamp_val(var->vsync_len, 1, 64);
419  clamp_val(var->left_margin, 1, 255);
420  clamp_val(var->right_margin, 1, 255);
421  clamp_val(var->upper_margin, 1, 255);
422  clamp_val(var->lower_margin, 1, 255);
423  }
424 
425  /* make sure each line is aligned on word boundary */
426  line_length = var->xres * var->bits_per_pixel / 8;
427  line_length = ALIGN(line_length, 4);
428  var->xres = line_length * 8 / var->bits_per_pixel;
429 
430  /* we don't support xpan, force xres_virtual to be equal to xres */
431  var->xres_virtual = var->xres;
432 
433  if (var->accel_flags & FB_ACCELF_TEXT)
434  var->yres_virtual = fbi->fb.fix.smem_len / line_length;
435  else
436  var->yres_virtual = max(var->yres_virtual, var->yres);
437 
438  /* check for limits */
439  if (var->xres > MAX_XRES || var->yres > MAX_YRES)
440  return -EINVAL;
441 
442  if (var->yres > var->yres_virtual)
443  return -EINVAL;
444 
445  return 0;
446 }
447 
448 /*
449  * pxafb_check_var():
450  * Get the video params out of 'var'. If a value doesn't fit, round it up,
451  * if it's too big, return -EINVAL.
452  *
453  * Round up in the following order: bits_per_pixel, xres,
454  * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
455  * bitfields, horizontal timing, vertical timing.
456  */
457 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
458 {
459  struct pxafb_info *fbi = (struct pxafb_info *)info;
460  struct pxafb_mach_info *inf = fbi->dev->platform_data;
461  int err;
462 
463  if (inf->fixed_modes) {
464  struct pxafb_mode_info *mode;
465 
466  mode = pxafb_getmode(inf, var);
467  if (!mode)
468  return -EINVAL;
469  pxafb_setmode(var, mode);
470  }
471 
472  /* do a test conversion to BPP fields to check the color formats */
473  err = pxafb_var_to_bpp(var);
474  if (err < 0)
475  return err;
476 
477  pxafb_set_pixfmt(var, var_to_depth(var));
478 
479  err = pxafb_adjust_timing(fbi, var);
480  if (err)
481  return err;
482 
483 #ifdef CONFIG_CPU_FREQ
484  pr_debug("pxafb: dma period = %d ps\n",
485  pxafb_display_dma_period(var));
486 #endif
487 
488  return 0;
489 }
490 
491 /*
492  * pxafb_set_par():
493  * Set the user defined part of the display for the specified console
494  */
495 static int pxafb_set_par(struct fb_info *info)
496 {
497  struct pxafb_info *fbi = (struct pxafb_info *)info;
498  struct fb_var_screeninfo *var = &info->var;
499 
500  if (var->bits_per_pixel >= 16)
501  fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
502  else if (!fbi->cmap_static)
503  fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
504  else {
505  /*
506  * Some people have weird ideas about wanting static
507  * pseudocolor maps. I suspect their user space
508  * applications are broken.
509  */
510  fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
511  }
512 
513  fbi->fb.fix.line_length = var->xres_virtual *
514  var->bits_per_pixel / 8;
515  if (var->bits_per_pixel >= 16)
516  fbi->palette_size = 0;
517  else
518  fbi->palette_size = var->bits_per_pixel == 1 ?
519  4 : 1 << var->bits_per_pixel;
520 
521  fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
522 
523  if (fbi->fb.var.bits_per_pixel >= 16)
524  fb_dealloc_cmap(&fbi->fb.cmap);
525  else
526  fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
527 
528  pxafb_activate_var(var, fbi);
529 
530  return 0;
531 }
532 
533 static int pxafb_pan_display(struct fb_var_screeninfo *var,
534  struct fb_info *info)
535 {
536  struct pxafb_info *fbi = (struct pxafb_info *)info;
537  struct fb_var_screeninfo newvar;
538  int dma = DMA_MAX + DMA_BASE;
539 
540  if (fbi->state != C_ENABLE)
541  return 0;
542 
543  /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
544  * was passed in and copy the rest from the old screeninfo.
545  */
546  memcpy(&newvar, &fbi->fb.var, sizeof(newvar));
547  newvar.xoffset = var->xoffset;
548  newvar.yoffset = var->yoffset;
549  newvar.vmode &= ~FB_VMODE_YWRAP;
550  newvar.vmode |= var->vmode & FB_VMODE_YWRAP;
551 
552  setup_base_frame(fbi, &newvar, 1);
553 
554  if (fbi->lccr0 & LCCR0_SDS)
555  lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
556 
557  lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
558  return 0;
559 }
560 
561 /*
562  * pxafb_blank():
563  * Blank the display by setting all palette values to zero. Note, the
564  * 16 bpp mode does not really use the palette, so this will not
565  * blank the display in all modes.
566  */
567 static int pxafb_blank(int blank, struct fb_info *info)
568 {
569  struct pxafb_info *fbi = (struct pxafb_info *)info;
570  int i;
571 
572  switch (blank) {
573  case FB_BLANK_POWERDOWN:
576  case FB_BLANK_NORMAL:
577  if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
578  fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
579  for (i = 0; i < fbi->palette_size; i++)
580  pxafb_setpalettereg(i, 0, 0, 0, 0, info);
581 
582  pxafb_schedule_work(fbi, C_DISABLE);
583  /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
584  break;
585 
586  case FB_BLANK_UNBLANK:
587  /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
588  if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
589  fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
590  fb_set_cmap(&fbi->fb.cmap, info);
591  pxafb_schedule_work(fbi, C_ENABLE);
592  }
593  return 0;
594 }
595 
596 static struct fb_ops pxafb_ops = {
597  .owner = THIS_MODULE,
598  .fb_check_var = pxafb_check_var,
599  .fb_set_par = pxafb_set_par,
600  .fb_pan_display = pxafb_pan_display,
601  .fb_setcolreg = pxafb_setcolreg,
602  .fb_fillrect = cfb_fillrect,
603  .fb_copyarea = cfb_copyarea,
604  .fb_imageblit = cfb_imageblit,
605  .fb_blank = pxafb_blank,
606 };
607 
608 #ifdef CONFIG_FB_PXA_OVERLAY
609 static void overlay1fb_setup(struct pxafb_layer *ofb)
610 {
611  int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
612  unsigned long start = ofb->video_mem_phys;
613  setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
614 }
615 
616 /* Depending on the enable status of overlay1/2, the DMA should be
617  * updated from FDADRx (when disabled) or FBRx (when enabled).
