Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sis7019.c
Go to the documentation of this file.
1 /*
2  * Driver for SiS7019 Audio Accelerator
3  *
4  * Copyright (C) 2004-2007, David Dillow
5  * Written by David Dillow <[email protected]>
6  * Inspired by the Trident 4D-WaveDX/NX driver.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, version 2.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22  */
23 
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
34 #include "sis7019.h"
35 
36 MODULE_AUTHOR("David Dillow <[email protected]>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
40 
41 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
42 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
43 static bool enable = 1;
44 static int codecs = 1;
45 
46 module_param(index, int, 0444);
47 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
48 module_param(id, charp, 0444);
49 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
50 module_param(enable, bool, 0444);
51 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
52 module_param(codecs, int, 0444);
53 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
54 
55 static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = {
56  { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
57  { 0, }
58 };
59 
60 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
61 
62 /* There are three timing modes for the voices.
63  *
64  * For both playback and capture, when the buffer is one or two periods long,
65  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
66  * to let us know when the periods have ended.
67  *
68  * When performing playback with more than two periods per buffer, we set
69  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
70  * reach it. We then update the offset and continue on until we are
71  * interrupted for the next period.
72  *
73  * Capture channels do not have a SSO, so we allocate a playback channel to
74  * use as a timer for the capture periods. We use the SSO on the playback
75  * channel to clock out virtual periods, and adjust the virtual period length
76  * to maintain synchronization. This algorithm came from the Trident driver.
77  *
78  * FIXME: It'd be nice to make use of some of the synth features in the
79  * hardware, but a woeful lack of documentation is a significant roadblock.
80  */
81 struct voice {
83 #define VOICE_IN_USE 1
84 #define VOICE_CAPTURE 2
85 #define VOICE_SSO_TIMING 4
86 #define VOICE_SYNC_TIMING 8
95  struct voice *timing;
99  int num;
100 };
101 
102 /* We need four pages to store our wave parameters during a suspend. If
103  * we're not doing power management, we still need to allocate a page
104  * for the silence buffer.
105  */
106 #ifdef CONFIG_PM_SLEEP
107 #define SIS_SUSPEND_PAGES 4
108 #else
109 #define SIS_SUSPEND_PAGES 1
110 #endif
111 
112 struct sis7019 {
113  unsigned long ioport;
115  int irq;
117 
118  struct pci_dev *pci;
119  struct snd_pcm *pcm;
120  struct snd_card *card;
121  struct snd_ac97 *ac97[3];
122 
123  /* Protect against more than one thread hitting the AC97
124  * registers (in a more polite manner than pounding the hardware
125  * semaphore)
126  */
128 
129  /* voice_lock protects allocation/freeing of the voice descriptions
130  */
132 
133  struct voice voices[64];
135 
136  /* Allocate pages to store the internal wave state during
137  * suspends. When we're operating, this can be used as a silence
138  * buffer for a timing channel.
139  */
141 
144 };
145 
146 /* These values are also used by the module param 'codecs' to indicate
147  * which codecs should be present.
148  */
149 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
150 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
151 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
152 
153 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
154  * documented range of 8-0xfff8 samples. Given that they are 0-based,
155  * that places our period/buffer range at 9-0xfff9 samples. That makes the
156  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
157  * max samples / min samples gives us the max periods in a buffer.
158  *
159  * We'll add a constraint upon open that limits the period and buffer sample
160  * size to values that are legal for the hardware.
161  */
162 static struct snd_pcm_hardware sis_playback_hw_info = {
163  .info = (SNDRV_PCM_INFO_MMAP |
172  .rate_min = 4000,
173  .rate_max = 48000,
174  .channels_min = 1,
175  .channels_max = 2,
176  .buffer_bytes_max = (0xfff9 * 4),
177  .period_bytes_min = 9,
178  .period_bytes_max = (0xfff9 * 4),
179  .periods_min = 1,
180  .periods_max = (0xfff9 / 9),
181 };
182 
183 static struct snd_pcm_hardware sis_capture_hw_info = {
192  .rates = SNDRV_PCM_RATE_48000,
193  .rate_min = 4000,
194  .rate_max = 48000,
195  .channels_min = 1,
196  .channels_max = 2,
197  .buffer_bytes_max = (0xfff9 * 4),
198  .period_bytes_min = 9,
199  .period_bytes_max = (0xfff9 * 4),
200  .periods_min = 1,
201  .periods_max = (0xfff9 / 9),
202 };
203 
204 static void sis_update_sso(struct voice *voice, u16 period)
205 {
206  void __iomem *base = voice->ctrl_base;
207 
208  voice->sso += period;
209  if (voice->sso >= voice->buffer_size)
210  voice->sso -= voice->buffer_size;
211 
212  /* Enforce the documented hardware minimum offset */
213  if (voice->sso < 8)
214  voice->sso = 8;
215 
216  /* The SSO is in the upper 16 bits of the register. */
217  writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
218 }
219 
220 static void sis_update_voice(struct voice *voice)
221 {
222  if (voice->flags & VOICE_SSO_TIMING) {
223  sis_update_sso(voice, voice->period_size);
224  } else if (voice->flags & VOICE_SYNC_TIMING) {
225  int sync;
226 
227  /* If we've not hit the end of the virtual period, update
228  * our records and keep going.
229  */
230  if (voice->vperiod > voice->period_size) {
231  voice->vperiod -= voice->period_size;
232  if (voice->vperiod < voice->period_size)
233  sis_update_sso(voice, voice->vperiod);
234  else
235  sis_update_sso(voice, voice->period_size);
236  return;
237  }
238 
239  /* Calculate our relative offset between the target and
240  * the actual CSO value. Since we're operating in a loop,
241  * if the value is more than half way around, we can
242  * consider ourselves wrapped.
