Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rt2500usb.c
Go to the documentation of this file.
1 /*
2  Copyright (C) 2004 - 2009 Ivo van Doorn <[email protected]>
3  <http://rt2x00.serialmonkey.com>
4 
5  This program is free software; you can redistribute it and/or modify
6  it under the terms of the GNU General Public License as published by
7  the Free Software Foundation; either version 2 of the License, or
8  (at your option) any later version.
9 
10  This program is distributed in the hope that it will be useful,
11  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  GNU General Public License for more details.
14 
15  You should have received a copy of the GNU General Public License
16  along with this program; if not, write to the
17  Free Software Foundation, Inc.,
18  59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22  Module: rt2500usb
23  Abstract: rt2500usb device specific routines.
24  Supported chipsets: RT2570.
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
34 
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
38 
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static bool modparam_nohwcrypt;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45 
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2500usb_register_read and rt2500usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * If the csr_mutex is already held then the _lock variants must
59  * be used instead.
60  */
61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62  const unsigned int offset,
63  u16 *value)
64 {
65  __le16 reg;
67  USB_VENDOR_REQUEST_IN, offset,
68  &reg, sizeof(reg), REGISTER_TIMEOUT);
69  *value = le16_to_cpu(reg);
70 }
71 
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73  const unsigned int offset,
74  u16 *value)
75 {
76  __le16 reg;
78  USB_VENDOR_REQUEST_IN, offset,
79  &reg, sizeof(reg), REGISTER_TIMEOUT);
80  *value = le16_to_cpu(reg);
81 }
82 
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84  const unsigned int offset,
85  void *value, const u16 length)
86 {
88  USB_VENDOR_REQUEST_IN, offset,
89  value, length,
90  REGISTER_TIMEOUT16(length));
91 }
92 
93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94  const unsigned int offset,
95  u16 value)
96 {
97  __le16 reg = cpu_to_le16(value);
99  USB_VENDOR_REQUEST_OUT, offset,
100  &reg, sizeof(reg), REGISTER_TIMEOUT);
101 }
102 
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104  const unsigned int offset,
105  u16 value)
106 {
107  __le16 reg = cpu_to_le16(value);
109  USB_VENDOR_REQUEST_OUT, offset,
110  &reg, sizeof(reg), REGISTER_TIMEOUT);
111 }
112 
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114  const unsigned int offset,
115  void *value, const u16 length)
116 {
118  USB_VENDOR_REQUEST_OUT, offset,
119  value, length,
120  REGISTER_TIMEOUT16(length));
121 }
122 
123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124  const unsigned int offset,
125  struct rt2x00_field16 field,
126  u16 *reg)
127 {
128  unsigned int i;
129 
130  for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131  rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132  if (!rt2x00_get_field16(*reg, field))
133  return 1;
135  }
136 
137  ERROR(rt2x00dev, "Indirect register access failed: "
138  "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139  *reg = ~0;
140 
141  return 0;
142 }
143 
144 #define WAIT_FOR_BBP(__dev, __reg) \
145  rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147  rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148 
149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150  const unsigned int word, const u8 value)
151 {
152  u16 reg;
153 
154  mutex_lock(&rt2x00dev->csr_mutex);
155 
156  /*
157  * Wait until the BBP becomes available, afterwards we
158  * can safely write the new data into the register.
159  */
160  if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161  reg = 0;
162  rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163  rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
165 
166  rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167  }
168 
169  mutex_unlock(&rt2x00dev->csr_mutex);
170 }
171 
172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173  const unsigned int word, u8 *value)
174 {
175  u16 reg;
176 
177  mutex_lock(&rt2x00dev->csr_mutex);
178 
179  /*
180  * Wait until the BBP becomes available, afterwards we
181  * can safely write the read request into the register.
182  * After the data has been written, we wait until hardware
183  * returns the correct value, if at any time the register
184  * doesn't become available in time, reg will be 0xffffffff
185  * which means we return 0xff to the caller.
186  */
187  if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188  reg = 0;
189  rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
191 
192  rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193 
194  if (WAIT_FOR_BBP(rt2x00dev, &reg))
195  rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196  }
197 
198  *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199 
200  mutex_unlock(&rt2x00dev->csr_mutex);
201 }
202 
203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204  const unsigned int word, const u32 value)
205 {
206  u16 reg;
207 
208  mutex_lock(&rt2x00dev->csr_mutex);
209 
210  /*
211  * Wait until the RF becomes available, afterwards we
212  * can safely write the new data into the register.
