Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rt2x00queue.c
Go to the documentation of this file.
1 /*
2  Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3  Copyright (C) 2004 - 2010 Ivo van Doorn <[email protected]>
4  Copyright (C) 2004 - 2009 Gertjan van Wingerde <[email protected]>
5  <http://rt2x00.serialmonkey.com>
6 
7  This program is free software; you can redistribute it and/or modify
8  it under the terms of the GNU General Public License as published by
9  the Free Software Foundation; either version 2 of the License, or
10  (at your option) any later version.
11 
12  This program is distributed in the hope that it will be useful,
13  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  GNU General Public License for more details.
16 
17  You should have received a copy of the GNU General Public License
18  along with this program; if not, write to the
19  Free Software Foundation, Inc.,
20  59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 /*
24  Module: rt2x00lib
25  Abstract: rt2x00 queue specific routines.
26  */
27 
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
35 
36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
37 {
38  struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39  struct sk_buff *skb;
40  struct skb_frame_desc *skbdesc;
41  unsigned int frame_size;
42  unsigned int head_size = 0;
43  unsigned int tail_size = 0;
44 
45  /*
46  * The frame size includes descriptor size, because the
47  * hardware directly receive the frame into the skbuffer.
48  */
49  frame_size = entry->queue->data_size + entry->queue->desc_size;
50 
51  /*
52  * The payload should be aligned to a 4-byte boundary,
53  * this means we need at least 3 bytes for moving the frame
54  * into the correct offset.
55  */
56  head_size = 4;
57 
58  /*
59  * For IV/EIV/ICV assembly we must make sure there is
60  * at least 8 bytes bytes available in headroom for IV/EIV
61  * and 8 bytes for ICV data as tailroon.
62  */
63  if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
64  head_size += 8;
65  tail_size += 8;
66  }
67 
68  /*
69  * Allocate skbuffer.
70  */
71  skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
72  if (!skb)
73  return NULL;
74 
75  /*
76  * Make sure we not have a frame with the requested bytes
77  * available in the head and tail.
78  */
79  skb_reserve(skb, head_size);
80  skb_put(skb, frame_size);
81 
82  /*
83  * Populate skbdesc.
84  */
85  skbdesc = get_skb_frame_desc(skb);
86  memset(skbdesc, 0, sizeof(*skbdesc));
87  skbdesc->entry = entry;
88 
89  if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
90  skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91  skb->data,
92  skb->len,
94  skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95  }
96 
97  return skb;
98 }
99 
100 void rt2x00queue_map_txskb(struct queue_entry *entry)
101 {
102  struct device *dev = entry->queue->rt2x00dev->dev;
103  struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
104 
105  skbdesc->skb_dma =
106  dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107  skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
108 }
110 
111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
112 {
113  struct device *dev = entry->queue->rt2x00dev->dev;
114  struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
115 
116  if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117  dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
119  skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120  } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121  dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122  DMA_TO_DEVICE);
123  skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
124  }
125 }
127 
128 void rt2x00queue_free_skb(struct queue_entry *entry)
129 {
130  if (!entry->skb)
131  return;
132 
133  rt2x00queue_unmap_skb(entry);
134  dev_kfree_skb_any(entry->skb);
135  entry->skb = NULL;
136 }
137 
139 {
140  unsigned int frame_length = skb->len;
141  unsigned int align = ALIGN_SIZE(skb, 0);
142 
143  if (!align)
144  return;
145 
146  skb_push(skb, align);
147  memmove(skb->data, skb->data + align, frame_length);
148  skb_trim(skb, frame_length);
149 }
150 
152 {
153  unsigned int payload_length = skb->len - header_length;
154  unsigned int header_align = ALIGN_SIZE(skb, 0);
155  unsigned int payload_align = ALIGN_SIZE(skb, header_length);
156  unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
157 
158  /*
159  * Adjust the header alignment if the payload needs to be moved more
160  * than the header.
161  */
162  if (payload_align > header_align)
163  header_align += 4;
164 
165  /* There is nothing to do if no alignment is needed */
166  if (!header_align)
167  return;
168 
169  /* Reserve the amount of space needed in front of the frame */
170  skb_push(skb, header_align);
171 
172  /*
173  * Move the header.
