Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rrunner.c
Go to the documentation of this file.
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <[email protected]>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25 
26 
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <linux/slab.h>
44 #include <net/sock.h>
45 
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51 
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
54 
55 #include "rrunner.h"
56 
57 #define RUN_AT(x) (jiffies + (x))
58 
59 
60 MODULE_AUTHOR("Jes Sorensen <[email protected]>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63 
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen ([email protected])\n";
65 
66 
67 static const struct net_device_ops rr_netdev_ops = {
68  .ndo_open = rr_open,
69  .ndo_stop = rr_close,
70  .ndo_do_ioctl = rr_ioctl,
71  .ndo_start_xmit = rr_start_xmit,
72  .ndo_change_mtu = hippi_change_mtu,
73  .ndo_set_mac_address = hippi_mac_addr,
74 };
75 
76 /*
77  * Implementation notes:
78  *
79  * The DMA engine only allows for DMA within physical 64KB chunks of
80  * memory. The current approach of the driver (and stack) is to use
81  * linear blocks of memory for the skbuffs. However, as the data block
82  * is always the first part of the skb and skbs are 2^n aligned so we
83  * are guarantted to get the whole block within one 64KB align 64KB
84  * chunk.
85  *
86  * On the long term, relying on being able to allocate 64KB linear
87  * chunks of memory is not feasible and the skb handling code and the
88  * stack will need to know about I/O vectors or something similar.
89  */
90 
91 static int __devinit rr_init_one(struct pci_dev *pdev,
92  const struct pci_device_id *ent)
93 {
94  struct net_device *dev;
95  static int version_disp;
96  u8 pci_latency;
97  struct rr_private *rrpriv;
98  void *tmpptr;
99  dma_addr_t ring_dma;
100  int ret = -ENOMEM;
101 
102  dev = alloc_hippi_dev(sizeof(struct rr_private));
103  if (!dev)
104  goto out3;
105 
106  ret = pci_enable_device(pdev);
107  if (ret) {
108  ret = -ENODEV;
109  goto out2;
110  }
111 
112  rrpriv = netdev_priv(dev);
113 
114  SET_NETDEV_DEV(dev, &pdev->dev);
115 
116  ret = pci_request_regions(pdev, "rrunner");
117  if (ret < 0)
118  goto out;
119 
120  pci_set_drvdata(pdev, dev);
121 
122  rrpriv->pci_dev = pdev;
123 
124  spin_lock_init(&rrpriv->lock);
125 
126  dev->netdev_ops = &rr_netdev_ops;
127 
128  /* display version info if adapter is found */
129  if (!version_disp) {
130  /* set display flag to TRUE so that */
131  /* we only display this string ONCE */
132  version_disp = 1;
133  printk(version);
134  }
135 
136  pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
137  if (pci_latency <= 0x58){
138  pci_latency = 0x58;
139  pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
140  }
141 
142  pci_set_master(pdev);
143 
144  printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
145  "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
146  (unsigned long long)pci_resource_start(pdev, 0),
147  pdev->irq, pci_latency);
148 
149  /*
150  * Remap the MMIO regs into kernel space.
151  */
152  rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
153  if (!rrpriv->regs) {
154  printk(KERN_ERR "%s: Unable to map I/O register, "
155  "RoadRunner will be disabled.\n", dev->name);
156  ret = -EIO;
157  goto out;
158  }
159 
160  tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
161  rrpriv->tx_ring = tmpptr;
162  rrpriv->tx_ring_dma = ring_dma;
163 
164  if (!tmpptr) {
165  ret = -ENOMEM;
166  goto out;
167  }
168 
169  tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
170  rrpriv->rx_ring = tmpptr;
171  rrpriv->rx_ring_dma = ring_dma;
172 
173  if (!tmpptr) {
174  ret = -ENOMEM;
175  goto out;
176  }
177 
178  tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
179  rrpriv->evt_ring = tmpptr;
180  rrpriv->evt_ring_dma = ring_dma;
181 
182  if (!tmpptr) {
183  ret = -ENOMEM;
184  goto out;
185  }
186 
187  /*
188  * Don't access any register before this point!
189  */
190 #ifdef __BIG_ENDIAN
191  writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
192  &rrpriv->regs->HostCtrl);
193 #endif
194  /*
195  * Need to add a case for little-endian 64-bit hosts here.
196  */
197 
198  rr_init(dev);
199 
200  ret = register_netdev(dev);
201  if (ret)
202  goto out;
203  return 0;
204 
205  out:
206  if (rrpriv->rx_ring)
208  rrpriv->rx_ring_dma);
209  if (rrpriv->tx_ring)
211  rrpriv->tx_ring_dma);
212  if (rrpriv->regs)
213  pci_iounmap(pdev, rrpriv->regs);
214  if (pdev) {
215  pci_release_regions(pdev);
216  pci_set_drvdata(pdev, NULL);
217  }
218  out2:
219  free_netdev(dev);
220  out3:
221  return ret;
222 }
223 
224 static void __devexit rr_remove_one (struct pci_dev *pdev)
225 {
226  struct net_device *dev = pci_get_drvdata(pdev);
227  struct rr_private *rr = netdev_priv(dev);
228 
229  if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
230  printk(KERN_ERR "%s: trying to unload running NIC\n",
231  dev->name);
232  writel(HALT_NIC, &rr->regs->HostCtrl);
233  }
234 
235  unregister_netdev(dev);
237  rr->evt_ring_dma);
239  rr->rx_ring_dma);
241  rr->tx_ring_dma);
242  pci_iounmap(pdev, rr->regs);
243  pci_release_regions(pdev);
244  pci_disable_device(pdev);
245  pci_set_drvdata(pdev, NULL);
246  free_netdev(dev);
247 }
248 
249 
250 /*
251  * Commands are considered to be slow, thus there is no reason to
252  * inline this.
253  */
254 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
255 {
256  struct rr_regs __iomem *regs;
257  u32 idx;
258 
259  regs = rrpriv->regs;
260  /*
261  * This is temporary - it will go away in the final version.
262  * We probably also want to make this function inline.