213  */
214  if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215  reg = 0;
217  rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218 
219  reg = 0;
220  rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
224 
225  rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226  rt2x00_rf_write(rt2x00dev, word, value);
227  }
228 
229  mutex_unlock(&rt2x00dev->csr_mutex);
230 }
231 
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234  const unsigned int offset,
235  u32 *value)
236 {
237  rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 }
239 
240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241  const unsigned int offset,
242  u32 value)
243 {
244  rt2500usb_register_write(rt2x00dev, offset, value);
245 }
246 
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248  .owner = THIS_MODULE,
249  .csr = {
250  .read = _rt2500usb_register_read,
251  .write = _rt2500usb_register_write,
252  .flags = RT2X00DEBUGFS_OFFSET,
253  .word_base = CSR_REG_BASE,
254  .word_size = sizeof(u16),
255  .word_count = CSR_REG_SIZE / sizeof(u16),
256  },
257  .eeprom = {
258  .read = rt2x00_eeprom_read,
259  .write = rt2x00_eeprom_write,
260  .word_base = EEPROM_BASE,
261  .word_size = sizeof(u16),
262  .word_count = EEPROM_SIZE / sizeof(u16),
263  },
264  .bbp = {
265  .read = rt2500usb_bbp_read,
266  .write = rt2500usb_bbp_write,
267  .word_base = BBP_BASE,
268  .word_size = sizeof(u8),
269  .word_count = BBP_SIZE / sizeof(u8),
270  },
271  .rf = {
272  .read = rt2x00_rf_read,
273  .write = rt2500usb_rf_write,
274  .word_base = RF_BASE,
275  .word_size = sizeof(u32),
276  .word_count = RF_SIZE / sizeof(u32),
277  },
278 };
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280 
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283  u16 reg;
284 
285  rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286  return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
287 }
288 
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
292 {
293  struct rt2x00_led *led =
294  container_of(led_cdev, struct rt2x00_led, led_dev);
295  unsigned int enabled = brightness != LED_OFF;
296  u16 reg;
297 
298  rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299 
300  if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301  rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302  else if (led->type == LED_TYPE_ACTIVITY)
303  rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304 
305  rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306 }
307 
308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309  unsigned long *delay_on,
310  unsigned long *delay_off)
311 {
312  struct rt2x00_led *led =
313  container_of(led_cdev, struct rt2x00_led, led_dev);
314  u16 reg;
315 
316  rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317  rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318  rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319  rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320 
321  return 0;
322 }
323 
324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325  struct rt2x00_led *led,
326  enum led_type type)
327 {
328  led->rt2x00dev = rt2x00dev;
329  led->type = type;
330  led->led_dev.brightness_set = rt2500usb_brightness_set;
331  led->led_dev.blink_set = rt2500usb_blink_set;
332  led->flags = LED_INITIALIZED;
333 }
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
335 
336 /*
337  * Configuration handlers.
338  */
339 
340 /*
341  * rt2500usb does not differentiate between shared and pairwise
342  * keys, so we should use the same function for both key types.
343  */
344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345  struct rt2x00lib_crypto *crypto,
346  struct ieee80211_key_conf *key)
347 {
348  u32 mask;
349  u16 reg;
350  enum cipher curr_cipher;
351 
352  if (crypto->cmd == SET_KEY) {
353  /*
354  * Disallow to set WEP key other than with index 0,
355  * it is known that not work at least on some hardware.
356  * SW crypto will be used in that case.
357  */
358  if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
359  key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
360  key->keyidx != 0)
361  return -EOPNOTSUPP;
362 
363  /*
364  * Pairwise key will always be entry 0, but this
365  * could collide with a shared key on the same
366  * position...
367  */
368  mask = TXRX_CSR0_KEY_ID.bit_mask;
369 
370  rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
371  curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
372  reg &= mask;
373 
374  if (reg && reg == mask)
375  return -ENOSPC;
376 
378 
379  key->hw_key_idx += reg ? ffz(reg) : 0;
380  /*
381  * Hardware requires that all keys use the same cipher
382  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
383  * If this is not the first key, compare the cipher with the
384  * first one and fall back to SW crypto if not the same.
385  */
386  if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
387  return -EOPNOTSUPP;
388 
389  rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
390  crypto->key, sizeof(crypto->key));
391 
392  /*
393  * The driver does not support the IV/EIV generation
394  * in hardware. However it demands the data to be provided
395  * both separately as well as inside the frame.
396  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
397  * to ensure rt2x00lib will not strip the data from the
398  * frame after the copy, now we must tell mac80211
399  * to generate the IV/EIV data.
400  */
403  }
404 
405  /*
406  * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
407  * a particular key is valid.
408  */
409  rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
412 
414  if (crypto->cmd == SET_KEY)
415  mask |= 1 << key->hw_key_idx;
416  else if (crypto->cmd == DISABLE_KEY)
417  mask &= ~(1 << key->hw_key_idx);
419  rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
420 
421  return 0;
422 }
423 
424 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
425  const unsigned int filter_flags)
426 {
427  u16 reg;
428 
429  /*
430  * Start configuration steps.
431  * Note that the version error will always be dropped
432  * and broadcast frames will always be accepted since
433  * there is no filter for it at this time.
434  */
435  rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
437  !(filter_flags & FIF_FCSFAIL));
439  !(filter_flags & FIF_PLCPFAIL));
441  !(filter_flags & FIF_CONTROL));
443  !(filter_flags & FIF_PROMISC_IN_BSS));
445  !(filter_flags & FIF_PROMISC_IN_BSS) &&
446  !rt2x00dev->intf_ap_count);
449  !(filter_flags & FIF_ALLMULTI));
451  rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
452 }
453 
454 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
455  struct rt2x00_intf *intf,
456  struct rt2x00intf_conf *conf,
457  const unsigned int flags)
458 {
459  unsigned int bcn_preload;
460  u16 reg;
461 
462  if (flags & CONFIG_UPDATE_TYPE) {
463  /*
464  * Enable beacon config
465  */
466  bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
467  rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
468  rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
470  2 * (conf->type != NL80211_IFTYPE_STATION));
471  rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
472 
473  /*
474  * Enable synchronisation.