174  */
175  memmove(skb->data, skb->data + header_align, header_length);
176 
177  /* Move the payload, if present and if required */
178  if (payload_length && payload_align)
179  memmove(skb->data + header_length + l2pad,
180  skb->data + header_length + l2pad + payload_align,
181  payload_length);
182 
183  /* Trim the skb to the correct size */
184  skb_trim(skb, header_length + l2pad + payload_length);
185 }
186 
188 {
189  /*
190  * L2 padding is only present if the skb contains more than just the
191  * IEEE 802.11 header.
192  */
193  unsigned int l2pad = (skb->len > header_length) ?
194  L2PAD_SIZE(header_length) : 0;
195 
196  if (!l2pad)
197  return;
198 
199  memmove(skb->data + l2pad, skb->data, header_length);
200  skb_pull(skb, l2pad);
201 }
202 
203 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
204  struct sk_buff *skb,
205  struct txentry_desc *txdesc)
206 {
207  struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
208  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
209  struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
210  u16 seqno;
211 
212  if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
213  return;
214 
216 
217  if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) {
218  /*
219  * rt2800 has a H/W (or F/W) bug, device incorrectly increase
220  * seqno on retransmited data (non-QOS) frames. To workaround
221  * the problem let's generate seqno in software if QOS is
222  * disabled.
223  */
224  if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
226  else
227  /* H/W will generate sequence number */
228  return;
229  }
230 
231  /*
232  * The hardware is not able to insert a sequence number. Assign a
233  * software generated one here.
234  *
235  * This is wrong because beacons are not getting sequence
236  * numbers assigned properly.
237  *
238  * A secondary problem exists for drivers that cannot toggle
239  * sequence counting per-frame, since those will override the
240  * sequence counter given by mac80211.
241  */
242  if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
243  seqno = atomic_add_return(0x10, &intf->seqno);
244  else
245  seqno = atomic_read(&intf->seqno);
246 
248  hdr->seq_ctrl |= cpu_to_le16(seqno);
249 }
250 
251 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
252  struct sk_buff *skb,
253  struct txentry_desc *txdesc,
254  const struct rt2x00_rate *hwrate)
255 {
256  struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
257  struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
258  unsigned int data_length;
259  unsigned int duration;
260  unsigned int residual;
261 
262  /*
263  * Determine with what IFS priority this frame should be send.
264  * Set ifs to IFS_SIFS when the this is not the first fragment,
265  * or this fragment came after RTS/CTS.
266  */
267  if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
268  txdesc->u.plcp.ifs = IFS_BACKOFF;
269  else
270  txdesc->u.plcp.ifs = IFS_SIFS;
271 
272  /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
273  data_length = skb->len + 4;
274  data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
275 
276  /*
277  * PLCP setup
278  * Length calculation depends on OFDM/CCK rate.
279  */
280  txdesc->u.plcp.signal = hwrate->plcp;
281  txdesc->u.plcp.service = 0x04;
282 
283  if (hwrate->flags & DEV_RATE_OFDM) {
284  txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
285  txdesc->u.plcp.length_low = data_length & 0x3f;
286  } else {
287  /*
288  * Convert length to microseconds.
289  */
290  residual = GET_DURATION_RES(data_length, hwrate->bitrate);
291  duration = GET_DURATION(data_length, hwrate->bitrate);
292 
293  if (residual != 0) {
294  duration++;
295 
296  /*
297  * Check if we need to set the Length Extension
298  */
299  if (hwrate->bitrate == 110 && residual <= 30)
300  txdesc->u.plcp.service |= 0x80;
301  }
302 
303  txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
304  txdesc->u.plcp.length_low = duration & 0xff;
305 
306  /*
307  * When preamble is enabled we should set the
308  * preamble bit for the signal.
309  */
311  txdesc->u.plcp.signal |= 0x08;
312  }
313 }
314 
315 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
316  struct sk_buff *skb,
317  struct txentry_desc *txdesc,
318  struct ieee80211_sta *sta,
319  const struct rt2x00_rate *hwrate)
320 {
321  struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
322  struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
323  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
324  struct rt2x00_sta *sta_priv = NULL;
325 
326  if (sta) {
327  txdesc->u.ht.mpdu_density =
328  sta->ht_cap.ampdu_density;
329 
330  sta_priv = sta_to_rt2x00_sta(sta);
331  txdesc->u.ht.wcid = sta_priv->wcid;
332  }
333 
334  /*
335  * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
336  * mcs rate to be used
337  */
338  if (txrate->flags & IEEE80211_TX_RC_MCS) {
339  txdesc->u.ht.mcs = txrate->idx;
340 
341  /*
342  * MIMO PS should be set to 1 for STA's using dynamic SM PS
343  * when using more then one tx stream (>MCS7).