263  */
264  if (readl(&regs->HostCtrl) & NIC_HALTED){
265  printk("issuing command for halted NIC, code 0x%x, "
266  "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
267  if (readl(&regs->Mode) & FATAL_ERR)
268  printk("error codes Fail1 %02x, Fail2 %02x\n",
269  readl(&regs->Fail1), readl(&regs->Fail2));
270  }
271 
272  idx = rrpriv->info->cmd_ctrl.pi;
273 
274  writel(*(u32*)(cmd), &regs->CmdRing[idx]);
275  wmb();
276 
277  idx = (idx - 1) % CMD_RING_ENTRIES;
278  rrpriv->info->cmd_ctrl.pi = idx;
279  wmb();
280 
281  if (readl(&regs->Mode) & FATAL_ERR)
282  printk("error code %02x\n", readl(&regs->Fail1));
283 }
284 
285 
286 /*
287  * Reset the board in a sensible manner. The NIC is already halted
288  * when we get here and a spin-lock is held.
289  */
290 static int rr_reset(struct net_device *dev)
291 {
292  struct rr_private *rrpriv;
293  struct rr_regs __iomem *regs;
294  u32 start_pc;
295  int i;
296 
297  rrpriv = netdev_priv(dev);
298  regs = rrpriv->regs;
299 
300  rr_load_firmware(dev);
301 
302  writel(0x01000000, &regs->TX_state);
303  writel(0xff800000, &regs->RX_state);
304  writel(0, &regs->AssistState);
305  writel(CLEAR_INTA, &regs->LocalCtrl);
306  writel(0x01, &regs->BrkPt);
307  writel(0, &regs->Timer);
308  writel(0, &regs->TimerRef);
309  writel(RESET_DMA, &regs->DmaReadState);
310  writel(RESET_DMA, &regs->DmaWriteState);
311  writel(0, &regs->DmaWriteHostHi);
312  writel(0, &regs->DmaWriteHostLo);
313  writel(0, &regs->DmaReadHostHi);
314  writel(0, &regs->DmaReadHostLo);
315  writel(0, &regs->DmaReadLen);
316  writel(0, &regs->DmaWriteLen);
317  writel(0, &regs->DmaWriteLcl);
318  writel(0, &regs->DmaWriteIPchecksum);
319  writel(0, &regs->DmaReadLcl);
320  writel(0, &regs->DmaReadIPchecksum);
321  writel(0, &regs->PciState);
322 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
324 #elif (BITS_PER_LONG == 64)
326 #else
328 #endif
329 
330 #if 0
331  /*
332  * Don't worry, this is just black magic.
333  */
334  writel(0xdf000, &regs->RxBase);
335  writel(0xdf000, &regs->RxPrd);
336  writel(0xdf000, &regs->RxCon);
337  writel(0xce000, &regs->TxBase);
338  writel(0xce000, &regs->TxPrd);
339  writel(0xce000, &regs->TxCon);
340  writel(0, &regs->RxIndPro);
341  writel(0, &regs->RxIndCon);
342  writel(0, &regs->RxIndRef);
343  writel(0, &regs->TxIndPro);
344  writel(0, &regs->TxIndCon);
345  writel(0, &regs->TxIndRef);
346  writel(0xcc000, &regs->pad10[0]);
347  writel(0, &regs->DrCmndPro);
348  writel(0, &regs->DrCmndCon);
349  writel(0, &regs->DwCmndPro);
350  writel(0, &regs->DwCmndCon);
351  writel(0, &regs->DwCmndRef);
352  writel(0, &regs->DrDataPro);
353  writel(0, &regs->DrDataCon);
354  writel(0, &regs->DrDataRef);
355  writel(0, &regs->DwDataPro);
356  writel(0, &regs->DwDataCon);
357  writel(0, &regs->DwDataRef);
358 #endif
359 
360  writel(0xffffffff, &regs->MbEvent);
361  writel(0, &regs->Event);
362 
363  writel(0, &regs->TxPi);
364  writel(0, &regs->IpRxPi);
365 
366  writel(0, &regs->EvtCon);
367  writel(0, &regs->EvtPrd);
368 
369  rrpriv->info->evt_ctrl.pi = 0;
370 
371  for (i = 0; i < CMD_RING_ENTRIES; i++)
372  writel(0, &regs->CmdRing[i]);
373 
374 /*
375  * Why 32 ? is this not cache line size dependent?
376  */
378  wmb();
379 
380  start_pc = rr_read_eeprom_word(rrpriv,
381  offsetof(struct eeprom, rncd_info.FwStart));
382 
383 #if (DEBUG > 1)
384  printk("%s: Executing firmware at address 0x%06x\n",
385  dev->name, start_pc);
386 #endif
387 
388  writel(start_pc + 0x800, &regs->Pc);
389  wmb();
390  udelay(5);
391 
392  writel(start_pc, &regs->Pc);
393  wmb();
394 
395  return 0;
396 }
397 
398 
399 /*
400  * Read a string from the EEPROM.
401  */
402 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
403  unsigned long offset,
404  unsigned char *buf,
405  unsigned long length)
406 {
407  struct rr_regs __iomem *regs = rrpriv->regs;
408  u32 misc, io, host, i;
409 
410  io = readl(&regs->ExtIo);
411  writel(0, &regs->ExtIo);
412  misc = readl(&regs->LocalCtrl);
413  writel(0, &regs->LocalCtrl);
414  host = readl(&regs->HostCtrl);
415  writel(host | HALT_NIC, &regs->HostCtrl);
416  mb();
417 
418  for (i = 0; i < length; i++){
419  writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
420  mb();
421  buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
422  mb();
423  }
424 
425  writel(host, &regs->HostCtrl);
426  writel(misc, &regs->LocalCtrl);
427  writel(io, &regs->ExtIo);
428  mb();
429  return i;
430 }
431 
432 
433 /*
434  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
435  * it to our CPU byte-order.
436  */
437 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
438  size_t offset)
439 {
440  __be32 word;
441 
442  if ((rr_read_eeprom(rrpriv, offset,
443  (unsigned char *)&word, 4) == 4))
444  return be32_to_cpu(word);
445  return 0;
446 }
447 
448 
449 /*
450  * Write a string to the EEPROM.
451  *
452  * This is only called when the firmware is not running.
453  */
454 static unsigned int write_eeprom(struct rr_private *rrpriv,
455  unsigned long offset,
456  unsigned char *buf,
457  unsigned long length)
458 {
459  struct rr_regs __iomem *regs = rrpriv->regs;
460  u32 misc, io, data, i, j, ready, error = 0;
461 
462  io = readl(&regs->ExtIo);
463  writel(0, &regs->ExtIo);
464  misc = readl(&regs->LocalCtrl);
466  mb();
467 
468  for (i = 0; i < length; i++){
469  writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
470  mb();
471  data = buf[i] << 24;
472  /*
473  * Only try to write the data if it is not the same
474  * value already.