475  */
476  rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
478  rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
479 
480  rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
482  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
483  }
484 
485  if (flags & CONFIG_UPDATE_MAC)
486  rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
487  (3 * sizeof(__le16)));
488 
489  if (flags & CONFIG_UPDATE_BSSID)
490  rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
491  (3 * sizeof(__le16)));
492 }
493 
494 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
495  struct rt2x00lib_erp *erp,
496  u32 changed)
497 {
498  u16 reg;
499 
500  if (changed & BSS_CHANGED_ERP_PREAMBLE) {
501  rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
503  !!erp->short_preamble);
504  rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
505  }
506 
507  if (changed & BSS_CHANGED_BASIC_RATES)
508  rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
509  erp->basic_rates);
510 
511  if (changed & BSS_CHANGED_BEACON_INT) {
512  rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
514  erp->beacon_int * 4);
515  rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
516  }
517 
518  if (changed & BSS_CHANGED_ERP_SLOT) {
519  rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
520  rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
521  rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
522  }
523 }
524 
525 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
526  struct antenna_setup *ant)
527 {
528  u8 r2;
529  u8 r14;
530  u16 csr5;
531  u16 csr6;
532 
533  /*
534  * We should never come here because rt2x00lib is supposed
535  * to catch this and send us the correct antenna explicitely.
536  */
537  BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
538  ant->tx == ANTENNA_SW_DIVERSITY);
539 
540  rt2500usb_bbp_read(rt2x00dev, 2, &r2);
541  rt2500usb_bbp_read(rt2x00dev, 14, &r14);
542  rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
543  rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
544 
545  /*
546  * Configure the TX antenna.
547  */
548  switch (ant->tx) {
551  rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
553  break;
554  case ANTENNA_A:
556  rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
558  break;
559  case ANTENNA_B:
560  default:
562  rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
564  break;
565  }
566 
567  /*
568  * Configure the RX antenna.
569  */
570  switch (ant->rx) {
573  break;
574  case ANTENNA_A:
576  break;
577  case ANTENNA_B:
578  default:
580  break;
581  }
582 
583  /*
584  * RT2525E and RT5222 need to flip TX I/Q
585  */
586  if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
590 
591  /*
592  * RT2525E does not need RX I/Q Flip.
593  */
594  if (rt2x00_rf(rt2x00dev, RF2525E))
596  } else {
599  }
600 
601  rt2500usb_bbp_write(rt2x00dev, 2, r2);
602  rt2500usb_bbp_write(rt2x00dev, 14, r14);
603  rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
604  rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
605 }
606 
607 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
608  struct rf_channel *rf, const int txpower)
609 {
610  /*
611  * Set TXpower.
612  */
614 
615  /*
616  * For RT2525E we should first set the channel to half band higher.
617  */
618  if (rt2x00_rf(rt2x00dev, RF2525E)) {
619  static const u32 vals[] = {
620  0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
621  0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
622  0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
623  0x00000902, 0x00000906
624  };
625 
626  rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
627  if (rf->rf4)
628  rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
629  }
630 
631  rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
632  rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
633  rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
634  if (rf->rf4)
635  rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
636 }
637 
638 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
639  const int txpower)
640 {
641  u32 rf3;
642 
643  rt2x00_rf_read(rt2x00dev, 3, &rf3);
645  rt2500usb_rf_write(rt2x00dev, 3, rf3);
646 }
647 
648 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
649  struct rt2x00lib_conf *libconf)
650 {
651  enum dev_state state =
652  (libconf->conf->flags & IEEE80211_CONF_PS) ?
654  u16 reg;
655 
656  if (state == STATE_SLEEP) {
657  rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
659  rt2x00dev->beacon_int - 20);
661  libconf->conf->listen_interval - 1);
662 
663  /* We must first disable autowake before it can be enabled */
665  rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666 
668  rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
669  } else {
670  rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
672  rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
673  }
674 
675  rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
676 }
677 
678 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
679  struct rt2x00lib_conf *libconf,
680  const unsigned int flags)
681 {
682  if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
683  rt2500usb_config_channel(rt2x00dev, &libconf->rf,
684  libconf->conf->power_level);
685  if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
686  !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
687  rt2500usb_config_txpower(rt2x00dev,
688  libconf->conf->power_level);
689  if (flags & IEEE80211_CONF_CHANGE_PS)
690  rt2500usb_config_ps(rt2x00dev, libconf);
691 }
692 
693 /*
694  * Link tuning
695  */
696 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
697  struct link_qual *qual)
698 {
699  u16 reg;
700 
701  /*
702  * Update FCS error count from register.
703  */
704  rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
706 
707  /*
708  * Update False CCA count from register.
709  */
710  rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
712 }
713 
714 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
715  struct link_qual *qual)
716 {
717  u16 eeprom;
718  u16 value;
719 
720  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
722  rt2500usb_bbp_write(rt2x00dev, 24, value);
723 
724  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
726  rt2500usb_bbp_write(rt2x00dev, 25, value);
727 
728  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
730  rt2500usb_bbp_write(rt2x00dev, 61, value);
731 
732  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
734  rt2500usb_bbp_write(rt2x00dev, 17, value);
735 
736  qual->vgc_level = value;
737 }
738 
739 /*
740  * Queue handlers.
741  */
742 static void rt2500usb_start_queue(struct data_queue *queue)
743 {
744  struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
745  u16 reg;
746 
747  switch (queue->qid) {
748  case QID_RX:
749  rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
751  rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
752  break;
753  case QID_BEACON:
754  rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
758  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
759  break;
760  default:
761  break;
762  }
763 }
764 
765 static void rt2500usb_stop_queue(struct data_queue *queue)
766 {
767  struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
768  u16 reg;
769 
770  switch (queue->qid) {
771  case QID_RX:
772  rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
774  rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
775  break;
776  case QID_BEACON:
777  rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
781  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
782  break;
783  default:
784  break;
785  }
786 }
787 
788 /*
789  * Initialization functions.