618  */
619 static void overlay1fb_enable(struct pxafb_layer *ofb)
620 {
621  int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
622  uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
623 
624  lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
625  lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
626  lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
627 }
628 
629 static void overlay1fb_disable(struct pxafb_layer *ofb)
630 {
631  uint32_t lccr5;
632 
633  if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN))
634  return;
635 
636  lccr5 = lcd_readl(ofb->fbi, LCCR5);
637 
638  lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
639 
640  lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
641  lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
642  lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
643 
644  if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
645  pr_warning("%s: timeout disabling overlay1\n", __func__);
646 
647  lcd_writel(ofb->fbi, LCCR5, lccr5);
648 }
649 
650 static void overlay2fb_setup(struct pxafb_layer *ofb)
651 {
652  int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
653  unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
654 
655  if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
656  size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
657  setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
658  } else {
659  size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
660  switch (pfor) {
661  case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
662  case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
663  case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
664  }
665  start[1] = start[0] + size;
666  start[2] = start[1] + size / div;
667  setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
668  setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
669  setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
670  }
671 }
672 
673 static void overlay2fb_enable(struct pxafb_layer *ofb)
674 {
675  int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
676  int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
677  uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0);
678  uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
679  uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
680 
681  if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
682  lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
683  else {
684  lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
685  lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
686  lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
687  }
688  lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
689  lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
690 }
691 
692 static void overlay2fb_disable(struct pxafb_layer *ofb)
693 {
694  uint32_t lccr5;
695 
696  if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN))
697  return;
698 
699  lccr5 = lcd_readl(ofb->fbi, LCCR5);
700 
701  lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
702 
703  lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
704  lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
705  lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3);
706  lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
707  lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
708 
709  if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
710  pr_warning("%s: timeout disabling overlay2\n", __func__);
711 }
712 
713 static struct pxafb_layer_ops ofb_ops[] = {
714  [0] = {
715  .enable = overlay1fb_enable,
716  .disable = overlay1fb_disable,
717  .setup = overlay1fb_setup,
718  },
719  [1] = {
720  .enable = overlay2fb_enable,
721  .disable = overlay2fb_disable,
722  .setup = overlay2fb_setup,
723  },
724 };
725 
726 static int overlayfb_open(struct fb_info *info, int user)
727 {
728  struct pxafb_layer *ofb = (struct pxafb_layer *)info;
729 
730  /* no support for framebuffer console on overlay */
731  if (user == 0)
732  return -ENODEV;
733 
734  if (ofb->usage++ == 0) {
735  /* unblank the base framebuffer */
736  console_lock();
737  fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
738  console_unlock();
739  }
740 
741  return 0;
742 }
743 
744 static int overlayfb_release(struct fb_info *info, int user)
745 {
746  struct pxafb_layer *ofb = (struct pxafb_layer*) info;
747 
748  if (ofb->usage == 1) {
749  ofb->ops->disable(ofb);
750  ofb->fb.var.height = -1;
751  ofb->fb.var.width = -1;
752  ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0;
753  ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0;
754 
755  ofb->usage--;
756  }
757  return 0;
758 }
759 
760 static int overlayfb_check_var(struct fb_var_screeninfo *var,
761  struct fb_info *info)
762 {
763  struct pxafb_layer *ofb = (struct pxafb_layer *)info;
764  struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
765  int xpos, ypos, pfor, bpp;
766 
767  xpos = NONSTD_TO_XPOS(var->nonstd);
768  ypos = NONSTD_TO_YPOS(var->nonstd);
769  pfor = NONSTD_TO_PFOR(var->nonstd);
770 
771  bpp = pxafb_var_to_bpp(var);
772  if (bpp < 0)
773  return -EINVAL;
774 
775  /* no support for YUV format on overlay1 */
776  if (ofb->id == OVERLAY1 && pfor != 0)
777  return -EINVAL;
778 
779  /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
780  switch (pfor) {
781  case OVERLAY_FORMAT_RGB:
782  bpp = pxafb_var_to_bpp(var);
783  if (bpp < 0)
784  return -EINVAL;
785 
786  pxafb_set_pixfmt(var, var_to_depth(var));
787  break;
788  case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
789  case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
790  case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
791  case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
792  default:
793  return -EINVAL;
794  }
795 
796  /* each line must start at a 32-bit word boundary */
797  if ((xpos * bpp) % 32)
798  return -EINVAL;
799 
800  /* xres must align on 32-bit word boundary */
801  var->xres = roundup(var->xres * bpp, 32) / bpp;
802 
803  if ((xpos + var->xres > base_var->xres) ||
804  (ypos + var->yres > base_var->yres))
805  return -EINVAL;
806 
807  var->xres_virtual = var->xres;
808  var->yres_virtual = max(var->yres, var->yres_virtual);
809  return 0;
810 }
811 
812 static int overlayfb_check_video_memory(struct pxafb_layer *ofb)
813 {
814  struct fb_var_screeninfo *var = &ofb->fb.var;
815  int pfor = NONSTD_TO_PFOR(var->nonstd);
816  int size, bpp = 0;
817 
818  switch (pfor) {
819  case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
820  case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
821  case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
822  case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
823  case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
824  }
825 
826  ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
827 
828  size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
829 
830  if (ofb->video_mem) {
831  if (ofb->video_mem_size >= size)
832  return 0;
833  }
834  return -EINVAL;
835 }
836 
837 static int overlayfb_set_par(struct fb_info *info)
838 {
839  struct pxafb_layer *ofb = (struct pxafb_layer *)info;
840  struct fb_var_screeninfo *var = &info->var;
841  int xpos, ypos, pfor, bpp, ret;
842 
843  ret = overlayfb_check_video_memory(ofb);
844  if (ret)
845  return ret;
846 
847  bpp = pxafb_var_to_bpp(var);
848  xpos = NONSTD_TO_XPOS(var->nonstd);
849  ypos = NONSTD_TO_YPOS(var->nonstd);
850  pfor = NONSTD_TO_PFOR(var->nonstd);
851 
852  ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
853  OVLxC1_BPP(bpp);
854  ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
855 
856  if (ofb->id == OVERLAY2)
857  ofb->control[1] |= OVL2C2_PFOR(pfor);
858 
859  ofb->ops->setup(ofb);
860  ofb->ops->enable(ofb);
861  return 0;
862 }
863 
864 static struct fb_ops overlay_fb_ops = {
865  .owner = THIS_MODULE,
866  .fb_open = overlayfb_open,
867  .fb_release = overlayfb_release,
868  .fb_check_var = overlayfb_check_var,