475  */
476  if ((readl(&regs->WinData) & 0xff000000) != data){
477  writel(data, &regs->WinData);
478  ready = 0;
479  j = 0;
480  mb();
481  while(!ready){
482  udelay(20);
483  if ((readl(&regs->WinData) & 0xff000000) ==
484  data)
485  ready = 1;
486  mb();
487  if (j++ > 5000){
488  printk("data mismatch: %08x, "
489  "WinData %08x\n", data,
490  readl(&regs->WinData));
491  ready = 1;
492  error = 1;
493  }
494  }
495  }
496  }
497 
498  writel(misc, &regs->LocalCtrl);
499  writel(io, &regs->ExtIo);
500  mb();
501 
502  return error;
503 }
504 
505 
506 static int __devinit rr_init(struct net_device *dev)
507 {
508  struct rr_private *rrpriv;
509  struct rr_regs __iomem *regs;
510  u32 sram_size, rev;
511 
512  rrpriv = netdev_priv(dev);
513  regs = rrpriv->regs;
514 
515  rev = readl(&regs->FwRev);
516  rrpriv->fw_rev = rev;
517  if (rev > 0x00020024)
518  printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
519  ((rev >> 8) & 0xff), (rev & 0xff));
520  else if (rev >= 0x00020000) {
521  printk(" Firmware revision: %i.%i.%i (2.0.37 or "
522  "later is recommended)\n", (rev >> 16),
523  ((rev >> 8) & 0xff), (rev & 0xff));
524  }else{
525  printk(" Firmware revision too old: %i.%i.%i, please "
526  "upgrade to 2.0.37 or later.\n",
527  (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
528  }
529 
530 #if (DEBUG > 2)
531  printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
532 #endif
533 
534  /*
535  * Read the hardware address from the eeprom. The HW address
536  * is not really necessary for HIPPI but awfully convenient.
537  * The pointer arithmetic to put it in dev_addr is ugly, but
538  * Donald Becker does it this way for the GigE version of this
539  * card and it's shorter and more portable than any
540  * other method I've seen. -VAL
541  */
542 
543  *(__be16 *)(dev->dev_addr) =
544  htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
545  *(__be32 *)(dev->dev_addr+2) =
546  htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
547 
548  printk(" MAC: %pM\n", dev->dev_addr);
549 
550  sram_size = rr_read_eeprom_word(rrpriv, 8);
551  printk(" SRAM size 0x%06x\n", sram_size);
552 
553  return 0;
554 }
555 
556 
557 static int rr_init1(struct net_device *dev)
558 {
559  struct rr_private *rrpriv;
560  struct rr_regs __iomem *regs;
561  unsigned long myjif, flags;
562  struct cmd cmd;
563  u32 hostctrl;
564  int ecode = 0;
565  short i;
566 
567  rrpriv = netdev_priv(dev);
568  regs = rrpriv->regs;
569 
570  spin_lock_irqsave(&rrpriv->lock, flags);
571 
572  hostctrl = readl(&regs->HostCtrl);
573  writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
574  wmb();
575 
576  if (hostctrl & PARITY_ERR){
577  printk("%s: Parity error halting NIC - this is serious!\n",
578  dev->name);
579  spin_unlock_irqrestore(&rrpriv->lock, flags);
580  ecode = -EFAULT;
581  goto error;
582  }
583 
584  set_rxaddr(regs, rrpriv->rx_ctrl_dma);
585  set_infoaddr(regs, rrpriv->info_dma);
586 
587  rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
588  rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
589  rrpriv->info->evt_ctrl.mode = 0;
590  rrpriv->info->evt_ctrl.pi = 0;
591  set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
592 
593  rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
594  rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
595  rrpriv->info->cmd_ctrl.mode = 0;
596  rrpriv->info->cmd_ctrl.pi = 15;
597 
598  for (i = 0; i < CMD_RING_ENTRIES; i++) {
599  writel(0, &regs->CmdRing[i]);
600  }
601 
602  for (i = 0; i < TX_RING_ENTRIES; i++) {
603  rrpriv->tx_ring[i].size = 0;
604  set_rraddr(&rrpriv->tx_ring[i].addr, 0);
605  rrpriv->tx_skbuff[i] = NULL;
606  }
607  rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
608  rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
609  rrpriv->info->tx_ctrl.mode = 0;
610  rrpriv->info->tx_ctrl.pi = 0;
611  set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
612 
613  /*
614  * Set dirty_tx before we start receiving interrupts, otherwise
615  * the interrupt handler might think it is supposed to process
616  * tx ints before we are up and running, which may cause a null
617  * pointer access in the int handler.
618  */
619  rrpriv->tx_full = 0;
620  rrpriv->cur_rx = 0;
621  rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
622 
623  rr_reset(dev);
624 
625  /* Tuning values */
626  writel(0x5000, &regs->ConRetry);
627  writel(0x100, &regs->ConRetryTmr);
628  writel(0x500000, &regs->ConTmout);
629  writel(0x60, &regs->IntrTmr);
630  writel(0x500000, &regs->TxDataMvTimeout);
631  writel(0x200000, &regs->RxDataMvTimeout);
632  writel(0x80, &regs->WriteDmaThresh);
633  writel(0x80, &regs->ReadDmaThresh);
634 
635  rrpriv->fw_running = 0;
636  wmb();
637 
638  hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
639  writel(hostctrl, &regs->HostCtrl);
640  wmb();
641 
642  spin_unlock_irqrestore(&rrpriv->lock, flags);
643 
644  for (i = 0; i < RX_RING_ENTRIES; i++) {
645  struct sk_buff *skb;
647 
648  rrpriv->rx_ring[i].mode = 0;
649  skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
650  if (!skb) {
651  printk(KERN_WARNING "%s: Unable to allocate memory "
652  "for receive ring - halting NIC\n", dev->name);
653  ecode = -ENOMEM;
654  goto error;
655  }
656  rrpriv->rx_skbuff[i] = skb;
657  addr = pci_map_single(rrpriv->pci_dev, skb->data,
659  /*
660  * Sanity test to see if we conflict with the DMA
661  * limitations of the Roadrunner.
662  */
663  if ((((unsigned long)skb->data) & 0xfff) > ~65320)
664  printk("skb alloc error\n");
665 
666  set_rraddr(&rrpriv->rx_ring[i].addr, addr);
667  rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
668  }
669 
670  rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
671  rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
672  rrpriv->rx_ctrl[4].mode = 8;
673  rrpriv->rx_ctrl[4].pi = 0;
674  wmb();
675  set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
676 
677  udelay(1000);
678 
679  /*
680  * Now start the FirmWare.