344  */
345  if (sta && txdesc->u.ht.mcs > 7 &&
346  ((sta->ht_cap.cap &
351  } else {
352  txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
354  txdesc->u.ht.mcs |= 0x08;
355  }
356 
357  if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
358  if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
359  txdesc->u.ht.txop = TXOP_SIFS;
360  else
361  txdesc->u.ht.txop = TXOP_BACKOFF;
362 
363  /* Left zero on all other settings. */
364  return;
365  }
366 
367  txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
368 
369  /*
370  * Only one STBC stream is supported for now.
371  */
372  if (tx_info->flags & IEEE80211_TX_CTL_STBC)
373  txdesc->u.ht.stbc = 1;
374 
375  /*
376  * This frame is eligible for an AMPDU, however, don't aggregate
377  * frames that are intended to probe a specific tx rate.
378  */
379  if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
382 
383  /*
384  * Set 40Mhz mode if necessary (for legacy rates this will
385  * duplicate the frame to both channels).
386  */
387  if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
390  if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
392 
393  /*
394  * Determine IFS values
395  * - Use TXOP_BACKOFF for management frames except beacons
396  * - Use TXOP_SIFS for fragment bursts
397  * - Use TXOP_HTTXOP for everything else
398  *
399  * Note: rt2800 devices won't use CTS protection (if used)
400  * for frames not transmitted with TXOP_HTTXOP
401  */
402  if (ieee80211_is_mgmt(hdr->frame_control) &&
403  !ieee80211_is_beacon(hdr->frame_control))
404  txdesc->u.ht.txop = TXOP_BACKOFF;
405  else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
406  txdesc->u.ht.txop = TXOP_SIFS;
407  else
408  txdesc->u.ht.txop = TXOP_HTTXOP;
409 }
410 
411 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
412  struct sk_buff *skb,
413  struct txentry_desc *txdesc,
414  struct ieee80211_sta *sta)
415 {
416  struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
417  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
418  struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
419  struct ieee80211_rate *rate;
420  const struct rt2x00_rate *hwrate = NULL;
421 
422  memset(txdesc, 0, sizeof(*txdesc));
423 
424  /*
425  * Header and frame information.
426  */
427  txdesc->length = skb->len;
429 
430  /*
431  * Check whether this frame is to be acked.
432  */
433  if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
434  __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
435 
436  /*
437  * Check if this is a RTS/CTS frame
438  */
439  if (ieee80211_is_rts(hdr->frame_control) ||
440  ieee80211_is_cts(hdr->frame_control)) {
441  __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
442  if (ieee80211_is_rts(hdr->frame_control))
444  else
446  if (tx_info->control.rts_cts_rate_idx >= 0)
447  rate =
448  ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
449  }
450 
451  /*
452  * Determine retry information.
453  */
454  txdesc->retry_limit = tx_info->control.rates[0].count - 1;
455  if (txdesc->retry_limit >= rt2x00dev->long_retry)
457 
458  /*
459  * Check if more fragments are pending
460  */
461  if (ieee80211_has_morefrags(hdr->frame_control)) {
462  __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
464  }
465 
466  /*
467  * Check if more frames (!= fragments) are pending
468  */
469  if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
470  __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
471 
472  /*
473  * Beacons and probe responses require the tsf timestamp
474  * to be inserted into the frame.
475  */
476  if (ieee80211_is_beacon(hdr->frame_control) ||
477  ieee80211_is_probe_resp(hdr->frame_control))
479 
480  if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
481  !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
483 
484  /*
485  * Determine rate modulation.