790  */
791 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
792 {
793  u16 reg;
794 
795  rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
797  rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
798  0x00f0, REGISTER_TIMEOUT);
799 
800  rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
802  rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
803 
804  rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
805  rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
806 
807  rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
811  rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
812 
813  rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
817  rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
818 
819  rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
824  rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
825 
826  rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
831  rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
832 
833  rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
838  rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
839 
840  rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
845  rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
846 
847  rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
852  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
853 
854  rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
855  rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
856 
857  if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
858  return -EBUSY;
859 
860  rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
864  rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
865 
866  if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
867  rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
869  } else {
870  reg = 0;
873  }
874  rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
875 
876  rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
877  rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
878  rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
879  rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
880 
881  rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
883  rt2x00dev->rx->data_size);
884  rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
885 
886  rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
890  rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
891 
892  rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
894  rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
895 
896  rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
898  rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
899 
900  rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
902  rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
903 
904  return 0;
905 }
906 
907 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
908 {
909  unsigned int i;
910  u8 value;
911 
912  for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
913  rt2500usb_bbp_read(rt2x00dev, 0, &value);
914  if ((value != 0xff) && (value != 0x00))
915  return 0;
917  }
918 
919  ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
920  return -EACCES;
921 }
922 
923 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
924 {
925  unsigned int i;
926  u16 eeprom;
927  u8 value;
928  u8 reg_id;
929 
930  if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
931  return -EACCES;
932 
933  rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
934  rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
935  rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
936  rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
937  rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
938  rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
939  rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
940  rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
941  rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
942  rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
943  rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
944  rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
945  rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
946  rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
947  rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
948  rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
949  rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
950  rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
951  rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
952  rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
953  rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
954  rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
955  rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
956  rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
957  rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
958  rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
959  rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
960  rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
961  rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
962  rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
963  rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
964 
965  for (i = 0; i < EEPROM_BBP_SIZE; i++) {
966  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
967 
968  if (eeprom != 0xffff && eeprom != 0x0000) {
969  reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
970  value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
971  rt2500usb_bbp_write(rt2x00dev, reg_id, value);
972  }
973  }
974 
975  return 0;
976 }
977 
978 /*
979  * Device state switch handlers.
980  */
981 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
982 {
983  /*
984  * Initialize all registers.
985  */
986  if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
987  rt2500usb_init_bbp(rt2x00dev)))
988  return -EIO;
989 
990  return 0;
991 }
992 
993 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
994 {
995  rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
996  rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
997 
998  /*
999  * Disable synchronisation.
1000  */
1001  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1002 
1003  rt2x00usb_disable_radio(rt2x00dev);
1004 }
1005 
1006 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1007  enum dev_state state)
1008 {
1009  u16 reg;
1010  u16 reg2;
1011  unsigned int i;
1012  char put_to_sleep;
1013  char bbp_state;
1014  char rf_state;
1015 
1016  put_to_sleep = (state != STATE_AWAKE);
1017 
1018  reg = 0;
1021  rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1022  rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1024  rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1025 
1026  /*
1027  * Device is not guaranteed to be in the requested state yet.
1028  * We must wait until the register indicates that the
1029  * device has entered the correct state.
1030  */
1031  for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1032  rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1033  bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1034  rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1035  if (bbp_state == state && rf_state == state)
1036  return 0;
1037  rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1038  msleep(30);
1039  }
1040 
1041  return -EBUSY;
1042 }
1043 
1044 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1045  enum dev_state state)
1046 {
1047  int retval = 0;
1048 
1049  switch (state) {
1050  case STATE_RADIO_ON:
1051  retval = rt2500usb_enable_radio(rt2x00dev);
1052  break;
1053  case STATE_RADIO_OFF:
1054  rt2500usb_disable_radio(rt2x00dev);
1055  break;
1056  case STATE_RADIO_IRQ_ON:
1057  case STATE_RADIO_IRQ_OFF:
1058  /* No support, but no error either */
1059  break;
1060  case STATE_DEEP_SLEEP:
1061  case STATE_SLEEP:
1062  case STATE_STANDBY:
1063  case STATE_AWAKE:
1064  retval = rt2500usb_set_state(rt2x00dev, state);
1065  break;
1066  default:
1067  retval = -ENOTSUPP;
1068  break;
1069  }
1070 
1071  if (unlikely(retval))
1072  ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1073  state, retval);
1074 
1075  return retval;
1076 }
1077 
1078 /*
1079  * TX descriptor initialization
1080  */
1081 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1082  struct txentry_desc *txdesc)
1083 {
1084  struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1085  __le32 *txd = (__le32 *) entry->skb->data;
1086  u32 word;
1087 
1088  /*
1089  * Start writing the descriptor words.
1090  */
1091  rt2x00_desc_read(txd, 0, &word);
1094  test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1096  test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1100  (txdesc->rate_mode == RATE_MODE_OFDM));
1103  rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1105  rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1106  rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1107  rt2x00_desc_write(txd, 0, word);
1108 
1109  rt2x00_desc_read(txd, 1, &word);
1111  rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1112  rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1113  rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1114  rt2x00_desc_write(txd, 1, word);
1115 
1116  rt2x00_desc_read(txd, 2, &word);
1117  rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1118  rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1120  txdesc->u.plcp.length_low);
1122  txdesc->u.plcp.length_high);
1123  rt2x00_desc_write(txd, 2, word);
1124 
1125  if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1126  _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1127  _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1128  }
1129 
1130  /*
1131  * Register descriptor details in skb frame descriptor.