681  */
682  cmd.code = C_START_FW;
683  cmd.ring = 0;
684  cmd.index = 0;
685 
686  rr_issue_cmd(rrpriv, &cmd);
687 
688  /*
689  * Give the FirmWare time to chew on the `get running' command.
690  */
691  myjif = jiffies + 5 * HZ;
692  while (time_before(jiffies, myjif) && !rrpriv->fw_running)
693  cpu_relax();
694 
695  netif_start_queue(dev);
696 
697  return ecode;
698 
699  error:
700  /*
701  * We might have gotten here because we are out of memory,
702  * make sure we release everything we allocated before failing
703  */
704  for (i = 0; i < RX_RING_ENTRIES; i++) {
705  struct sk_buff *skb = rrpriv->rx_skbuff[i];
706 
707  if (skb) {
708  pci_unmap_single(rrpriv->pci_dev,
709  rrpriv->rx_ring[i].addr.addrlo,
710  dev->mtu + HIPPI_HLEN,
712  rrpriv->rx_ring[i].size = 0;
713  set_rraddr(&rrpriv->rx_ring[i].addr, 0);
714  dev_kfree_skb(skb);
715  rrpriv->rx_skbuff[i] = NULL;
716  }
717  }
718  return ecode;
719 }
720 
721 
722 /*
723  * All events are considered to be slow (RX/TX ints do not generate
724  * events) and are handled here, outside the main interrupt handler,
725  * to reduce the size of the handler.
726  */
727 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
728 {
729  struct rr_private *rrpriv;
730  struct rr_regs __iomem *regs;
731  u32 tmp;
732 
733  rrpriv = netdev_priv(dev);
734  regs = rrpriv->regs;
735 
736  while (prodidx != eidx){
737  switch (rrpriv->evt_ring[eidx].code){
738  case E_NIC_UP:
739  tmp = readl(&regs->FwRev);
740  printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
741  "up and running\n", dev->name,
742  (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
743  rrpriv->fw_running = 1;
744  writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
745  wmb();
746  break;
747  case E_LINK_ON:
748  printk(KERN_INFO "%s: Optical link ON\n", dev->name);
749  break;
750  case E_LINK_OFF:
751  printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
752  break;
753  case E_RX_IDLE:
754  printk(KERN_WARNING "%s: RX data not moving\n",
755  dev->name);
756  goto drop;
757  case E_WATCHDOG:
758  printk(KERN_INFO "%s: The watchdog is here to see "
759  "us\n", dev->name);
760  break;
761  case E_INTERN_ERR:
762  printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
763  dev->name);
765  &regs->HostCtrl);
766  wmb();
767  break;
768  case E_HOST_ERR:
769  printk(KERN_ERR "%s: Host software error\n",
770  dev->name);
772  &regs->HostCtrl);
773  wmb();
774  break;
775  /*
776  * TX events.
777  */
778  case E_CON_REJ:
779  printk(KERN_WARNING "%s: Connection rejected\n",
780  dev->name);
781  dev->stats.tx_aborted_errors++;
782  break;
783  case E_CON_TMOUT:
784  printk(KERN_WARNING "%s: Connection timeout\n",
785  dev->name);
786  break;
787  case E_DISC_ERR:
788  printk(KERN_WARNING "%s: HIPPI disconnect error\n",
789  dev->name);
790  dev->stats.tx_aborted_errors++;
791  break;
792  case E_INT_PRTY:
793  printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
794  dev->name);
796  &regs->HostCtrl);
797  wmb();
798  break;
799  case E_TX_IDLE:
800  printk(KERN_WARNING "%s: Transmitter idle\n",
801  dev->name);
802  break;
803  case E_TX_LINK_DROP:
804  printk(KERN_WARNING "%s: Link lost during transmit\n",
805  dev->name);
806  dev->stats.tx_aborted_errors++;
808  &regs->HostCtrl);
809  wmb();
810  break;
811  case E_TX_INV_RNG:
812  printk(KERN_ERR "%s: Invalid send ring block\n",
813  dev->name);
815  &regs->HostCtrl);
816  wmb();
817  break;
818  case E_TX_INV_BUF:
819  printk(KERN_ERR "%s: Invalid send buffer address\n",
820  dev->name);
822  &regs->HostCtrl);
823  wmb();
824  break;
825  case E_TX_INV_DSC:
826  printk(KERN_ERR "%s: Invalid descriptor address\n",
827  dev->name);
829  &regs->HostCtrl);
830  wmb();
831  break;
832  /*
833  * RX events.
834  */
835  case E_RX_RNG_OUT:
836  printk(KERN_INFO "%s: Receive ring full\n", dev->name);
837  break;
838 
839  case E_RX_PAR_ERR:
840  printk(KERN_WARNING "%s: Receive parity error\n",
841  dev->name);
842  goto drop;
843  case E_RX_LLRC_ERR:
844  printk(KERN_WARNING "%s: Receive LLRC error\n",
845  dev->name);
846  goto drop;
847  case E_PKT_LN_ERR:
848  printk(KERN_WARNING "%s: Receive packet length "
849  "error\n", dev->name);
850  goto drop;
851  case E_DTA_CKSM_ERR:
852  printk(KERN_WARNING "%s: Data checksum error\n",
853  dev->name);
854  goto drop;
855  case E_SHT_BST:
856  printk(KERN_WARNING "%s: Unexpected short burst "
857  "error\n", dev->name);
858  goto drop;
859  case E_STATE_ERR:
860  printk(KERN_WARNING "%s: Recv. state transition"
861  " error\n", dev->name);
862  goto drop;
863  case E_UNEXP_DATA:
864  printk(KERN_WARNING "%s: Unexpected data error\n",
865  dev->name);
866  goto drop;
867  case E_LST_LNK_ERR:
868  printk(KERN_WARNING "%s: Link lost error\n",
869  dev->name);
870  goto drop;
871  case E_FRM_ERR:
872  printk(KERN_WARNING "%s: Framming Error\n",
873  dev->name);
874  goto drop;
875  case E_FLG_SYN_ERR:
876  printk(KERN_WARNING "%s: Flag sync. lost during "
877  "packet\n", dev->name);
878  goto drop;
879  case E_RX_INV_BUF:
880  printk(KERN_ERR "%s: Invalid receive buffer "
881  "address\n", dev->name);
883  &regs->HostCtrl);
884  wmb();
885  break;
886  case E_RX_INV_DSC:
887  printk(KERN_ERR "%s: Invalid receive descriptor "
888  "address\n", dev->name);
890  &regs->HostCtrl);
891  wmb();
892  break;
893  case E_RNG_BLK:
894  printk(KERN_ERR "%s: Invalid ring block\n",
895  dev->name);
897  &regs->HostCtrl);
898  wmb();
899  break;
900  drop:
901  /* Label packet to be dropped.