869  .fb_set_par = overlayfb_set_par,
870 };
871 
872 static void __devinit init_pxafb_overlay(struct pxafb_info *fbi,
873  struct pxafb_layer *ofb, int id)
874 {
875  sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
876 
877  ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
878  ofb->fb.fix.xpanstep = 0;
879  ofb->fb.fix.ypanstep = 1;
880 
881  ofb->fb.var.activate = FB_ACTIVATE_NOW;
882  ofb->fb.var.height = -1;
883  ofb->fb.var.width = -1;
884  ofb->fb.var.vmode = FB_VMODE_NONINTERLACED;
885 
886  ofb->fb.fbops = &overlay_fb_ops;
887  ofb->fb.flags = FBINFO_FLAG_DEFAULT;
888  ofb->fb.node = -1;
889  ofb->fb.pseudo_palette = NULL;
890 
891  ofb->id = id;
892  ofb->ops = &ofb_ops[id];
893  ofb->usage = 0;
894  ofb->fbi = fbi;
895  init_completion(&ofb->branch_done);
896 }
897 
898 static inline int pxafb_overlay_supported(void)
899 {
900  if (cpu_is_pxa27x() || cpu_is_pxa3xx())
901  return 1;
902 
903  return 0;
904 }
905 
906 static int __devinit pxafb_overlay_map_video_memory(struct pxafb_info *pxafb,
907  struct pxafb_layer *ofb)
908 {
909  /* We assume that user will use at most video_mem_size for overlay fb,
910  * anyway, it's useless to use 16bpp main plane and 24bpp overlay
911  */
914  if (ofb->video_mem == NULL)
915  return -ENOMEM;
916 
919 
920  mutex_lock(&ofb->fb.mm_lock);
921  ofb->fb.fix.smem_start = ofb->video_mem_phys;
922  ofb->fb.fix.smem_len = pxafb->video_mem_size;
923  mutex_unlock(&ofb->fb.mm_lock);
924 
925  ofb->fb.screen_base = ofb->video_mem;
926 
927  return 0;
928 }
929 
930 static void __devinit pxafb_overlay_init(struct pxafb_info *fbi)
931 {
932  int i, ret;
933 
934  if (!pxafb_overlay_supported())
935  return;
936 
937  for (i = 0; i < 2; i++) {
938  struct pxafb_layer *ofb = &fbi->overlay[i];
939  init_pxafb_overlay(fbi, ofb, i);
940  ret = register_framebuffer(&ofb->fb);
941  if (ret) {
942  dev_err(fbi->dev, "failed to register overlay %d\n", i);
943  continue;
944  }
945  ret = pxafb_overlay_map_video_memory(fbi, ofb);
946  if (ret) {
947  dev_err(fbi->dev,
948  "failed to map video memory for overlay %d\n",
949  i);
950  unregister_framebuffer(&ofb->fb);
951  continue;
952  }
953  ofb->registered = 1;
954  }
955 
956  /* mask all IU/BS/EOF/SOF interrupts */
957  lcd_writel(fbi, LCCR5, ~0);
958 
959  pr_info("PXA Overlay driver loaded successfully!\n");
960 }
961 
962 static void __devexit pxafb_overlay_exit(struct pxafb_info *fbi)
963 {
964  int i;
965 
966  if (!pxafb_overlay_supported())
967  return;
968 
969  for (i = 0; i < 2; i++) {
970  struct pxafb_layer *ofb = &fbi->overlay[i];
971  if (ofb->registered) {
972  if (ofb->video_mem)
974  ofb->video_mem_size);
975  unregister_framebuffer(&ofb->fb);
976  }
977  }
978 }
979 #else
980 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
981 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
982 #endif /* CONFIG_FB_PXA_OVERLAY */
983 
984 /*
985  * Calculate the PCD value from the clock rate (in picoseconds).
986  * We take account of the PPCR clock setting.
987  * From PXA Developer's Manual:
988  *
989  * PixelClock = LCLK
990  * -------------
991  * 2 ( PCD + 1 )
992  *
993  * PCD = LCLK
994  * ------------- - 1
995  * 2(PixelClock)
996  *
997  * Where:
998  * LCLK = LCD/Memory Clock
999  * PCD = LCCR3[7:0]
1000  *
1001  * PixelClock here is in Hz while the pixclock argument given is the
1002  * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1003  *
1004  * The function get_lclk_frequency_10khz returns LCLK in units of
1005  * 10khz. Calling the result of this function lclk gives us the
1006  * following
1007  *
1008  * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1009  * -------------------------------------- - 1
1010  * 2
1011  *
1012  * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1013  */
1014 static inline unsigned int get_pcd(struct pxafb_info *fbi,
1015  unsigned int pixclock)
1016 {
1017  unsigned long long pcd;
1018 
1019  /* FIXME: Need to take into account Double Pixel Clock mode
1020  * (DPC) bit? or perhaps set it based on the various clock
1021  * speeds */
1022  pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
1023  pcd *= pixclock;
1024  do_div(pcd, 100000000 * 2);
1025  /* no need for this, since we should subtract 1 anyway. they cancel */
1026  /* pcd += 1; */ /* make up for integer math truncations */
1027  return (unsigned int)pcd;
1028 }
1029 
1030 /*
1031  * Some touchscreens need hsync information from the video driver to
1032  * function correctly. We export it here. Note that 'hsync_time' and
1033  * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1034  * of the hsync period in seconds.
1035  */
1036 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
1037 {
1038  unsigned long htime;
1039 
1040  if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
1041  fbi->hsync_time = 0;
1042  return;
1043  }
1044 
1045  htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
1046 
1047  fbi->hsync_time = htime;
1048 }
1049 
1050 unsigned long pxafb_get_hsync_time(struct device *dev)
1051 {
1052  struct pxafb_info *fbi = dev_get_drvdata(dev);
1053 
1054  /* If display is blanked/suspended, hsync isn't active */
1055  if (!fbi || (fbi->state != C_ENABLE))
1056  return 0;
1057 
1058  return fbi->hsync_time;
1059 }
1061 
1062 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
1063  unsigned long start, size_t size)
1064 {
1065  struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1066  unsigned int dma_desc_off, pal_desc_off;
1067 
1068  if (dma < 0 || dma >= DMA_MAX * 2)
1069  return -EINVAL;
1070 
1071  dma_desc = &fbi->dma_buff->dma_desc[dma];
1072  dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1073 
1074  dma_desc->fsadr = start;
1075  dma_desc->fidr = 0;
1076  dma_desc->ldcmd = size;
1077 
1078  if (pal < 0 || pal >= PAL_MAX * 2) {
1079  dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1080  fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1081  } else {
1082  pal_desc = &fbi->dma_buff->pal_desc[pal];
1083  pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1084 
1085  pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1086  pal_desc->fidr = 0;
1087 
1088  if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1089  pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1090  else
1091  pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1092 
1093  pal_desc->ldcmd |= LDCMD_PAL;
1094 
1095  /* flip back and forth between palette and frame buffer */
1096  pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1097  dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1098  fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1099  }
1100 
1101  return 0;
1102 }
1103 
1104 static void setup_base_frame(struct pxafb_info *fbi,
1105  struct fb_var_screeninfo *var,
1106  int branch)
1107 {
1108  struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1109  int nbytes, dma, pal, bpp = var->bits_per_pixel;
1110  unsigned long offset;
1111 
1112  dma = DMA_BASE + (branch ? DMA_MAX : 0);
1113  pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1114 
1115  nbytes = fix->line_length * var->yres;
1116  offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1117 
1118  if (fbi->lccr0 & LCCR0_SDS) {
1119  nbytes = nbytes / 2;
1120  setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1121  }
1122 
1123  setup_frame_dma(fbi, dma, pal, offset, nbytes);
1124 }
1125 
1126 #ifdef CONFIG_FB_PXA_SMARTPANEL
1127 static int setup_smart_dma(struct pxafb_info *fbi)
1128 {
1129  struct pxafb_dma_descriptor *dma_desc;
1130  unsigned long dma_desc_off, cmd_buff_off;
1131 
1132  dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1133  dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1134  cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1135 
1136  dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1137  dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1138  dma_desc->fidr = 0;
1139  dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1140 
1141  fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1142  return 0;
1143 }
1144 