486  */
487  if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
489  else if (txrate->flags & IEEE80211_TX_RC_MCS)
490  txdesc->rate_mode = RATE_MODE_HT_MIX;
491  else {
492  rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
493  hwrate = rt2x00_get_rate(rate->hw_value);
494  if (hwrate->flags & DEV_RATE_OFDM)
495  txdesc->rate_mode = RATE_MODE_OFDM;
496  else
497  txdesc->rate_mode = RATE_MODE_CCK;
498  }
499 
500  /*
501  * Apply TX descriptor handling by components
502  */
503  rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
504  rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
505 
506  if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
507  rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
508  sta, hwrate);
509  else
510  rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
511  hwrate);
512 }
513 
514 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
515  struct txentry_desc *txdesc)
516 {
517  struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
518 
519  /*
520  * This should not happen, we already checked the entry
521  * was ours. When the hardware disagrees there has been
522  * a queue corruption!
523  */
524  if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
525  rt2x00dev->ops->lib->get_entry_state(entry))) {
526  ERROR(rt2x00dev,
527  "Corrupt queue %d, accessing entry which is not ours.\n"
528  "Please file bug report to %s.\n",
529  entry->queue->qid, DRV_PROJECT);
530  return -EINVAL;
531  }
532 
533  /*
534  * Add the requested extra tx headroom in front of the skb.
535  */
536  skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
537  memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
538 
539  /*
540  * Call the driver's write_tx_data function, if it exists.
541  */
542  if (rt2x00dev->ops->lib->write_tx_data)
543  rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
544 
545  /*
546  * Map the skb to DMA.
547  */
548  if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
549  rt2x00queue_map_txskb(entry);
550 
551  return 0;
552 }
553 
554 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
555  struct txentry_desc *txdesc)
556 {
557  struct data_queue *queue = entry->queue;
558 
559  queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
560 
561  /*
562  * All processing on the frame has been completed, this means
563  * it is now ready to be dumped to userspace through debugfs.
564  */
565  rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
566 }
567 
568 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
569  struct txentry_desc *txdesc)
570 {
571  /*
572  * Check if we need to kick the queue, there are however a few rules
573  * 1) Don't kick unless this is the last in frame in a burst.
574  * When the burst flag is set, this frame is always followed
575  * by another frame which in some way are related to eachother.
576  * This is true for fragments, RTS or CTS-to-self frames.
577  * 2) Rule 1 can be broken when the available entries
578  * in the queue are less then a certain threshold.
579  */
580  if (rt2x00queue_threshold(queue) ||
581  !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
582  queue->rt2x00dev->ops->lib->kick_queue(queue);
583 }
584 
585 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
586  bool local)
587 {
588  struct ieee80211_tx_info *tx_info;
589  struct queue_entry *entry;
590  struct txentry_desc txdesc;
591  struct skb_frame_desc *skbdesc;
592  u8 rate_idx, rate_flags;
593  int ret = 0;
594 
595  /*
596  * Copy all TX descriptor information into txdesc,
597  * after that we are free to use the skb->cb array
598  * for our information.
599  */
600  rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, NULL);
601 
602  /*
603  * All information is retrieved from the skb->cb array,
604  * now we should claim ownership of the driver part of that
605  * array, preserving the bitrate index and flags.
606  */
607  tx_info = IEEE80211_SKB_CB(skb);
608  rate_idx = tx_info->control.rates[0].idx;
609  rate_flags = tx_info->control.rates[0].flags;
610  skbdesc = get_skb_frame_desc(skb);
611  memset(skbdesc, 0, sizeof(*skbdesc));
612  skbdesc->tx_rate_idx = rate_idx;
613  skbdesc->tx_rate_flags = rate_flags;
614 
615  if (local)
616  skbdesc->flags |= SKBDESC_NOT_MAC80211;
617 
618  /*
619  * When hardware encryption is supported, and this frame
620  * is to be encrypted, we should strip the IV/EIV data from
621  * the frame so we can provide it to the driver separately.
622  */
623  if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
624  !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
625  if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
626  rt2x00crypto_tx_copy_iv(skb, &txdesc);
627  else
628  rt2x00crypto_tx_remove_iv(skb, &txdesc);
629  }
630 
631  /*
632  * When DMA allocation is required we should guarantee to the
633  * driver that the DMA is aligned to a 4-byte boundary.
634  * However some drivers require L2 padding to pad the payload
635  * rather then the header. This could be a requirement for
636  * PCI and USB devices, while header alignment only is valid
637  * for PCI devices.