902  * Actual dropping occurs in rx
903  * handling.
904  *
905  * The index of packet we get to drop is
906  * the index of the packet following
907  * the bad packet. -kbf
908  */
909  {
910  u16 index = rrpriv->evt_ring[eidx].index;
911  index = (index + (RX_RING_ENTRIES - 1)) %
913  rrpriv->rx_ring[index].mode |=
915  }
916  break;
917  default:
918  printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
919  dev->name, rrpriv->evt_ring[eidx].code);
920  }
921  eidx = (eidx + 1) % EVT_RING_ENTRIES;
922  }
923 
924  rrpriv->info->evt_ctrl.pi = eidx;
925  wmb();
926  return eidx;
927 }
928 
929 
930 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
931 {
932  struct rr_private *rrpriv = netdev_priv(dev);
933  struct rr_regs __iomem *regs = rrpriv->regs;
934 
935  do {
936  struct rx_desc *desc;
937  u32 pkt_len;
938 
939  desc = &(rrpriv->rx_ring[index]);
940  pkt_len = desc->size;
941 #if (DEBUG > 2)
942  printk("index %i, rxlimit %i\n", index, rxlimit);
943  printk("len %x, mode %x\n", pkt_len, desc->mode);
944 #endif
945  if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
946  dev->stats.rx_dropped++;
947  goto defer;
948  }
949 
950  if (pkt_len > 0){
951  struct sk_buff *skb, *rx_skb;
952 
953  rx_skb = rrpriv->rx_skbuff[index];
954 
955  if (pkt_len < PKT_COPY_THRESHOLD) {
956  skb = alloc_skb(pkt_len, GFP_ATOMIC);
957  if (skb == NULL){
958  printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
959  dev->stats.rx_dropped++;
960  goto defer;
961  } else {
962  pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
963  desc->addr.addrlo,
964  pkt_len,
966 
967  memcpy(skb_put(skb, pkt_len),
968  rx_skb->data, pkt_len);
969 
970  pci_dma_sync_single_for_device(rrpriv->pci_dev,
971  desc->addr.addrlo,
972  pkt_len,
974  }
975  }else{
976  struct sk_buff *newskb;
977 
978  newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
979  GFP_ATOMIC);
980  if (newskb){
982 
983  pci_unmap_single(rrpriv->pci_dev,
984  desc->addr.addrlo, dev->mtu +
986  skb = rx_skb;
987  skb_put(skb, pkt_len);
988  rrpriv->rx_skbuff[index] = newskb;
989  addr = pci_map_single(rrpriv->pci_dev,
990  newskb->data,
991  dev->mtu + HIPPI_HLEN,
993  set_rraddr(&desc->addr, addr);
994  } else {
995  printk("%s: Out of memory, deferring "
996  "packet\n", dev->name);
997  dev->stats.rx_dropped++;
998  goto defer;
999  }
1000  }
1001  skb->protocol = hippi_type_trans(skb, dev);
1002 
1003  netif_rx(skb); /* send it up */
1004 
1005  dev->stats.rx_packets++;
1006  dev->stats.rx_bytes += pkt_len;
1007  }
1008  defer:
1009  desc->mode = 0;
1010  desc->size = dev->mtu + HIPPI_HLEN;
1011 
1012  if ((index & 7) == 7)
1013  writel(index, &regs->IpRxPi);
1014 
1015  index = (index + 1) % RX_RING_ENTRIES;
1016  } while(index != rxlimit);
1017 
1018  rrpriv->cur_rx = index;
1019  wmb();
1020 }
1021 
1022 
1023 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1024 {
1025  struct rr_private *rrpriv;
1026  struct rr_regs __iomem *regs;
1027  struct net_device *dev = (struct net_device *)dev_id;
1028  u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1029 
1030  rrpriv = netdev_priv(dev);
1031  regs = rrpriv->regs;
1032 
1033  if (!(readl(&regs->HostCtrl) & RR_INT))
1034  return IRQ_NONE;
1035 
1036  spin_lock(&rrpriv->lock);
1037 
1038  prodidx = readl(&regs->EvtPrd);
1039  txcsmr = (prodidx >> 8) & 0xff;
1040  rxlimit = (prodidx >> 16) & 0xff;
1041  prodidx &= 0xff;
1042 
1043 #if (DEBUG > 2)
1044  printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1045  prodidx, rrpriv->info->evt_ctrl.pi);
1046 #endif
1047  /*
1048  * Order here is important. We must handle events
1049  * before doing anything else in order to catch
1050  * such things as LLRC errors, etc -kbf
1051  */
1052 
1053  eidx = rrpriv->info->evt_ctrl.pi;
1054  if (prodidx != eidx)
1055  eidx = rr_handle_event(dev, prodidx, eidx);
1056 
1057  rxindex = rrpriv->cur_rx;
1058  if (rxindex != rxlimit)
1059  rx_int(dev, rxlimit, rxindex);
1060 
1061  txcon = rrpriv->dirty_tx;
1062  if (txcsmr != txcon) {
1063  do {
1064  /* Due to occational firmware TX producer/consumer out
1065  * of sync. error need to check entry in ring -kbf
1066  */
1067  if(rrpriv->tx_skbuff[txcon]){
1068  struct tx_desc *desc;
1069  struct sk_buff *skb;
1070 
1071  desc = &(rrpriv->tx_ring[txcon]);
1072  skb = rrpriv->tx_skbuff[txcon];
1073 
1074  dev->stats.tx_packets++;
1075  dev->stats.tx_bytes += skb->len;
1076 
1077  pci_unmap_single(rrpriv->pci_dev,
1078  desc->addr.addrlo, skb->len,
1080  dev_kfree_skb_irq(skb);
1081 
1082  rrpriv->tx_skbuff[txcon] = NULL;
1083  desc->size = 0;
1084  set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1085  desc->mode = 0;
1086  }
1087  txcon = (txcon + 1) % TX_RING_ENTRIES;
1088  } while (txcsmr != txcon);
1089  wmb();
1090 
1091  rrpriv->dirty_tx = txcon;
1092  if (rrpriv->tx_full && rr_if_busy(dev) &&
1093  (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1094  != rrpriv->dirty_tx)){
1095  rrpriv->tx_full = 0;
1096  netif_wake_queue(dev);
1097  }
1098  }
1099 
1100  eidx |= ((txcsmr << 8) | (rxlimit << 16));
1101  writel(eidx, &regs->EvtCon);
1102  wmb();
1103 
1104  spin_unlock(&rrpriv->lock);
1105  return IRQ_HANDLED;
1106 }
1107 
1108 static inline void rr_raz_tx(struct rr_private *rrpriv,
1109  struct net_device *dev)
1110 {
1111  int i;
1112 
1113  for (i = 0; i < TX_RING_ENTRIES; i++) {
1114  struct sk_buff *skb = rrpriv->tx_skbuff[i];
1115 
1116  if (skb) {
1117  struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1118 
1119  pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1120  skb->len, PCI_DMA_TODEVICE);
1121  desc->size = 0;
1122  set_rraddr(&desc->addr, 0);
1123  dev_kfree_skb(skb);
1124  rrpriv->tx_skbuff[i] = NULL;
1125  }
1126  }
1127 }
1128 
1129 
1130 static inline void rr_raz_rx(struct rr_private *rrpriv,
1131  struct net_device *dev)
1132 {
1133  int i;
1134 
1135  for (i = 0; i < RX_RING_ENTRIES; i++) {
1136  struct sk_buff *skb = rrpriv->rx_skbuff[i];