1132  */
1133  skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1134  skbdesc->desc = txd;
1135  skbdesc->desc_len = TXD_DESC_SIZE;
1136 }
1137 
1138 /*
1139  * TX data initialization
1140  */
1141 static void rt2500usb_beacondone(struct urb *urb);
1142 
1143 static void rt2500usb_write_beacon(struct queue_entry *entry,
1144  struct txentry_desc *txdesc)
1145 {
1146  struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1147  struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1148  struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1149  int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1150  int length;
1151  u16 reg, reg0;
1152 
1153  /*
1154  * Disable beaconing while we are reloading the beacon data,
1155  * otherwise we might be sending out invalid data.
1156  */
1157  rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1159  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1160 
1161  /*
1162  * Add space for the descriptor in front of the skb.
1163  */
1164  skb_push(entry->skb, TXD_DESC_SIZE);
1165  memset(entry->skb->data, 0, TXD_DESC_SIZE);
1166 
1167  /*
1168  * Write the TX descriptor for the beacon.
1169  */
1170  rt2500usb_write_tx_desc(entry, txdesc);
1171 
1172  /*
1173  * Dump beacon to userspace through debugfs.
1174  */
1175  rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1176 
1177  /*
1178  * USB devices cannot blindly pass the skb->len as the
1179  * length of the data to usb_fill_bulk_urb. Pass the skb
1180  * to the driver to determine what the length should be.
1181  */
1182  length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1183 
1184  usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1185  entry->skb->data, length, rt2500usb_beacondone,
1186  entry);
1187 
1188  /*
1189  * Second we need to create the guardian byte.
1190  * We only need a single byte, so lets recycle
1191  * the 'flags' field we are not using for beacons.
1192  */
1193  bcn_priv->guardian_data = 0;
1194  usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1195  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1196  entry);
1197 
1198  /*
1199  * Send out the guardian byte.
1200  */
1202 
1203  /*
1204  * Enable beaconing again.
1205  */
1208  reg0 = reg;
1210  /*
1211  * Beacon generation will fail initially.
1212  * To prevent this we need to change the TXRX_CSR19
1213  * register several times (reg0 is the same as reg
1214  * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1215  * and 1 in reg).
1216  */
1217  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1219  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1220  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1221  rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1222 }
1223 
1224 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1225 {
1226  int length;
1227 
1228  /*
1229  * The length _must_ be a multiple of 2,
1230  * but it must _not_ be a multiple of the USB packet size.
1231  */
1232  length = roundup(entry->skb->len, 2);
1233  length += (2 * !(length % entry->queue->usb_maxpacket));
1234 
1235  return length;
1236 }
1237 
1238 /*
1239  * RX control handlers
1240  */
1241 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1242  struct rxdone_entry_desc *rxdesc)
1243 {
1244  struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1245  struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1246  struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1247  __le32 *rxd =
1248  (__le32 *)(entry->skb->data +
1249  (entry_priv->urb->actual_length -
1250  entry->queue->desc_size));
1251  u32 word0;
1252  u32 word1;
1253 
1254  /*
1255  * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1256  * frame data in rt2x00usb.
1257  */
1258  memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1259  rxd = (__le32 *)skbdesc->desc;
1260 
1261  /*
1262  * It is now safe to read the descriptor on all architectures.
1263  */
1264  rt2x00_desc_read(rxd, 0, &word0);
1265  rt2x00_desc_read(rxd, 1, &word1);
1266 
1268  rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1270  rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1271 
1272  rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1275 
1276  if (rxdesc->cipher != CIPHER_NONE) {
1277  _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1278  _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1279  rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1280 
1281  /* ICV is located at the end of frame */
1282 
1283  rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1284  if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1285  rxdesc->flags |= RX_FLAG_DECRYPTED;
1286  else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1287  rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1288  }
1289 
1290  /*
1291  * Obtain the status about this packet.
1292  * When frame was received with an OFDM bitrate,
1293  * the signal is the PLCP value. If it was received with
1294  * a CCK bitrate the signal is the rate in 100kbit/s.
1295  */
1296  rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1297  rxdesc->rssi =
1298  rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1299  rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1300 
1301  if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1302  rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1303  else
1304  rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1305  if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1306  rxdesc->dev_flags |= RXDONE_MY_BSS;
1307 
1308  /*
1309  * Adjust the skb memory window to the frame boundaries.
1310  */
1311  skb_trim(entry->skb, rxdesc->size);
1312 }
1313 
1314 /*
1315  * Interrupt functions.
1316  */
1317 static void rt2500usb_beacondone(struct urb *urb)
1318 {
1319  struct queue_entry *entry = (struct queue_entry *)urb->context;
1320  struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1321 
1322  if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1323  return;
1324 
1325  /*
1326  * Check if this was the guardian beacon,
1327  * if that was the case we need to send the real beacon now.
1328  * Otherwise we should free the sk_buffer, the device
1329  * should be doing the rest of the work now.
1330  */
1331  if (bcn_priv->guardian_urb == urb) {
1332  usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1333  } else if (bcn_priv->urb == urb) {
1334  dev_kfree_skb(entry->skb);
1335  entry->skb = NULL;
1336  }
1337 }
1338 
1339 /*
1340  * Device probe functions.
1341  */
1342 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1343 {
1344  u16 word;
1345  u8 *mac;
1346  u8 bbp;
1347 
1348  rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1349 
1350  /*
1351  * Start validation of the data that has been read.
1352  */
1353  mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1354  if (!is_valid_ether_addr(mac)) {
1355  eth_random_addr(mac);
1356  EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1357  }
1358 
1359  rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1360  if (word == 0xffff) {
1371  rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1372  EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1373  }
1374 
1375  rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1376  if (word == 0xffff) {
1380  rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1381  EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1382  }
1383 
1384  rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1385  if (word == 0xffff) {
1388  rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1389  EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1390  }
1391 
1392  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1393  if (word == 0xffff) {
1395  rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1396  EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1397  }
1398 
1399  /*
1400  * Switch lower vgc bound to current BBP R17 value,
1401  * lower the value a bit for better quality.