638  */
639  if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
641  else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
643 
644  /*
645  * That function must be called with bh disabled.
646  */
647  spin_lock(&queue->tx_lock);
648 
649  if (unlikely(rt2x00queue_full(queue))) {
650  ERROR(queue->rt2x00dev,
651  "Dropping frame due to full tx queue %d.\n", queue->qid);
652  ret = -ENOBUFS;
653  goto out;
654  }
655 
656  entry = rt2x00queue_get_entry(queue, Q_INDEX);
657 
659  &entry->flags))) {
660  ERROR(queue->rt2x00dev,
661  "Arrived at non-free entry in the non-full queue %d.\n"
662  "Please file bug report to %s.\n",
663  queue->qid, DRV_PROJECT);
664  ret = -EINVAL;
665  goto out;
666  }
667 
668  skbdesc->entry = entry;
669  entry->skb = skb;
670 
671  /*
672  * It could be possible that the queue was corrupted and this
673  * call failed. Since we always return NETDEV_TX_OK to mac80211,
674  * this frame will simply be dropped.
675  */
676  if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
677  clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
678  entry->skb = NULL;
679  ret = -EIO;
680  goto out;
681  }
682 
683  set_bit(ENTRY_DATA_PENDING, &entry->flags);
684 
686  rt2x00queue_write_tx_descriptor(entry, &txdesc);
687  rt2x00queue_kick_tx_queue(queue, &txdesc);
688 
689 out:
690  spin_unlock(&queue->tx_lock);
691  return ret;
692 }
693 
694 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
695  struct ieee80211_vif *vif)
696 {
697  struct rt2x00_intf *intf = vif_to_intf(vif);
698 
699  if (unlikely(!intf->beacon))
700  return -ENOBUFS;
701 
703 
704  /*
705  * Clean up the beacon skb.
706  */
708 
709  /*
710  * Clear beacon (single bssid devices don't need to clear the beacon
711  * since the beacon queue will get stopped anyway).
712  */
713  if (rt2x00dev->ops->lib->clear_beacon)
714  rt2x00dev->ops->lib->clear_beacon(intf->beacon);
715 
717 
718  return 0;
719 }
720 
722  struct ieee80211_vif *vif)
723 {
724  struct rt2x00_intf *intf = vif_to_intf(vif);
725  struct skb_frame_desc *skbdesc;
726  struct txentry_desc txdesc;
727 
728  if (unlikely(!intf->beacon))
729  return -ENOBUFS;
730 
731  /*
732  * Clean up the beacon skb.
733  */
735 
736  intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
737  if (!intf->beacon->skb)
738  return -ENOMEM;
739 
740  /*
741  * Copy all TX descriptor information into txdesc,
742  * after that we are free to use the skb->cb array
743  * for our information.
744  */
745  rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
746 
747  /*
748  * Fill in skb descriptor
749  */
750  skbdesc = get_skb_frame_desc(intf->beacon->skb);
751  memset(skbdesc, 0, sizeof(*skbdesc));
752  skbdesc->entry = intf->beacon;
753 
754  /*
755  * Send beacon to hardware.
756  */
757  rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
758 
759  return 0;
760 
761 }
762 
763 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
764  struct ieee80211_vif *vif)
765 {
766  struct rt2x00_intf *intf = vif_to_intf(vif);
767  int ret;
768 
770  ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
772 
773  return ret;
774 }
775 
777  enum queue_index start,
778  enum queue_index end,
779  bool (*fn)(struct queue_entry *entry))
780 {
781  unsigned long irqflags;
782  unsigned int index_start;
783  unsigned int index_end;
784  unsigned int i;
785 
786  if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
787  ERROR(queue->rt2x00dev,
788  "Entry requested from invalid index range (%d - %d)\n",
789  start, end);
790  return true;
791  }
792 
793  /*
794  * Only protect the range we are going to loop over,
795  * if during our loop a extra entry is set to pending
796  * it should not be kicked during this run, since it
797  * is part of another TX operation.
798  */
799  spin_lock_irqsave(&queue->index_lock, irqflags);
800  index_start = queue->index[start];
801  index_end = queue->index[end];
802  spin_unlock_irqrestore(&queue->index_lock, irqflags);
803 
804  /*
805  * Start from the TX done pointer, this guarantees that we will
806  * send out all frames in the correct order.