1137 
1138  if (skb) {
1139  struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1140 
1141  pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1143  desc->size = 0;
1144  set_rraddr(&desc->addr, 0);
1145  dev_kfree_skb(skb);
1146  rrpriv->rx_skbuff[i] = NULL;
1147  }
1148  }
1149 }
1150 
1151 static void rr_timer(unsigned long data)
1152 {
1153  struct net_device *dev = (struct net_device *)data;
1154  struct rr_private *rrpriv = netdev_priv(dev);
1155  struct rr_regs __iomem *regs = rrpriv->regs;
1156  unsigned long flags;
1157 
1158  if (readl(&regs->HostCtrl) & NIC_HALTED){
1159  printk("%s: Restarting nic\n", dev->name);
1160  memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1161  memset(rrpriv->info, 0, sizeof(struct rr_info));
1162  wmb();
1163 
1164  rr_raz_tx(rrpriv, dev);
1165  rr_raz_rx(rrpriv, dev);
1166 
1167  if (rr_init1(dev)) {
1168  spin_lock_irqsave(&rrpriv->lock, flags);
1170  &regs->HostCtrl);
1171  spin_unlock_irqrestore(&rrpriv->lock, flags);
1172  }
1173  }
1174  rrpriv->timer.expires = RUN_AT(5*HZ);
1175  add_timer(&rrpriv->timer);
1176 }
1177 
1178 
1179 static int rr_open(struct net_device *dev)
1180 {
1181  struct rr_private *rrpriv = netdev_priv(dev);
1182  struct pci_dev *pdev = rrpriv->pci_dev;
1183  struct rr_regs __iomem *regs;
1184  int ecode = 0;
1185  unsigned long flags;
1187 
1188  regs = rrpriv->regs;
1189 
1190  if (rrpriv->fw_rev < 0x00020000) {
1191  printk(KERN_WARNING "%s: trying to configure device with "
1192  "obsolete firmware\n", dev->name);
1193  ecode = -EBUSY;
1194  goto error;
1195  }
1196 
1197  rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1198  256 * sizeof(struct ring_ctrl),
1199  &dma_addr);
1200  if (!rrpriv->rx_ctrl) {
1201  ecode = -ENOMEM;
1202  goto error;
1203  }
1204  rrpriv->rx_ctrl_dma = dma_addr;
1205  memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1206 
1207  rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1208  &dma_addr);
1209  if (!rrpriv->info) {
1210  ecode = -ENOMEM;
1211  goto error;
1212  }
1213  rrpriv->info_dma = dma_addr;
1214  memset(rrpriv->info, 0, sizeof(struct rr_info));
1215  wmb();
1216 
1217  spin_lock_irqsave(&rrpriv->lock, flags);
1219  readl(&regs->HostCtrl);
1220  spin_unlock_irqrestore(&rrpriv->lock, flags);
1221 
1222  if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1223  printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1224  dev->name, pdev->irq);
1225  ecode = -EAGAIN;
1226  goto error;
1227  }
1228 
1229  if ((ecode = rr_init1(dev)))
1230  goto error;
1231 
1232  /* Set the timer to switch to check for link beat and perhaps switch
1233  to an alternate media type. */
1234  init_timer(&rrpriv->timer);
1235  rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1236  rrpriv->timer.data = (unsigned long)dev;
1237  rrpriv->timer.function = rr_timer; /* timer handler */
1238  add_timer(&rrpriv->timer);
1239 
1240  netif_start_queue(dev);
1241 
1242  return ecode;
1243 
1244  error:
1245  spin_lock_irqsave(&rrpriv->lock, flags);
1247  spin_unlock_irqrestore(&rrpriv->lock, flags);
1248 
1249  if (rrpriv->info) {
1250  pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1251  rrpriv->info_dma);
1252  rrpriv->info = NULL;
1253  }
1254  if (rrpriv->rx_ctrl) {
1255  pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1256  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1257  rrpriv->rx_ctrl = NULL;
1258  }
1259 
1260  netif_stop_queue(dev);
1261 
1262  return ecode;
1263 }
1264 
1265 
1266 static void rr_dump(struct net_device *dev)
1267 {
1268  struct rr_private *rrpriv;
1269  struct rr_regs __iomem *regs;
1270  u32 index, cons;
1271  short i;
1272  int len;
1273 
1274  rrpriv = netdev_priv(dev);
1275  regs = rrpriv->regs;
1276 
1277  printk("%s: dumping NIC TX rings\n", dev->name);
1278 
1279  printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280  readl(&regs->RxPrd), readl(&regs->TxPrd),
1281  readl(&regs->EvtPrd), readl(&regs->TxPi),
1282  rrpriv->info->tx_ctrl.pi);
1283 
1284  printk("Error code 0x%x\n", readl(&regs->Fail1));
1285 
1286  index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287  cons = rrpriv->dirty_tx;
1288  printk("TX ring index %i, TX consumer %i\n",
1289  index, cons);
1290 
1291  if (rrpriv->tx_skbuff[index]){
1292  len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293  printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294  for (i = 0; i < len; i++){
1295  if (!(i & 7))
1296  printk("\n");
1297  printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1298  }
1299  printk("\n");
1300  }
1301 
1302  if (rrpriv->tx_skbuff[cons]){
1303  len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304  printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305  printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1306  rrpriv->tx_ring[cons].mode,
1307  rrpriv->tx_ring[cons].size,
1308  (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309  (unsigned long)rrpriv->tx_skbuff[cons]->data,
1310  (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311  for (i = 0; i < len; i++){
1312  if (!(i & 7))
1313  printk("\n");
1314  printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1315  }
1316  printk("\n");
1317  }
1318 
1319  printk("dumping TX ring info:\n");
1320  for (i = 0; i < TX_RING_ENTRIES; i++)
1321  printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322  rrpriv->tx_ring[i].mode,
1323  rrpriv->tx_ring[i].size,
1324  (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325 
1326 }
1327 
1328 
1329 static int rr_close(struct net_device *dev)
1330 {
1331  struct rr_private *rrpriv = netdev_priv(dev);
1332  struct rr_regs __iomem *regs = rrpriv->regs;
1333  struct pci_dev *pdev = rrpriv->pci_dev;
1334  unsigned long flags;
1335  u32 tmp;
1336  short i;
1337 
1338  netif_stop_queue(dev);
1339 
1340 
1341  /*
1342  * Lock to make sure we are not cleaning up while another CPU
1343  * is handling interrupts.