1145 int pxafb_smart_flush(struct fb_info *info)
1146 {
1147  struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1148  uint32_t prsr;
1149  int ret = 0;
1150 
1151  /* disable controller until all registers are set up */
1152  lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1153 
1154  /* 1. make it an even number of commands to align on 32-bit boundary
1155  * 2. add the interrupt command to the end of the chain so we can
1156  * keep track of the end of the transfer
1157  */
1158 
1159  while (fbi->n_smart_cmds & 1)
1160  fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1161 
1162  fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1163  fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1164  setup_smart_dma(fbi);
1165 
1166  /* continue to execute next command */
1167  prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1168  lcd_writel(fbi, PRSR, prsr);
1169 
1170  /* stop the processor in case it executed "wait for sync" cmd */
1171  lcd_writel(fbi, CMDCR, 0x0001);
1172 
1173  /* don't send interrupts for fifo underruns on channel 6 */
1174  lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1175 
1176  lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1177  lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1178  lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1179  lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1180  lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1181  lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1182 
1183  /* begin sending */
1184  lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1185 
1186  if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1187  pr_warning("%s: timeout waiting for command done\n",
1188  __func__);
1189  ret = -ETIMEDOUT;
1190  }
1191 
1192  /* quick disable */
1193  prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1194  lcd_writel(fbi, PRSR, prsr);
1195  lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1196  lcd_writel(fbi, FDADR6, 0);
1197  fbi->n_smart_cmds = 0;
1198  return ret;
1199 }
1200 
1201 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1202 {
1203  int i;
1204  struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1205 
1206  for (i = 0; i < n_cmds; i++, cmds++) {
1207  /* if it is a software delay, flush and delay */
1208  if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1209  pxafb_smart_flush(info);
1210  mdelay(*cmds & 0xff);
1211  continue;
1212  }
1213 
1214  /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1215  if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1216  pxafb_smart_flush(info);
1217 
1218  fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1219  }
1220 
1221  return 0;
1222 }
1223 
1224 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1225 {
1226  unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1227  return (t == 0) ? 1 : t;
1228 }
1229 
1230 static void setup_smart_timing(struct pxafb_info *fbi,
1231  struct fb_var_screeninfo *var)
1232 {
1233  struct pxafb_mach_info *inf = fbi->dev->platform_data;
1234  struct pxafb_mode_info *mode = &inf->modes[0];
1235  unsigned long lclk = clk_get_rate(fbi->clk);
1236  unsigned t1, t2, t3, t4;
1237 
1238  t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1239  t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1240  t3 = mode->op_hold_time;
1241  t4 = mode->cmd_inh_time;
1242 
1243  fbi->reg_lccr1 =
1244  LCCR1_DisWdth(var->xres) |
1245  LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1246  LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1247  LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1248 
1249  fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1250  fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1251  fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1252  fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1253 
1254  /* FIXME: make this configurable */
1255  fbi->reg_cmdcr = 1;
1256 }
1257 
1258 static int pxafb_smart_thread(void *arg)
1259 {
1260  struct pxafb_info *fbi = arg;
1261  struct pxafb_mach_info *inf = fbi->dev->platform_data;
1262 
1263  if (!inf->smart_update) {
1264  pr_err("%s: not properly initialized, thread terminated\n",
1265  __func__);
1266  return -EINVAL;
1267  }
1268  inf = fbi->dev->platform_data;
1269 
1270  pr_debug("%s(): task starting\n", __func__);
1271 
1272  set_freezable();
1273  while (!kthread_should_stop()) {
1274 
1275  if (try_to_freeze())
1276  continue;
1277 
1278  mutex_lock(&fbi->ctrlr_lock);
1279 
1280  if (fbi->state == C_ENABLE) {
1281  inf->smart_update(&fbi->fb);
1282  complete(&fbi->refresh_done);
1283  }
1284 
1285  mutex_unlock(&fbi->ctrlr_lock);
1286 
1288  schedule_timeout(30 * HZ / 1000);
1289  }
1290 
1291  pr_debug("%s(): task ending\n", __func__);
1292  return 0;
1293 }
1294 
1295 static int pxafb_smart_init(struct pxafb_info *fbi)
1296 {
1297  if (!(fbi->lccr0 & LCCR0_LCDT))
1298  return 0;
1299 
1300  fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1301  fbi->n_smart_cmds = 0;
1302 
1303  init_completion(&fbi->command_done);
1304  init_completion(&fbi->refresh_done);
1305 
1306  fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1307  "lcd_refresh");
1308  if (IS_ERR(fbi->smart_thread)) {
1309  pr_err("%s: unable to create kernel thread\n", __func__);
1310  return PTR_ERR(fbi->smart_thread);
1311  }
1312 
1313  return 0;
1314 }
1315 #else
1316 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1317 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1318 
1319 static void setup_parallel_timing(struct pxafb_info *fbi,
1320  struct fb_var_screeninfo *var)
1321 {
1322  unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1323 
1324  fbi->reg_lccr1 =
1325  LCCR1_DisWdth(var->xres) +
1327  LCCR1_BegLnDel(var->left_margin) +
1329 
1330  /*
1331  * If we have a dual scan LCD, we need to halve
1332  * the YRES parameter.
1333  */
1334  lines_per_panel = var->yres;
1335  if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1336  lines_per_panel /= 2;
1337 
1338  fbi->reg_lccr2 =
1339  LCCR2_DisHght(lines_per_panel) +
1343 
1344  fbi->reg_lccr3 = fbi->lccr3 |
1345  (var->sync & FB_SYNC_HOR_HIGH_ACT ?
1347  (var->sync & FB_SYNC_VERT_HIGH_ACT ?
1349 
1350  if (pcd) {
1351  fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1352  set_hsync_time(fbi, pcd);
1353  }
1354 }
1355 
1356 /*
1357  * pxafb_activate_var():
1358  * Configures LCD Controller based on entries in var parameter.
1359  * Settings are only written to the controller if changes were made.
1360  */
1361 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1362  struct pxafb_info *fbi)
1363 {
1364  u_long flags;
1365 
1366  /* Update shadow copy atomically */
1367  local_irq_save(flags);
1368 
1369 #ifdef CONFIG_FB_PXA_SMARTPANEL
1370  if (fbi->lccr0 & LCCR0_LCDT)
1371  setup_smart_timing(fbi, var);
1372  else
1373 #endif
1374  setup_parallel_timing(fbi, var);
1375 
1376  setup_base_frame(fbi, var, 0);
1377 
1378  fbi->reg_lccr0 = fbi->lccr0 |
1381 
1382  fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1383 
1384  fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1385  fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1386  local_irq_restore(flags);
1387 
1388  /*
1389  * Only update the registers if the controller is enabled
1390  * and something has changed.
1391  */
1392  if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1393  (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1394  (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1395  (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1396  (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1397  (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1398  ((fbi->lccr0 & LCCR0_SDS) &&
1399  (lcd_readl(fbi, FDADR1) != fbi->fdadr[1])))
1400  pxafb_schedule_work(fbi, C_REENABLE);
1401 
1402  return 0;
1403 }
1404 
1405 /*
1406  * NOTE! The following functions are purely helpers for set_ctrlr_state.
1407  * Do not call them directly; set_ctrlr_state does the correct serialisation
1408  * to ensure that things happen in the right way 100% of time time.