807  */
808  if (index_start < index_end) {
809  for (i = index_start; i < index_end; i++) {
810  if (fn(&queue->entries[i]))
811  return true;
812  }
813  } else {
814  for (i = index_start; i < queue->limit; i++) {
815  if (fn(&queue->entries[i]))
816  return true;
817  }
818 
819  for (i = 0; i < index_end; i++) {
820  if (fn(&queue->entries[i]))
821  return true;
822  }
823  }
824 
825  return false;
826 }
828 
829 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
830  enum queue_index index)
831 {
832  struct queue_entry *entry;
833  unsigned long irqflags;
834 
835  if (unlikely(index >= Q_INDEX_MAX)) {
836  ERROR(queue->rt2x00dev,
837  "Entry requested from invalid index type (%d)\n", index);
838  return NULL;
839  }
840 
841  spin_lock_irqsave(&queue->index_lock, irqflags);
842 
843  entry = &queue->entries[queue->index[index]];
844 
845  spin_unlock_irqrestore(&queue->index_lock, irqflags);
846 
847  return entry;
848 }
850 
851 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
852 {
853  struct data_queue *queue = entry->queue;
854  unsigned long irqflags;
855 
856  if (unlikely(index >= Q_INDEX_MAX)) {
857  ERROR(queue->rt2x00dev,
858  "Index change on invalid index type (%d)\n", index);
859  return;
860  }
861 
862  spin_lock_irqsave(&queue->index_lock, irqflags);
863 
864  queue->index[index]++;
865  if (queue->index[index] >= queue->limit)
866  queue->index[index] = 0;
867 
868  entry->last_action = jiffies;
869 
870  if (index == Q_INDEX) {
871  queue->length++;
872  } else if (index == Q_INDEX_DONE) {
873  queue->length--;
874  queue->count++;
875  }
876 
877  spin_unlock_irqrestore(&queue->index_lock, irqflags);
878 }
879 
881 {
882  if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
883  !test_bit(QUEUE_STARTED, &queue->flags) ||
885  return;
886 
887  switch (queue->qid) {
888  case QID_AC_VO:
889  case QID_AC_VI:
890  case QID_AC_BE:
891  case QID_AC_BK:
892  /*
893  * For TX queues, we have to disable the queue
894  * inside mac80211.
895  */
896  ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
897  break;
898  default:
899  break;
900  }
901 }
903 
905 {
906  if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
907  !test_bit(QUEUE_STARTED, &queue->flags) ||
909  return;
910 
911  switch (queue->qid) {
912  case QID_AC_VO:
913  case QID_AC_VI:
914  case QID_AC_BE:
915  case QID_AC_BK:
916  /*
917  * For TX queues, we have to enable the queue
918  * inside mac80211.
919  */
920  ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
921  break;
922  case QID_RX:
923  /*
924  * For RX we need to kick the queue now in order to
925  * receive frames.
926  */
927  queue->rt2x00dev->ops->lib->kick_queue(queue);
928  default:
929  break;
930  }
931 }
933 
935 {
936  mutex_lock(&queue->status_lock);
937 
938  if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
940  mutex_unlock(&queue->status_lock);
941  return;
942  }
943 
944  set_bit(QUEUE_PAUSED, &queue->flags);
945 
946  queue->rt2x00dev->ops->lib->start_queue(queue);
947 
949 
950  mutex_unlock(&queue->status_lock);
951 }
953 
955 {
956  mutex_lock(&queue->status_lock);
957 
958  if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
959  mutex_unlock(&queue->status_lock);
960  return;
961  }
962 
964 
965  queue->rt2x00dev->ops->lib->stop_queue(queue);
966 
967  mutex_unlock(&queue->status_lock);
968 }
970 
971 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
972 {
973  bool started;
974  bool tx_queue =
975  (queue->qid == QID_AC_VO) ||
976  (queue->qid == QID_AC_VI) ||
977  (queue->qid == QID_AC_BE) ||
978  (queue->qid == QID_AC_BK);
979 
980  mutex_lock(&queue->status_lock);
981 
982  /*
983  * If the queue has been started, we must stop it temporarily
984  * to prevent any new frames to be queued on the device. If
985  * we are not dropping the pending frames, the queue must
986  * only be stopped in the software and not the hardware,
987  * otherwise the queue will never become empty on its own.