1402  */
1403  rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1404  bbp -= 6;
1405 
1406  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1407  if (word == 0xffff) {
1410  rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1411  EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1412  } else {
1414  rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1415  }
1416 
1417  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1418  if (word == 0xffff) {
1421  rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1422  EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1423  }
1424 
1425  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1426  if (word == 0xffff) {
1429  rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1430  EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1431  }
1432 
1433  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1434  if (word == 0xffff) {
1437  rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1438  EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1439  }
1440 
1441  rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1442  if (word == 0xffff) {
1445  rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1446  EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1447  }
1448 
1449  return 0;
1450 }
1451 
1452 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1453 {
1454  u16 reg;
1455  u16 value;
1456  u16 eeprom;
1457 
1458  /*
1459  * Read EEPROM word for configuration.
1460  */
1461  rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1462 
1463  /*
1464  * Identify RF chipset.
1465  */
1466  value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1467  rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1468  rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1469 
1470  if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1471  ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1472  return -ENODEV;
1473  }
1474 
1475  if (!rt2x00_rf(rt2x00dev, RF2522) &&
1476  !rt2x00_rf(rt2x00dev, RF2523) &&
1477  !rt2x00_rf(rt2x00dev, RF2524) &&
1478  !rt2x00_rf(rt2x00dev, RF2525) &&
1479  !rt2x00_rf(rt2x00dev, RF2525E) &&
1480  !rt2x00_rf(rt2x00dev, RF5222)) {
1481  ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1482  return -ENODEV;
1483  }
1484 
1485  /*
1486  * Identify default antenna configuration.
1487  */
1488  rt2x00dev->default_ant.tx =
1490  rt2x00dev->default_ant.rx =
1492 
1493  /*
1494  * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1495  * I am not 100% sure about this, but the legacy drivers do not
1496  * indicate antenna swapping in software is required when
1497  * diversity is enabled.
1498  */
1499  if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1500  rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1501  if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1502  rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1503 
1504  /*
1505  * Store led mode, for correct led behaviour.
1506  */
1507 #ifdef CONFIG_RT2X00_LIB_LEDS
1509 
1510  rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1511  if (value == LED_MODE_TXRX_ACTIVITY ||
1512  value == LED_MODE_DEFAULT ||
1513  value == LED_MODE_ASUS)
1514  rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1516 #endif /* CONFIG_RT2X00_LIB_LEDS */
1517 
1518  /*
1519  * Detect if this device has an hardware controlled radio.
1520  */
1523 
1524  /*
1525  * Read the RSSI <-> dBm offset information.
1526  */
1527  rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1528  rt2x00dev->rssi_offset =
1530 
1531  return 0;
1532 }
1533 
1534 /*
1535  * RF value list for RF2522
1536  * Supports: 2.4 GHz
1537  */
1538 static const struct rf_channel rf_vals_bg_2522[] = {
1539  { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1540  { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1541  { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1542  { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1543  { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1544  { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1545  { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1546  { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1547  { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1548  { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1549  { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1550  { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1551  { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1552  { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1553 };
1554 
1555 /*
1556  * RF value list for RF2523
1557  * Supports: 2.4 GHz
1558  */
1559 static const struct rf_channel rf_vals_bg_2523[] = {
1560  { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1561  { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1562  { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1563  { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1564  { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1565  { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1566  { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1567  { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1568  { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1569  { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1570  { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1571  { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1572  { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1573  { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1574 };
1575 
1576 /*
1577  * RF value list for RF2524
1578  * Supports: 2.4 GHz
1579  */
1580 static const struct rf_channel rf_vals_bg_2524[] = {
1581  { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1582  { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1583  { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1584  { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1585  { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1586  { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1587  { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1588  { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1589  { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1590  { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1591  { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1592  { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1593  { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1594  { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1595 };
1596 
1597 /*
1598  * RF value list for RF2525
1599  * Supports: 2.4 GHz
1600  */
1601 static const struct rf_channel rf_vals_bg_2525[] = {
1602  { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1603  { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1604  { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1605  { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1606  { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1607  { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1608  { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1609  { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1610  { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1611  { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1612  { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1613  { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1614  { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1615  { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1616 };
1617 
1618 /*
1619  * RF value list for RF2525e
1620  * Supports: 2.4 GHz
1621  */
1622 static const struct rf_channel rf_vals_bg_2525e[] = {
1623  { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1624  { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1625  { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1626  { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1627  { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1628  { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1629  { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1630  { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1631  { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1632  { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1633  { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1634  { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1635  { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1636  { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1637 };
1638 
1639 /*
1640  * RF value list for RF5222
1641  * Supports: 2.4 GHz & 5.2 GHz
1642  */
1643 static const struct rf_channel rf_vals_5222[] = {
1644  { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1645  { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1646  { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1647  { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1648  { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1649  { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1650  { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1651  { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1652  { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1653  { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1654  { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1655  { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1656  { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1657  { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1658 
1659  /* 802.11 UNI / HyperLan 2 */
1660  { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1661  { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1662  { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1663  { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1664  { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1665  { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1666  { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1667  { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1668 
1669  /* 802.11 HyperLan 2 */
1670  { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1671  { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1672  { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1673  { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1674  { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1675  { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1676  { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1677  { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1678  { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1679  { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1680 
1681  /* 802.11 UNII */
1682  { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1683  { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1684  { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1685  { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1686  { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1687 };
1688 
1689 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1690 {
1691  struct hw_mode_spec *spec = &rt2x00dev->spec;
1692  struct channel_info *info;
1693  char *tx_power;
1694  unsigned int i;
1695 
1696  /*
1697  * Initialize all hw fields.