1409  * -- rmk
1410  */
1411 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1412 {
1413  pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1414 
1415  if (fbi->backlight_power)
1416  fbi->backlight_power(on);
1417 }
1418 
1419 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1420 {
1421  pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1422 
1423  if (fbi->lcd_power)
1424  fbi->lcd_power(on, &fbi->fb.var);
1425 }
1426 
1427 static void pxafb_enable_controller(struct pxafb_info *fbi)
1428 {
1429  pr_debug("pxafb: Enabling LCD controller\n");
1430  pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1431  pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1432  pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1433  pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1434  pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1435  pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1436 
1437  /* enable LCD controller clock */
1438  clk_prepare_enable(fbi->clk);
1439 
1440  if (fbi->lccr0 & LCCR0_LCDT)
1441  return;
1442 
1443  /* Sequence from 11.7.10 */
1444  lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1445  lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1446  lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1447  lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1448  lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1449 
1450  lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1451  if (fbi->lccr0 & LCCR0_SDS)
1452  lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1453  lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1454 }
1455 
1456 static void pxafb_disable_controller(struct pxafb_info *fbi)
1457 {
1458  uint32_t lccr0;
1459 
1460 #ifdef CONFIG_FB_PXA_SMARTPANEL
1461  if (fbi->lccr0 & LCCR0_LCDT) {
1462  wait_for_completion_timeout(&fbi->refresh_done,
1463  200 * HZ / 1000);
1464  return;
1465  }
1466 #endif
1467 
1468  /* Clear LCD Status Register */
1469  lcd_writel(fbi, LCSR, 0xffffffff);
1470 
1471  lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1472  lcd_writel(fbi, LCCR0, lccr0);
1473  lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1474 
1475  wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1476 
1477  /* disable LCD controller clock */
1478  clk_disable_unprepare(fbi->clk);
1479 }
1480 
1481 /*
1482  * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1483  */
1484 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1485 {
1486  struct pxafb_info *fbi = dev_id;
1487  unsigned int lccr0, lcsr;
1488 
1489  lcsr = lcd_readl(fbi, LCSR);
1490  if (lcsr & LCSR_LDD) {
1491  lccr0 = lcd_readl(fbi, LCCR0);
1492  lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1493  complete(&fbi->disable_done);
1494  }
1495 
1496 #ifdef CONFIG_FB_PXA_SMARTPANEL
1497  if (lcsr & LCSR_CMD_INT)
1498  complete(&fbi->command_done);
1499 #endif
1500  lcd_writel(fbi, LCSR, lcsr);
1501 
1502 #ifdef CONFIG_FB_PXA_OVERLAY
1503  {
1504  unsigned int lcsr1 = lcd_readl(fbi, LCSR1);
1505  if (lcsr1 & LCSR1_BS(1))
1506  complete(&fbi->overlay[0].branch_done);
1507 
1508  if (lcsr1 & LCSR1_BS(2))
1509  complete(&fbi->overlay[1].branch_done);
1510 
1511  lcd_writel(fbi, LCSR1, lcsr1);
1512  }
1513 #endif
1514  return IRQ_HANDLED;
1515 }
1516 
1517 /*
1518  * This function must be called from task context only, since it will
1519  * sleep when disabling the LCD controller, or if we get two contending
1520  * processes trying to alter state.
1521  */
1522 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1523 {
1524  u_int old_state;
1525 
1526  mutex_lock(&fbi->ctrlr_lock);
1527 
1528  old_state = fbi->state;
1529 
1530  /*
1531  * Hack around fbcon initialisation.
1532  */
1533  if (old_state == C_STARTUP && state == C_REENABLE)
1534  state = C_ENABLE;
1535 
1536  switch (state) {
1537  case C_DISABLE_CLKCHANGE:
1538  /*
1539  * Disable controller for clock change. If the
1540  * controller is already disabled, then do nothing.
1541  */
1542  if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1543  fbi->state = state;
1544  /* TODO __pxafb_lcd_power(fbi, 0); */
1545  pxafb_disable_controller(fbi);
1546  }
1547  break;
1548 
1549  case C_DISABLE_PM:
1550  case C_DISABLE:
1551  /*
1552  * Disable controller
1553  */
1554  if (old_state != C_DISABLE) {
1555  fbi->state = state;
1556  __pxafb_backlight_power(fbi, 0);
1557  __pxafb_lcd_power(fbi, 0);
1558  if (old_state != C_DISABLE_CLKCHANGE)
1559  pxafb_disable_controller(fbi);
1560  }
1561  break;
1562 
1563  case C_ENABLE_CLKCHANGE:
1564  /*
1565  * Enable the controller after clock change. Only
1566  * do this if we were disabled for the clock change.
1567  */
1568  if (old_state == C_DISABLE_CLKCHANGE) {
1569  fbi->state = C_ENABLE;
1570  pxafb_enable_controller(fbi);
1571  /* TODO __pxafb_lcd_power(fbi, 1); */
1572  }
1573  break;
1574 
1575  case C_REENABLE:
1576  /*
1577  * Re-enable the controller only if it was already
1578  * enabled. This is so we reprogram the control
1579  * registers.
1580  */
1581  if (old_state == C_ENABLE) {
1582  __pxafb_lcd_power(fbi, 0);
1583  pxafb_disable_controller(fbi);
1584  pxafb_enable_controller(fbi);
1585  __pxafb_lcd_power(fbi, 1);
1586  }
1587  break;
1588 
1589  case C_ENABLE_PM:
1590  /*
1591  * Re-enable the controller after PM. This is not
1592  * perfect - think about the case where we were doing
1593  * a clock change, and we suspended half-way through.
1594  */
1595  if (old_state != C_DISABLE_PM)
1596  break;
1597  /* fall through */
1598 
1599  case C_ENABLE:
1600  /*
1601  * Power up the LCD screen, enable controller, and
1602  * turn on the backlight.
1603  */
1604  if (old_state != C_ENABLE) {
1605  fbi->state = C_ENABLE;
1606  pxafb_enable_controller(fbi);
1607  __pxafb_lcd_power(fbi, 1);
1608  __pxafb_backlight_power(fbi, 1);
1609  }
1610  break;
1611  }
1612  mutex_unlock(&fbi->ctrlr_lock);
1613 }
1614 
1615 /*
1616  * Our LCD controller task (which is called when we blank or unblank)
1617  * via keventd.
1618  */
1619 static void pxafb_task(struct work_struct *work)
1620 {
1621  struct pxafb_info *fbi =
1622  container_of(work, struct pxafb_info, task);
1623  u_int state = xchg(&fbi->task_state, -1);
1624 
1625  set_ctrlr_state(fbi, state);
1626 }
1627 
1628 #ifdef CONFIG_CPU_FREQ
1629 /*
1630  * CPU clock speed change handler. We need to adjust the LCD timing
1631  * parameters when the CPU clock is adjusted by the power management
1632  * subsystem.
1633  *
1634  * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1635  */
1636 static int
1637 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1638 {
1639  struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1640  /* TODO struct cpufreq_freqs *f = data; */
1641  u_int pcd;
1642 
1643  switch (val) {
1644  case CPUFREQ_PRECHANGE:
1645 #ifdef CONFIG_FB_PXA_OVERLAY
1646  if (!(fbi->overlay[0].usage || fbi->overlay[1].usage))
1647 #endif
1648  set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1649  break;
1650 
1651  case CPUFREQ_POSTCHANGE:
1652  pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1653  set_hsync_time(fbi, pcd);
1654  fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1655  LCCR3_PixClkDiv(pcd);
1656  set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1657  break;
1658  }
1659  return 0;
1660 }
1661 
1662 static int
1663 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1664 {
1665  struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1666  struct fb_var_screeninfo *var = &fbi->fb.var;
1667  struct cpufreq_policy *policy = data;
1668 
1669  switch (val) {
1670  case CPUFREQ_ADJUST:
1671  case CPUFREQ_INCOMPATIBLE:
1672  pr_debug("min dma period: %d ps, "
1673  "new clock %d kHz\n", pxafb_display_dma_period(var),
1674  policy->max);
1675  /* TODO: fill in min/max values */
1676  break;
1677  }
1678  return 0;
1679 }
1680 #endif
1681 
1682 #ifdef CONFIG_PM
1683 /*
1684  * Power management hooks. Note that we won't be called from IRQ context,
1685  * unlike the blank functions above, so we may sleep.