988  */
989  started = test_bit(QUEUE_STARTED, &queue->flags);
990  if (started) {
991  /*
992  * Pause the queue
993  */
995 
996  /*
997  * If we are not supposed to drop any pending
998  * frames, this means we must force a start (=kick)
999  * to the queue to make sure the hardware will
1000  * start transmitting.
1001  */
1002  if (!drop && tx_queue)
1003  queue->rt2x00dev->ops->lib->kick_queue(queue);
1004  }
1005 
1006  /*
1007  * Check if driver supports flushing, if that is the case we can
1008  * defer the flushing to the driver. Otherwise we must use the
1009  * alternative which just waits for the queue to become empty.
1010  */
1011  if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1012  queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1013 
1014  /*
1015  * The queue flush has failed...
1016  */
1017  if (unlikely(!rt2x00queue_empty(queue)))
1018  WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
1019 
1020  /*
1021  * Restore the queue to the previous status
1022  */
1023  if (started)
1025 
1026  mutex_unlock(&queue->status_lock);
1027 }
1029 
1030 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1031 {
1032  struct data_queue *queue;
1033 
1034  /*
1035  * rt2x00queue_start_queue will call ieee80211_wake_queue
1036  * for each queue after is has been properly initialized.
1037  */
1038  tx_queue_for_each(rt2x00dev, queue)
1039  rt2x00queue_start_queue(queue);
1040 
1041  rt2x00queue_start_queue(rt2x00dev->rx);
1042 }
1044 
1045 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1046 {
1047  struct data_queue *queue;
1048 
1049  /*
1050  * rt2x00queue_stop_queue will call ieee80211_stop_queue
1051  * as well, but we are completely shutting doing everything
1052  * now, so it is much safer to stop all TX queues at once,
1053  * and use rt2x00queue_stop_queue for cleaning up.
1054  */
1055  ieee80211_stop_queues(rt2x00dev->hw);
1056 
1057  tx_queue_for_each(rt2x00dev, queue)
1058  rt2x00queue_stop_queue(queue);
1059 
1060  rt2x00queue_stop_queue(rt2x00dev->rx);
1061 }
1063 
1064 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1065 {
1066  struct data_queue *queue;
1067 
1068  tx_queue_for_each(rt2x00dev, queue)
1069  rt2x00queue_flush_queue(queue, drop);
1070 
1071  rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1072 }
1074 
1075 static void rt2x00queue_reset(struct data_queue *queue)
1076 {
1077  unsigned long irqflags;
1078  unsigned int i;
1079 
1080  spin_lock_irqsave(&queue->index_lock, irqflags);
1081 
1082  queue->count = 0;
1083  queue->length = 0;
1084 
1085  for (i = 0; i < Q_INDEX_MAX; i++)
1086  queue->index[i] = 0;
1087 
1088  spin_unlock_irqrestore(&queue->index_lock, irqflags);
1089 }
1090 
1091 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1092 {
1093  struct data_queue *queue;
1094  unsigned int i;
1095 
1096  queue_for_each(rt2x00dev, queue) {
1097  rt2x00queue_reset(queue);
1098 
1099  for (i = 0; i < queue->limit; i++)
1100  rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1101  }
1102 }
1103 
1104 static int rt2x00queue_alloc_entries(struct data_queue *queue,
1105  const struct data_queue_desc *qdesc)
1106 {
1107  struct queue_entry *entries;
1108  unsigned int entry_size;
1109  unsigned int i;
1110 
1111  rt2x00queue_reset(queue);
1112 
1113  queue->limit = qdesc->entry_num;
1114  queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1115  queue->data_size = qdesc->data_size;
1116  queue->desc_size = qdesc->desc_size;
1117 
1118  /*
1119  * Allocate all queue entries.