1698  *
1699  * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1700  * capable of sending the buffered frames out after the DTIM
1701  * transmission using rt2x00lib_beacondone. This will send out
1702  * multicast and broadcast traffic immediately instead of buffering it
1703  * infinitly and thus dropping it after some time.
1704  */
1705  rt2x00dev->hw->flags =
1710 
1711  SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1712  SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1713  rt2x00_eeprom_addr(rt2x00dev,
1715 
1716  /*
1717  * Initialize hw_mode information.
1718  */
1721 
1722  if (rt2x00_rf(rt2x00dev, RF2522)) {
1723  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1724  spec->channels = rf_vals_bg_2522;
1725  } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1726  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1727  spec->channels = rf_vals_bg_2523;
1728  } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1729  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1730  spec->channels = rf_vals_bg_2524;
1731  } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1732  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1733  spec->channels = rf_vals_bg_2525;
1734  } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1735  spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1736  spec->channels = rf_vals_bg_2525e;
1737  } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1739  spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1740  spec->channels = rf_vals_5222;
1741  }
1742 
1743  /*
1744  * Create channel information array
1745  */
1746  info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1747  if (!info)
1748  return -ENOMEM;
1749 
1750  spec->channels_info = info;
1751 
1752  tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1753  for (i = 0; i < 14; i++) {
1754  info[i].max_power = MAX_TXPOWER;
1755  info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1756  }
1757 
1758  if (spec->num_channels > 14) {
1759  for (i = 14; i < spec->num_channels; i++) {
1760  info[i].max_power = MAX_TXPOWER;
1762  }
1763  }
1764 
1765  return 0;
1766 }
1767 
1768 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1769 {
1770  int retval;
1771  u16 reg;
1772 
1773  /*
1774  * Allocate eeprom data.
1775  */
1776  retval = rt2500usb_validate_eeprom(rt2x00dev);
1777  if (retval)
1778  return retval;
1779 
1780  retval = rt2500usb_init_eeprom(rt2x00dev);
1781  if (retval)
1782  return retval;
1783 
1784  /*
1785  * Enable rfkill polling by setting GPIO direction of the
1786  * rfkill switch GPIO pin correctly.
1787  */
1788  rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1790  rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1791 
1792  /*
1793  * Initialize hw specifications.
1794  */
1795  retval = rt2500usb_probe_hw_mode(rt2x00dev);
1796  if (retval)
1797  return retval;
1798 
1799  /*
1800  * This device requires the atim queue
1801  */
1802  __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1804  if (!modparam_nohwcrypt) {
1806  __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1807  }
1808  __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1809  __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1810 
1811  /*
1812  * Set the rssi offset.
1813  */
1814  rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1815 
1816  return 0;
1817 }
1818 
1819 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1820  .tx = rt2x00mac_tx,
1821  .start = rt2x00mac_start,
1822  .stop = rt2x00mac_stop,
1823  .add_interface = rt2x00mac_add_interface,
1824  .remove_interface = rt2x00mac_remove_interface,
1825  .config = rt2x00mac_config,
1826  .configure_filter = rt2x00mac_configure_filter,
1827  .set_tim = rt2x00mac_set_tim,
1828  .set_key = rt2x00mac_set_key,
1829  .sw_scan_start = rt2x00mac_sw_scan_start,
1830  .sw_scan_complete = rt2x00mac_sw_scan_complete,
1831  .get_stats = rt2x00mac_get_stats,
1832  .bss_info_changed = rt2x00mac_bss_info_changed,
1833  .conf_tx = rt2x00mac_conf_tx,
1834  .rfkill_poll = rt2x00mac_rfkill_poll,
1835  .flush = rt2x00mac_flush,
1836  .set_antenna = rt2x00mac_set_antenna,
1837  .get_antenna = rt2x00mac_get_antenna,
1838  .get_ringparam = rt2x00mac_get_ringparam,
1839  .tx_frames_pending = rt2x00mac_tx_frames_pending,
1840 };
1841 
1842 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1843  .probe_hw = rt2500usb_probe_hw,
1844  .initialize = rt2x00usb_initialize,
1845  .uninitialize = rt2x00usb_uninitialize,
1846  .clear_entry = rt2x00usb_clear_entry,
1847  .set_device_state = rt2500usb_set_device_state,
1848  .rfkill_poll = rt2500usb_rfkill_poll,
1849  .link_stats = rt2500usb_link_stats,
1850  .reset_tuner = rt2500usb_reset_tuner,