1344  */
1345  spin_lock_irqsave(&rrpriv->lock, flags);
1346 
1347  tmp = readl(&regs->HostCtrl);
1348  if (tmp & NIC_HALTED){
1349  printk("%s: NIC already halted\n", dev->name);
1350  rr_dump(dev);
1351  }else{
1352  tmp |= HALT_NIC | RR_CLEAR_INT;
1353  writel(tmp, &regs->HostCtrl);
1354  readl(&regs->HostCtrl);
1355  }
1356 
1357  rrpriv->fw_running = 0;
1358 
1359  del_timer_sync(&rrpriv->timer);
1360 
1361  writel(0, &regs->TxPi);
1362  writel(0, &regs->IpRxPi);
1363 
1364  writel(0, &regs->EvtCon);
1365  writel(0, &regs->EvtPrd);
1366 
1367  for (i = 0; i < CMD_RING_ENTRIES; i++)
1368  writel(0, &regs->CmdRing[i]);
1369 
1370  rrpriv->info->tx_ctrl.entries = 0;
1371  rrpriv->info->cmd_ctrl.pi = 0;
1372  rrpriv->info->evt_ctrl.pi = 0;
1373  rrpriv->rx_ctrl[4].entries = 0;
1374 
1375  rr_raz_tx(rrpriv, dev);
1376  rr_raz_rx(rrpriv, dev);
1377 
1378  pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1379  rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1380  rrpriv->rx_ctrl = NULL;
1381 
1382  pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1383  rrpriv->info_dma);
1384  rrpriv->info = NULL;
1385 
1386  free_irq(pdev->irq, dev);
1387  spin_unlock_irqrestore(&rrpriv->lock, flags);
1388 
1389  return 0;
1390 }
1391 
1392 
1393 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1394  struct net_device *dev)
1395 {
1396  struct rr_private *rrpriv = netdev_priv(dev);
1397  struct rr_regs __iomem *regs = rrpriv->regs;
1398  struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1399  struct ring_ctrl *txctrl;
1400  unsigned long flags;
1401  u32 index, len = skb->len;
1402  u32 *ifield;
1403  struct sk_buff *new_skb;
1404 
1405  if (readl(&regs->Mode) & FATAL_ERR)
1406  printk("error codes Fail1 %02x, Fail2 %02x\n",
1407  readl(&regs->Fail1), readl(&regs->Fail2));
1408 
1409  /*
1410  * We probably need to deal with tbusy here to prevent overruns.
1411  */
1412 
1413  if (skb_headroom(skb) < 8){
1414  printk("incoming skb too small - reallocating\n");
1415  if (!(new_skb = dev_alloc_skb(len + 8))) {
1416  dev_kfree_skb(skb);
1417  netif_wake_queue(dev);
1418  return NETDEV_TX_OK;
1419  }
1420  skb_reserve(new_skb, 8);
1421  skb_put(new_skb, len);
1422  skb_copy_from_linear_data(skb, new_skb->data, len);
1423  dev_kfree_skb(skb);
1424  skb = new_skb;
1425  }
1426 
1427  ifield = (u32 *)skb_push(skb, 8);
1428 
1429  ifield[0] = 0;
1430  ifield[1] = hcb->ifield;
1431 
1432  /*
1433  * We don't need the lock before we are actually going to start
1434  * fiddling with the control blocks.
1435  */
1436  spin_lock_irqsave(&rrpriv->lock, flags);
1437 
1438  txctrl = &rrpriv->info->tx_ctrl;
1439 
1440  index = txctrl->pi;
1441 
1442  rrpriv->tx_skbuff[index] = skb;
1443  set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1444  rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1445  rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1446  rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1447  txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1448  wmb();
1449  writel(txctrl->pi, &regs->TxPi);
1450 
1451  if (txctrl->pi == rrpriv->dirty_tx){
1452  rrpriv->tx_full = 1;
1453  netif_stop_queue(dev);
1454  }
1455 
1456  spin_unlock_irqrestore(&rrpriv->lock, flags);
1457 
1458  return NETDEV_TX_OK;
1459 }
1460 
1461 
1462 /*
1463  * Read the firmware out of the EEPROM and put it into the SRAM
1464  * (or from user space - later)
1465  *
1466  * This operation requires the NIC to be halted and is performed with
1467  * interrupts disabled and with the spinlock hold.