1686  */
1687 static int pxafb_suspend(struct device *dev)
1688 {
1689  struct pxafb_info *fbi = dev_get_drvdata(dev);
1690 
1691  set_ctrlr_state(fbi, C_DISABLE_PM);
1692  return 0;
1693 }
1694 
1695 static int pxafb_resume(struct device *dev)
1696 {
1697  struct pxafb_info *fbi = dev_get_drvdata(dev);
1698 
1699  set_ctrlr_state(fbi, C_ENABLE_PM);
1700  return 0;
1701 }
1702 
1703 static const struct dev_pm_ops pxafb_pm_ops = {
1704  .suspend = pxafb_suspend,
1705  .resume = pxafb_resume,
1706 };
1707 #endif
1708 
1709 static int __devinit pxafb_init_video_memory(struct pxafb_info *fbi)
1710 {
1711  int size = PAGE_ALIGN(fbi->video_mem_size);
1712 
1714  if (fbi->video_mem == NULL)
1715  return -ENOMEM;
1716 
1717  fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1718  fbi->video_mem_size = size;
1719 
1720  fbi->fb.fix.smem_start = fbi->video_mem_phys;
1721  fbi->fb.fix.smem_len = fbi->video_mem_size;
1722  fbi->fb.screen_base = fbi->video_mem;
1723 
1724  return fbi->video_mem ? 0 : -ENOMEM;
1725 }
1726 
1727 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1728  struct pxafb_mach_info *inf)
1729 {
1730  unsigned int lcd_conn = inf->lcd_conn;
1731  struct pxafb_mode_info *m;
1732  int i;
1733 
1734  fbi->cmap_inverse = inf->cmap_inverse;
1735  fbi->cmap_static = inf->cmap_static;
1736  fbi->lccr4 = inf->lccr4;
1737 
1738  switch (lcd_conn & LCD_TYPE_MASK) {
1739  case LCD_TYPE_MONO_STN:
1740  fbi->lccr0 = LCCR0_CMS;
1741  break;
1742  case LCD_TYPE_MONO_DSTN:
1743  fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1744  break;
1745  case LCD_TYPE_COLOR_STN:
1746  fbi->lccr0 = 0;
1747  break;
1748  case LCD_TYPE_COLOR_DSTN:
1749  fbi->lccr0 = LCCR0_SDS;
1750  break;
1751  case LCD_TYPE_COLOR_TFT:
1752  fbi->lccr0 = LCCR0_PAS;
1753  break;
1754  case LCD_TYPE_SMART_PANEL:
1755  fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1756  break;
1757  default:
1758  /* fall back to backward compatibility way */
1759  fbi->lccr0 = inf->lccr0;
1760  fbi->lccr3 = inf->lccr3;
1761  goto decode_mode;
1762  }
1763 
1764  if (lcd_conn == LCD_MONO_STN_8BPP)
1765  fbi->lccr0 |= LCCR0_DPD;
1766 
1767  fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1768 
1769  fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1770  fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1771  fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0;
1772 
1773 decode_mode:
1774  pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1775 
1776  /* decide video memory size as follows:
1777  * 1. default to mode of maximum resolution
1778  * 2. allow platform to override
1779  * 3. allow module parameter to override
1780  */
1781  for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1782  fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1783  m->xres * m->yres * m->bpp / 8);
1784 
1785  if (inf->video_mem_size > fbi->video_mem_size)
1786  fbi->video_mem_size = inf->video_mem_size;
1787 
1788  if (video_mem_size > fbi->video_mem_size)
1789  fbi->video_mem_size = video_mem_size;
1790 }
1791 
1792 static struct pxafb_info * __devinit pxafb_init_fbinfo(struct device *dev)
1793 {
1794  struct pxafb_info *fbi;
1795  void *addr;
1796  struct pxafb_mach_info *inf = dev->platform_data;
1797 
1798  /* Alloc the pxafb_info and pseudo_palette in one step */
1799  fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1800  if (!fbi)
1801  return NULL;
1802 
1803  memset(fbi, 0, sizeof(struct pxafb_info));
1804  fbi->dev = dev;
1805 
1806  fbi->clk = clk_get(dev, NULL);
1807  if (IS_ERR(fbi->clk)) {
1808  kfree(fbi);
1809  return NULL;
1810  }
1811 
1812  strcpy(fbi->fb.fix.id, PXA_NAME);
1813 
1814  fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1815  fbi->fb.fix.type_aux = 0;
1816  fbi->fb.fix.xpanstep = 0;
1817  fbi->fb.fix.ypanstep = 1;
1818  fbi->fb.fix.ywrapstep = 0;
1819  fbi->fb.fix.accel = FB_ACCEL_NONE;
1820 
1821  fbi->fb.var.nonstd = 0;
1822  fbi->fb.var.activate = FB_ACTIVATE_NOW;
1823  fbi->fb.var.height = -1;
1824  fbi->fb.var.width = -1;
1825  fbi->fb.var.accel_flags = FB_ACCELF_TEXT;
1826  fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1827 
1828  fbi->fb.fbops = &pxafb_ops;
1829  fbi->fb.flags = FBINFO_DEFAULT;
1830  fbi->fb.node = -1;
1831 
1832  addr = fbi;
1833  addr = addr + sizeof(struct pxafb_info);
1834  fbi->fb.pseudo_palette = addr;
1835 
1836  fbi->state = C_STARTUP;
1837  fbi->task_state = (u_char)-1;
1838 
1839  pxafb_decode_mach_info(fbi, inf);
1840 
1841 #ifdef CONFIG_FB_PXA_OVERLAY
1842  /* place overlay(s) on top of base */
1843  if (pxafb_overlay_supported())
1844  fbi->lccr0 |= LCCR0_OUC;
1845 #endif
1846 
1848  INIT_WORK(&fbi->task, pxafb_task);
1849  mutex_init(&fbi->ctrlr_lock);
1850  init_completion(&fbi->disable_done);
1851 
1852  return fbi;
1853 }
1854 
1855 #ifdef CONFIG_FB_PXA_PARAMETERS
1856 static int __devinit parse_opt_mode(struct device *dev, const char *this_opt)
1857 {
1858  struct pxafb_mach_info *inf = dev->platform_data;
1859 
1860  const char *name = this_opt+5;
1861  unsigned int namelen = strlen(name);
1862  int res_specified = 0, bpp_specified = 0;
1863  unsigned int xres = 0, yres = 0, bpp = 0;
1864  int yres_specified = 0;
1865  int i;
1866  for (i = namelen-1; i >= 0; i--) {
1867  switch (name[i]) {
1868  case '-':
1869  namelen = i;
1870  if (!bpp_specified && !yres_specified) {
1871  bpp = simple_strtoul(&name[i+1], NULL, 0);
1872  bpp_specified = 1;
1873  } else
1874  goto done;
1875  break;
1876  case 'x':
1877  if (!yres_specified) {
1878  yres = simple_strtoul(&name[i+1], NULL, 0);
1879  yres_specified = 1;
1880  } else
1881  goto done;
1882  break;
1883  case '0' ... '9':
1884  break;
1885  default:
1886  goto done;
1887  }
1888  }
1889  if (i < 0 && yres_specified) {
1890  xres = simple_strtoul(name, NULL, 0);
1891  res_specified = 1;
1892  }
1893 done:
1894  if (res_specified) {
1895  dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1896  inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1897  }
1898  if (bpp_specified)
1899  switch (bpp) {
1900  case 1:
1901  case 2:
1902  case 4:
1903  case 8:
1904  case 16:
1905  inf->modes[0].bpp = bpp;
1906  dev_info(dev, "overriding bit depth: %d\n", bpp);
1907  break;
1908  default:
1909  dev_err(dev, "Depth %d is not valid\n", bpp);
1910  return -EINVAL;
1911  }
1912  return 0;
1913 }
1914 
1915 static int __devinit parse_opt(struct device *dev, char *this_opt)
1916 {