1120  */
1121  entry_size = sizeof(*entries) + qdesc->priv_size;
1122  entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1123  if (!entries)
1124  return -ENOMEM;
1125 
1126 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1127  (((char *)(__base)) + ((__limit) * (__esize)) + \
1128  ((__index) * (__psize)))
1129 
1130  for (i = 0; i < queue->limit; i++) {
1131  entries[i].flags = 0;
1132  entries[i].queue = queue;
1133  entries[i].skb = NULL;
1134  entries[i].entry_idx = i;
1135  entries[i].priv_data =
1136  QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1137  sizeof(*entries), qdesc->priv_size);
1138  }
1139 
1140 #undef QUEUE_ENTRY_PRIV_OFFSET
1141 
1142  queue->entries = entries;
1143 
1144  return 0;
1145 }
1146 
1147 static void rt2x00queue_free_skbs(struct data_queue *queue)
1148 {
1149  unsigned int i;
1150 
1151  if (!queue->entries)
1152  return;
1153 
1154  for (i = 0; i < queue->limit; i++) {
1155  rt2x00queue_free_skb(&queue->entries[i]);
1156  }
1157 }
1158 
1159 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1160 {
1161  unsigned int i;
1162  struct sk_buff *skb;
1163 
1164  for (i = 0; i < queue->limit; i++) {
1165  skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1166  if (!skb)
1167  return -ENOMEM;
1168  queue->entries[i].skb = skb;
1169  }
1170 
1171  return 0;
1172 }
1173 
1174 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1175 {
1176  struct data_queue *queue;
1177  int status;
1178 
1179  status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1180  if (status)
1181  goto exit;
1182 
1183  tx_queue_for_each(rt2x00dev, queue) {
1184  status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1185  if (status)
1186  goto exit;
1187  }
1188 
1189  status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1190  if (status)
1191  goto exit;
1192 
1193  if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1194  status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1195  rt2x00dev->ops->atim);
1196  if (status)
1197  goto exit;
1198  }
1199 
1200  status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1201  if (status)
1202  goto exit;
1203 
1204  return 0;
1205 
1206 exit:
1207  ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1208 
1209  rt2x00queue_uninitialize(rt2x00dev);
1210 
1211  return status;
1212 }
1213 
1214 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1215 {
1216  struct data_queue *queue;
1217 
1218  rt2x00queue_free_skbs(rt2x00dev->rx);
1219 
1220  queue_for_each(rt2x00dev, queue) {
1221  kfree(queue->entries);
1222  queue->entries = NULL;
1223  }
1224 }
1225 
1226 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1227  struct data_queue *queue, enum data_queue_qid qid)
1228 {
1229  mutex_init(&queue->status_lock);
1230  spin_lock_init(&queue->tx_lock);
1231  spin_lock_init(&queue->index_lock);
1232 
1233  queue->rt2x00dev = rt2x00dev;
1234  queue->qid = qid;
1235  queue->txop = 0;
1236  queue->aifs = 2;
1237  queue->cw_min = 5;
1238  queue->cw_max = 10;
1239 }
1240 
1241 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1242 {
1243  struct data_queue *queue;
1244  enum data_queue_qid qid;
1245  unsigned int req_atim =
1246  !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1247 
1248  /*
1249  * We need the following queues:
1250  * RX: 1
1251  * TX: ops->tx_queues
1252  * Beacon: 1
1253  * Atim: 1 (if required)
1254  */
1255  rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1256 
1257  queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1258  if (!queue) {
1259  ERROR(rt2x00dev, "Queue allocation failed.\n");
1260  return -ENOMEM;
1261  }
1262 
1263  /*
1264  * Initialize pointers
1265  */
1266  rt2x00dev->rx = queue;
1267  rt2x00dev->tx = &queue[1];
1268  rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1269  rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1270 
1271  /*
1272  * Initialize queue parameters.
1273  * RX: qid = QID_RX
1274  * TX: qid = QID_AC_VO + index
1275  * TX: cw_min: 2^5 = 32.
1276  * TX: cw_max: 2^10 = 1024.
1277  * BCN: qid = QID_BEACON
1278  * ATIM: qid = QID_ATIM
1279  */
1280  rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1281 
1282  qid = QID_AC_VO;
1283  tx_queue_for_each(rt2x00dev, queue)
1284  rt2x00queue_init(rt2x00dev, queue, qid++);
1285 
1286  rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1287  if (req_atim)
1288  rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1289 
1290  return 0;
1291 }
1292 
1293 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1294 {
1295  kfree(rt2x00dev->rx);
1296  rt2x00dev->rx = NULL;
1297  rt2x00dev->tx = NULL;
1298  rt2x00dev->bcn = NULL;
1299 }