1468  */
1469 static int rr_load_firmware(struct net_device *dev)
1470 {
1471  struct rr_private *rrpriv;
1472  struct rr_regs __iomem *regs;
1473  size_t eptr, segptr;
1474  int i, j;
1475  u32 localctrl, sptr, len, tmp;
1476  u32 p2len, p2size, nr_seg, revision, io, sram_size;
1477 
1478  rrpriv = netdev_priv(dev);
1479  regs = rrpriv->regs;
1480 
1481  if (dev->flags & IFF_UP)
1482  return -EBUSY;
1483 
1484  if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1485  printk("%s: Trying to load firmware to a running NIC.\n",
1486  dev->name);
1487  return -EBUSY;
1488  }
1489 
1490  localctrl = readl(&regs->LocalCtrl);
1491  writel(0, &regs->LocalCtrl);
1492 
1493  writel(0, &regs->EvtPrd);
1494  writel(0, &regs->RxPrd);
1495  writel(0, &regs->TxPrd);
1496 
1497  /*
1498  * First wipe the entire SRAM, otherwise we might run into all
1499  * kinds of trouble ... sigh, this took almost all afternoon
1500  * to track down ;-(
1501  */
1502  io = readl(&regs->ExtIo);
1503  writel(0, &regs->ExtIo);
1504  sram_size = rr_read_eeprom_word(rrpriv, 8);
1505 
1506  for (i = 200; i < sram_size / 4; i++){
1507  writel(i * 4, &regs->WinBase);
1508  mb();
1509  writel(0, &regs->WinData);
1510  mb();
1511  }
1512  writel(io, &regs->ExtIo);
1513  mb();
1514 
1515  eptr = rr_read_eeprom_word(rrpriv,
1516  offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1517  eptr = ((eptr & 0x1fffff) >> 3);
1518 
1519  p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1520  p2len = (p2len << 2);
1521  p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1522  p2size = ((p2size & 0x1fffff) >> 3);
1523 
1524  if ((eptr < p2size) || (eptr > (p2size + p2len))){
1525  printk("%s: eptr is invalid\n", dev->name);
1526  goto out;
1527  }
1528 
1529  revision = rr_read_eeprom_word(rrpriv,
1530  offsetof(struct eeprom, manf.HeaderFmt));
1531 
1532  if (revision != 1){
1533  printk("%s: invalid firmware format (%i)\n",
1534  dev->name, revision);
1535  goto out;
1536  }
1537 
1538  nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1539  eptr +=4;
1540 #if (DEBUG > 1)
1541  printk("%s: nr_seg %i\n", dev->name, nr_seg);
1542 #endif
1543 
1544  for (i = 0; i < nr_seg; i++){
1545  sptr = rr_read_eeprom_word(rrpriv, eptr);
1546  eptr += 4;
1547  len = rr_read_eeprom_word(rrpriv, eptr);
1548  eptr += 4;
1549  segptr = rr_read_eeprom_word(rrpriv, eptr);
1550  segptr = ((segptr & 0x1fffff) >> 3);
1551  eptr += 4;
1552 #if (DEBUG > 1)
1553  printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1554  dev->name, i, sptr, len, segptr);
1555 #endif
1556  for (j = 0; j < len; j++){
1557  tmp = rr_read_eeprom_word(rrpriv, segptr);
1558  writel(sptr, &regs->WinBase);
1559  mb();
1560  writel(tmp, &regs->WinData);
1561  mb();
1562  segptr += 4;
1563  sptr += 4;
1564  }
1565  }
1566 
1567 out:
1568  writel(localctrl, &regs->LocalCtrl);
1569  mb();
1570  return 0;
1571 }
1572 
1573 
1574 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1575 {
1576  struct rr_private *rrpriv;
1577  unsigned char *image, *oldimage;
1578  unsigned long flags;
1579  unsigned int i;
1580  int error = -EOPNOTSUPP;
1581 
1582  rrpriv = netdev_priv(dev);
1583 
1584  switch(cmd){
1585  case SIOCRRGFW:
1586  if (!capable(CAP_SYS_RAWIO)){
1587  return -EPERM;
1588  }
1589 
1590  image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1591  if (!image)
1592  return -ENOMEM;
1593 
1594  if (rrpriv->fw_running){
1595  printk("%s: Firmware already running\n", dev->name);
1596  error = -EPERM;
1597  goto gf_out;
1598  }
1599 
1600  spin_lock_irqsave(&rrpriv->lock, flags);
1601  i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1602  spin_unlock_irqrestore(&rrpriv->lock, flags);
1603  if (i != EEPROM_BYTES){
1604  printk(KERN_ERR "%s: Error reading EEPROM\n",
1605  dev->name);
1606  error = -EFAULT;
1607  goto gf_out;
1608  }
1609  error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1610  if (error)
1611  error = -EFAULT;
1612  gf_out:
1613  kfree(image);
1614  return error;
1615 
1616  case SIOCRRPFW:
1617  if (!capable(CAP_SYS_RAWIO)){
1618  return -EPERM;
1619  }
1620 
1621  image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1622  oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1623  if (!image || !oldimage) {
1624  error = -ENOMEM;
1625  goto wf_out;
1626  }
1627 
1628  error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1629  if (error) {
1630  error = -EFAULT;
1631  goto wf_out;
1632  }
1633 
1634  if (rrpriv->fw_running){
1635  printk("%s: Firmware already running\n", dev->name);
1636  error = -EPERM;
1637  goto wf_out;
1638  }
1639 
1640  printk("%s: Updating EEPROM firmware\n", dev->name);
1641 
1642  spin_lock_irqsave(&rrpriv->lock, flags);
1643  error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1644  if (error)
1645  printk(KERN_ERR "%s: Error writing EEPROM\n",
1646  dev->name);
1647 
1648  i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1649  spin_unlock_irqrestore(&rrpriv->lock, flags);
1650 
1651  if (i != EEPROM_BYTES)
1652  printk(KERN_ERR "%s: Error reading back EEPROM "
1653  "image\n", dev->name);
1654 
1655  error = memcmp(image, oldimage, EEPROM_BYTES);
1656  if (error){
1657  printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1658  dev->name);
1659  error = -EFAULT;
1660  }
1661  wf_out:
1662  kfree(oldimage);
1663  kfree(image);
1664  return error;
1665 
1666  case SIOCRRID:
1667  return put_user(0x52523032, (int __user *)rq->ifr_data);
1668  default:
1669  return error;
1670  }
1671 }
1672 
1673 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1675  PCI_ANY_ID, PCI_ANY_ID, },
1676  { 0,}
1677 };
1678 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1679 
1680 static struct pci_driver rr_driver = {
1681  .name = "rrunner",
1682  .id_table = rr_pci_tbl,
1683  .probe = rr_init_one,
1684  .remove = __devexit_p(rr_remove_one),
1685 };
1686 
1687 static int __init rr_init_module(void)
1688 {
1689  return pci_register_driver(&rr_driver);
1690 }
1691 
1692 static void __exit rr_cleanup_module(void)
1693 {
1694  pci_unregister_driver(&rr_driver);
1695 }
1696 
1697 module_init(rr_init_module);
1698 module_exit(rr_cleanup_module);