1851  .watchdog = rt2x00usb_watchdog,
1852  .start_queue = rt2500usb_start_queue,
1853  .kick_queue = rt2x00usb_kick_queue,
1854  .stop_queue = rt2500usb_stop_queue,
1855  .flush_queue = rt2x00usb_flush_queue,
1856  .write_tx_desc = rt2500usb_write_tx_desc,
1857  .write_beacon = rt2500usb_write_beacon,
1858  .get_tx_data_len = rt2500usb_get_tx_data_len,
1859  .fill_rxdone = rt2500usb_fill_rxdone,
1860  .config_shared_key = rt2500usb_config_key,
1861  .config_pairwise_key = rt2500usb_config_key,
1862  .config_filter = rt2500usb_config_filter,
1863  .config_intf = rt2500usb_config_intf,
1864  .config_erp = rt2500usb_config_erp,
1865  .config_ant = rt2500usb_config_ant,
1866  .config = rt2500usb_config,
1867 };
1868 
1869 static const struct data_queue_desc rt2500usb_queue_rx = {
1870  .entry_num = 32,
1871  .data_size = DATA_FRAME_SIZE,
1872  .desc_size = RXD_DESC_SIZE,
1873  .priv_size = sizeof(struct queue_entry_priv_usb),
1874 };
1875 
1876 static const struct data_queue_desc rt2500usb_queue_tx = {
1877  .entry_num = 32,
1878  .data_size = DATA_FRAME_SIZE,
1879  .desc_size = TXD_DESC_SIZE,
1880  .priv_size = sizeof(struct queue_entry_priv_usb),
1881 };
1882 
1883 static const struct data_queue_desc rt2500usb_queue_bcn = {
1884  .entry_num = 1,
1885  .data_size = MGMT_FRAME_SIZE,
1886  .desc_size = TXD_DESC_SIZE,
1887  .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
1888 };
1889 
1890 static const struct data_queue_desc rt2500usb_queue_atim = {
1891  .entry_num = 8,
1892  .data_size = DATA_FRAME_SIZE,
1893  .desc_size = TXD_DESC_SIZE,
1894  .priv_size = sizeof(struct queue_entry_priv_usb),
1895 };
1896 
1897 static const struct rt2x00_ops rt2500usb_ops = {
1898  .name = KBUILD_MODNAME,
1899  .max_ap_intf = 1,
1900  .eeprom_size = EEPROM_SIZE,
1901  .rf_size = RF_SIZE,
1902  .tx_queues = NUM_TX_QUEUES,
1903  .extra_tx_headroom = TXD_DESC_SIZE,
1904  .rx = &rt2500usb_queue_rx,
1905  .tx = &rt2500usb_queue_tx,
1906  .bcn = &rt2500usb_queue_bcn,
1907  .atim = &rt2500usb_queue_atim,
1908  .lib = &rt2500usb_rt2x00_ops,
1909  .hw = &rt2500usb_mac80211_ops,
1910 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1911  .debugfs = &rt2500usb_rt2x00debug,
1912 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1913 };
1914 
1915 /*
1916  * rt2500usb module information.
1917  */
1918 static struct usb_device_id rt2500usb_device_table[] = {
1919  /* ASUS */
1920  { USB_DEVICE(0x0b05, 0x1706) },
1921  { USB_DEVICE(0x0b05, 0x1707) },
1922  /* Belkin */
1923  { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1924  { USB_DEVICE(0x050d, 0x7051) },
1925  /* Cisco Systems */
1926  { USB_DEVICE(0x13b1, 0x000d) },
1927  { USB_DEVICE(0x13b1, 0x0011) },
1928  { USB_DEVICE(0x13b1, 0x001a) },
1929  /* Conceptronic */
1930  { USB_DEVICE(0x14b2, 0x3c02) },
1931  /* D-LINK */
1932  { USB_DEVICE(0x2001, 0x3c00) },
1933  /* Gigabyte */
1934  { USB_DEVICE(0x1044, 0x8001) },
1935  { USB_DEVICE(0x1044, 0x8007) },
1936  /* Hercules */
1937  { USB_DEVICE(0x06f8, 0xe000) },
1938  /* Melco */
1939  { USB_DEVICE(0x0411, 0x005e) },
1940  { USB_DEVICE(0x0411, 0x0066) },
1941  { USB_DEVICE(0x0411, 0x0067) },
1942  { USB_DEVICE(0x0411, 0x008b) },
1943  { USB_DEVICE(0x0411, 0x0097) },
1944  /* MSI */
1945  { USB_DEVICE(0x0db0, 0x6861) },
1946  { USB_DEVICE(0x0db0, 0x6865) },
1947  { USB_DEVICE(0x0db0, 0x6869) },
1948  /* Ralink */
1949  { USB_DEVICE(0x148f, 0x1706) },
1950  { USB_DEVICE(0x148f, 0x2570) },
1951  { USB_DEVICE(0x148f, 0x9020) },
1952  /* Sagem */
1953  { USB_DEVICE(0x079b, 0x004b) },
1954  /* Siemens */
1955  { USB_DEVICE(0x0681, 0x3c06) },
1956  /* SMC */
1957  { USB_DEVICE(0x0707, 0xee13) },
1958  /* Spairon */
1959  { USB_DEVICE(0x114b, 0x0110) },
1960  /* SURECOM */
1961  { USB_DEVICE(0x0769, 0x11f3) },
1962  /* Trust */
1963  { USB_DEVICE(0x0eb0, 0x9020) },
1964  /* VTech */
1965  { USB_DEVICE(0x0f88, 0x3012) },
1966  /* Zinwell */
1967  { USB_DEVICE(0x5a57, 0x0260) },
1968  { 0, }
1969 };
1970 
1973 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1974 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1975 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1976 MODULE_LICENSE("GPL");
1977 
1978 static int rt2500usb_probe(struct usb_interface *usb_intf,
1979  const struct usb_device_id *id)
1980 {
1981  return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1982 }
1983 
1984 static struct usb_driver rt2500usb_driver = {
1985  .name = KBUILD_MODNAME,
1986  .id_table = rt2500usb_device_table,
1987  .probe = rt2500usb_probe,
1988  .disconnect = rt2x00usb_disconnect,
1989  .suspend = rt2x00usb_suspend,
1990  .resume = rt2x00usb_resume,
1991  .reset_resume = rt2x00usb_resume,
1992  .disable_hub_initiated_lpm = 1,
1993 };
1994 
1995 module_usb_driver(rt2500usb_driver);