1917  struct pxafb_mach_info *inf = dev->platform_data;
1918  struct pxafb_mode_info *mode = &inf->modes[0];
1919  char s[64];
1920 
1921  s[0] = '\0';
1922 
1923  if (!strncmp(this_opt, "vmem:", 5)) {
1924  video_mem_size = memparse(this_opt + 5, NULL);
1925  } else if (!strncmp(this_opt, "mode:", 5)) {
1926  return parse_opt_mode(dev, this_opt);
1927  } else if (!strncmp(this_opt, "pixclock:", 9)) {
1928  mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1929  sprintf(s, "pixclock: %ld\n", mode->pixclock);
1930  } else if (!strncmp(this_opt, "left:", 5)) {
1931  mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1932  sprintf(s, "left: %u\n", mode->left_margin);
1933  } else if (!strncmp(this_opt, "right:", 6)) {
1934  mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1935  sprintf(s, "right: %u\n", mode->right_margin);
1936  } else if (!strncmp(this_opt, "upper:", 6)) {
1937  mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1938  sprintf(s, "upper: %u\n", mode->upper_margin);
1939  } else if (!strncmp(this_opt, "lower:", 6)) {
1940  mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1941  sprintf(s, "lower: %u\n", mode->lower_margin);
1942  } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1943  mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1944  sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1945  } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1946  mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1947  sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1948  } else if (!strncmp(this_opt, "hsync:", 6)) {
1949  if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1950  sprintf(s, "hsync: Active Low\n");
1951  mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1952  } else {
1953  sprintf(s, "hsync: Active High\n");
1954  mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1955  }
1956  } else if (!strncmp(this_opt, "vsync:", 6)) {
1957  if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1958  sprintf(s, "vsync: Active Low\n");
1959  mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1960  } else {
1961  sprintf(s, "vsync: Active High\n");
1962  mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1963  }
1964  } else if (!strncmp(this_opt, "dpc:", 4)) {
1965  if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1966  sprintf(s, "double pixel clock: false\n");
1967  inf->lccr3 &= ~LCCR3_DPC;
1968  } else {
1969  sprintf(s, "double pixel clock: true\n");
1970  inf->lccr3 |= LCCR3_DPC;
1971  }
1972  } else if (!strncmp(this_opt, "outputen:", 9)) {
1973  if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1974  sprintf(s, "output enable: active low\n");
1975  inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1976  } else {
1977  sprintf(s, "output enable: active high\n");
1978  inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1979  }
1980  } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1981  if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1982  sprintf(s, "pixel clock polarity: falling edge\n");
1983  inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1984  } else {
1985  sprintf(s, "pixel clock polarity: rising edge\n");
1986  inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1987  }
1988  } else if (!strncmp(this_opt, "color", 5)) {
1989  inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1990  } else if (!strncmp(this_opt, "mono", 4)) {
1991  inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1992  } else if (!strncmp(this_opt, "active", 6)) {
1993  inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1994  } else if (!strncmp(this_opt, "passive", 7)) {
1995  inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1996  } else if (!strncmp(this_opt, "single", 6)) {
1997  inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1998  } else if (!strncmp(this_opt, "dual", 4)) {
1999  inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
2000  } else if (!strncmp(this_opt, "4pix", 4)) {
2001  inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
2002  } else if (!strncmp(this_opt, "8pix", 4)) {
2003  inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
2004  } else {
2005  dev_err(dev, "unknown option: %s\n", this_opt);
2006  return -EINVAL;
2007  }
2008 
2009  if (s[0] != '\0')
2010  dev_info(dev, "override %s", s);
2011 
2012  return 0;
2013 }
2014 
2015 static int __devinit pxafb_parse_options(struct device *dev, char *options)
2016 {
2017  char *this_opt;
2018  int ret;
2019 
2020  if (!options || !*options)
2021  return 0;
2022 
2023  dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
2024 
2025  /* could be made table driven or similar?... */
2026  while ((this_opt = strsep(&options, ",")) != NULL) {
2027  ret = parse_opt(dev, this_opt);
2028  if (ret)
2029  return ret;
2030  }
2031  return 0;
2032 }
2033 
2034 static char g_options[256] __devinitdata = "";
2035 
2036 #ifndef MODULE
2037 static int __init pxafb_setup_options(void)
2038 {
2039  char *options = NULL;
2040 
2041  if (fb_get_options("pxafb", &options))
2042  return -ENODEV;
2043 
2044  if (options)
2045  strlcpy(g_options, options, sizeof(g_options));
2046 
2047  return 0;
2048 }
2049 #else
2050 #define pxafb_setup_options() (0)
2051 
2052 module_param_string(options, g_options, sizeof(g_options), 0);
2053 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
2054 #endif
2055 
2056 #else
2057 #define pxafb_parse_options(...) (0)
2058 #define pxafb_setup_options() (0)
2059 #endif
2060 
2061 #ifdef DEBUG_VAR
2062 /* Check for various illegal bit-combinations. Currently only
2063  * a warning is given. */
2064 static void __devinit pxafb_check_options(struct device *dev,
2065  struct pxafb_mach_info *inf)
2066 {
2067  if (inf->lcd_conn)
2068  return;
2069 
2070  if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2071  dev_warn(dev, "machine LCCR0 setting contains "
2072  "illegal bits: %08x\n",
2074  if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2075  dev_warn(dev, "machine LCCR3 setting contains "
2076  "illegal bits: %08x\n",
2078  if (inf->lccr0 & LCCR0_DPD &&
2079  ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2080  (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2081  (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2082  dev_warn(dev, "Double Pixel Data (DPD) mode is "
2083  "only valid in passive mono"
2084  " single panel mode\n");
2085  if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2086  (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2087  dev_warn(dev, "Dual panel only valid in passive mode\n");
2088  if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2089  (inf->modes->upper_margin || inf->modes->lower_margin))
2090  dev_warn(dev, "Upper and lower margins must be 0 in "
2091  "passive mode\n");
2092 }
2093 #else
2094 #define pxafb_check_options(...) do {} while (0)
2095 #endif
2096 
2097 static int __devinit pxafb_probe(struct platform_device *dev)
2098 {
2099  struct pxafb_info *fbi;
2100  struct pxafb_mach_info *inf;
2101  struct resource *r;
2102  int irq, ret;
2103 
2104  dev_dbg(&dev->dev, "pxafb_probe\n");
2105 
2106  inf = dev->dev.platform_data;
2107  ret = -ENOMEM;
2108  fbi = NULL;
2109  if (!inf)
2110  goto failed;
2111 
2112  ret = pxafb_parse_options(&dev->dev, g_options);
2113  if (ret < 0)
2114  goto failed;
2115 
2116  pxafb_check_options(&dev->dev, inf);
2117 
2118  dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2119  inf->modes->xres,
2120  inf->modes->yres,
2121  inf->modes->bpp);
2122  if (inf->modes->xres == 0 ||
2123  inf->modes->yres == 0 ||
2124  inf->modes->bpp == 0) {
2125  dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2126  ret = -EINVAL;
2127  goto failed;
2128  }
2129 
2130  fbi = pxafb_init_fbinfo(&dev->dev);
2131  if (!fbi) {
2132  /* only reason for pxafb_init_fbinfo to fail is kmalloc */
2133  dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2134  ret = -ENOMEM;
2135  goto failed;
2136  }
2137 
2138  if (cpu_is_pxa3xx() && inf->acceleration_enabled)
2139  fbi->fb.fix.accel = FB_ACCEL_PXA3XX;
2140 
2142  fbi->lcd_power = inf->pxafb_lcd_power;
2143 
2145  if (r == NULL) {
2146  dev_err(&dev->dev, "no I/O memory resource defined\n");
2147  ret = -ENODEV;
2148  goto failed_fbi;
2149  }
2150 
2151  r = request_mem_region(r->start, resource_size(r), dev->name);
2152  if (r == NULL) {
2153  dev_err(&dev->dev, "failed to request I/O memory\n");
2154  ret = -EBUSY;
2155  goto failed_fbi;
2156  }
2157 
2158  fbi->mmio_base = ioremap(r->start, resource_size(r));
2159  if (fbi->mmio_base == NULL) {
2160  dev_err(&dev->dev, "failed to map I/O memory\n");
2161  ret = -EBUSY;
2162  goto failed_free_res;
2163  }
2164 
2165  fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2166  fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2167  &fbi->dma_buff_phys, GFP_KERNEL);
2168  if (fbi->dma_buff == NULL) {
2169  dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2170  ret = -ENOMEM;
2171  goto failed_free_io;
2172  }
2173 
2174  ret = pxafb_init_video_memory(fbi);
2175  if (ret) {
2176  dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2177  ret = -ENOMEM;
2178  goto failed_free_dma;
2179  }
2180 
2181  irq = platform_get_irq(dev, 0);
2182  if (irq < 0) {
2183  dev_err(&dev->dev, "no IRQ defined\n");
2184  ret = -ENODEV;
2185  goto failed_free_mem;
2186  }
2187 
2188  ret = request_irq(irq, pxafb_handle_irq, 0, "LCD", fbi);
2189  if (ret) {
2190  dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2191  ret = -EBUSY;
2192  goto failed_free_mem;
2193  }
2194 
2195  ret = pxafb_smart_init(fbi);
2196  if (ret) {
2197  dev_err(&dev->dev, "failed to initialize smartpanel\n");
2198  goto failed_free_irq;
2199  }
2200 
2201  /*
2202  * This makes sure that our colour bitfield
2203  * descriptors are correctly initialised.
2204  */
2205  ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2206  if (ret) {
2207  dev_err(&dev->dev, "failed to get suitable mode\n");
2208  goto failed_free_irq;
2209  }
2210 
2211  ret = pxafb_set_par(&fbi->fb);
2212  if (ret) {
2213  dev_err(&dev->dev, "Failed to set parameters\n");
2214  goto failed_free_irq;
2215  }
2216 
2217  platform_set_drvdata(dev, fbi);
2218 
2219  ret = register_framebuffer(&fbi->fb);
2220  if (ret < 0) {
2221  dev_err(&dev->dev,
2222  "Failed to register framebuffer device: %d\n", ret);
2223  goto failed_free_cmap;
2224  }
2225 
2226  pxafb_overlay_init(fbi);
2227 
2228 #ifdef CONFIG_CPU_FREQ
2229  fbi->freq_transition.notifier_call = pxafb_freq_transition;
2230  fbi->freq_policy.notifier_call = pxafb_freq_policy;
2231  cpufreq_register_notifier(&fbi->freq_transition,
2233  cpufreq_register_notifier(&fbi->freq_policy,
2235 #endif
2236 
2237  /*
2238  * Ok, now enable the LCD controller
2239  */
2240  set_ctrlr_state(fbi, C_ENABLE);
2241 
2242  return 0;
2243 
2244 failed_free_cmap:
2245  if (fbi->fb.cmap.len)
2246  fb_dealloc_cmap(&fbi->fb.cmap);
2247 failed_free_irq:
2248  free_irq(irq, fbi);
2249 failed_free_mem:
2251 failed_free_dma:
2252  dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2253  fbi->dma_buff, fbi->dma_buff_phys);
2254 failed_free_io:
2255  iounmap(fbi->mmio_base);
2256 failed_free_res:
2257  release_mem_region(r->start, resource_size(r));
2258 failed_fbi:
2259  clk_put(fbi->clk);
2260  platform_set_drvdata(dev, NULL);
2261  kfree(fbi);
2262 failed:
2263  return ret;
2264 }
2265 
2266 static int __devexit pxafb_remove(struct platform_device *dev)
2267 {
2268  struct pxafb_info *fbi = platform_get_drvdata(dev);
2269  struct resource *r;
2270  int irq;
2271  struct fb_info *info;
2272 
2273  if (!fbi)
2274  return 0;
2275 
2276  info = &fbi->fb;
2277 
2278  pxafb_overlay_exit(fbi);
2279  unregister_framebuffer(info);
2280 
2281  pxafb_disable_controller(fbi);
2282 
2283  if (fbi->fb.cmap.len)
2284  fb_dealloc_cmap(&fbi->fb.cmap);
2285 
2286  irq = platform_get_irq(dev, 0);
2287  free_irq(irq, fbi);
2288 
2290 
2292  fbi->dma_buff, fbi->dma_buff_phys);
2293 
2294  iounmap(fbi->mmio_base);
2295 
2297  release_mem_region(r->start, resource_size(r));
2298 
2299  clk_put(fbi->clk);
2300  kfree(fbi);
2301 
2302  return 0;
2303 }
2304 
2305 static struct platform_driver pxafb_driver = {
2306  .probe = pxafb_probe,
2307  .remove = __devexit_p(pxafb_remove),
2308  .driver = {
2309  .owner = THIS_MODULE,
2310  .name = "pxa2xx-fb",
2311 #ifdef CONFIG_PM
2312  .pm = &pxafb_pm_ops,
2313 #endif
2314  },
2315 };
2316 
2317 static int __init pxafb_init(void)
2318 {
2319  if (pxafb_setup_options())
2320  return -EINVAL;
2321 
2322  return platform_driver_register(&pxafb_driver);
2323 }
2324 
2325 static void __exit pxafb_exit(void)
2326 {
2327  platform_driver_unregister(&pxafb_driver);
2328 }
2329 
2330 module_init(pxafb_init);
2331 module_exit(pxafb_exit);
2332 
2333 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2334 MODULE_LICENSE("GPL");