243  */
244  sync = voice->sync_cso;
245  sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
246  if (sync > (voice->sync_buffer_size / 2))
247  sync -= voice->sync_buffer_size;
248 
249  /* If sync is positive, then we interrupted too early, and
250  * we'll need to come back in a few samples and try again.
251  * There's a minimum wait, as it takes some time for the DMA
252  * engine to startup, etc...
253  */
254  if (sync > 0) {
255  if (sync < 16)
256  sync = 16;
257  sis_update_sso(voice, sync);
258  return;
259  }
260 
261  /* Ok, we interrupted right on time, or (hopefully) just
262  * a bit late. We'll adjst our next waiting period based
263  * on how close we got.
264  *
265  * We need to stay just behind the actual channel to ensure
266  * it really is past a period when we get our interrupt --
267  * otherwise we'll fall into the early code above and have
268  * a minimum wait time, which makes us quite late here,
269  * eating into the user's time to refresh the buffer, esp.
270  * if using small periods.
271  *
272  * If we're less than 9 samples behind, we're on target.
273  * Otherwise, shorten the next vperiod by the amount we've
274  * been delayed.
275  */
276  if (sync > -9)
277  voice->vperiod = voice->sync_period_size + 1;
278  else
279  voice->vperiod = voice->sync_period_size + sync + 10;
280 
281  if (voice->vperiod < voice->buffer_size) {
282  sis_update_sso(voice, voice->vperiod);
283  voice->vperiod = 0;
284  } else
285  sis_update_sso(voice, voice->period_size);
286 
287  sync = voice->sync_cso + voice->sync_period_size;
288  if (sync >= voice->sync_buffer_size)
289  sync -= voice->sync_buffer_size;
290  voice->sync_cso = sync;
291  }
292 
294 }
295 
296 static void sis_voice_irq(u32 status, struct voice *voice)
297 {
298  int bit;
299 
300  while (status) {
301  bit = __ffs(status);
302  status >>= bit + 1;
303  voice += bit;
304  sis_update_voice(voice);
305  voice++;
306  }
307 }
308 
309 static irqreturn_t sis_interrupt(int irq, void *dev)
310 {
311  struct sis7019 *sis = dev;
312  unsigned long io = sis->ioport;
313  struct voice *voice;
314  u32 intr, status;
315 
316  /* We only use the DMA interrupts, and we don't enable any other
317  * source of interrupts. But, it is possible to see an interrupt
318  * status that didn't actually interrupt us, so eliminate anything
319  * we're not expecting to avoid falsely claiming an IRQ, and an
320  * ensuing endless loop.
321  */
322  intr = inl(io + SIS_GISR);
325  if (!intr)
326  return IRQ_NONE;
327 
328  do {
329  status = inl(io + SIS_PISR_A);
330  if (status) {
331  sis_voice_irq(status, sis->voices);
332  outl(status, io + SIS_PISR_A);
333  }
334 
335  status = inl(io + SIS_PISR_B);
336  if (status) {
337  sis_voice_irq(status, &sis->voices[32]);
338  outl(status, io + SIS_PISR_B);
339  }
340 
341  status = inl(io + SIS_RISR);
342  if (status) {
343  voice = &sis->capture_voice;
344  if (!voice->timing)
346 
347  outl(status, io + SIS_RISR);
348  }
349 
350  outl(intr, io + SIS_GISR);
351  intr = inl(io + SIS_GISR);
354  } while (intr);
355 
356  return IRQ_HANDLED;
357 }
358 
359 static u32 sis_rate_to_delta(unsigned int rate)
360 {
361  u32 delta;
362 
363  /* This was copied from the trident driver, but it seems its gotten
364  * around a bit... nevertheless, it works well.
365  *
366  * We special case 44100 and 8000 since rounding with the equation
367  * does not give us an accurate enough value. For 11025 and 22050
368  * the equation gives us the best answer. All other frequencies will
369  * also use the equation. JDW
370  */
371  if (rate == 44100)
372  delta = 0xeb3;
373  else if (rate == 8000)
374  delta = 0x2ab;
375  else if (rate == 48000)
376  delta = 0x1000;
377  else
378  delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
379  return delta;
380 }
381 
382 static void __sis_map_silence(struct sis7019 *sis)
383 {
384  /* Helper function: must hold sis->voice_lock on entry */
385  if (!sis->silence_users)
386  sis->silence_dma_addr = pci_map_single(sis->pci,
387  sis->suspend_state[0],
388  4096, PCI_DMA_TODEVICE);
389  sis->silence_users++;
390 }
391 
392 static void __sis_unmap_silence(struct sis7019 *sis)
393 {
394  /* Helper function: must hold sis->voice_lock on entry */
395  sis->silence_users--;
396  if (!sis->silence_users)
397  pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
399 }
400 
401 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
402 {
403  unsigned long flags;
404 
405  spin_lock_irqsave(&sis->voice_lock, flags);
406  if (voice->timing) {
407  __sis_unmap_silence(sis);
408  voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
410  voice->timing = NULL;
411  }
413  spin_unlock_irqrestore(&sis->voice_lock, flags);
414 }
415 
416 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
417 {
418  /* Must hold the voice_lock on entry */
419  struct voice *voice;
420  int i;
421 
422  for (i = 0; i < 64; i++) {
423  voice = &sis->voices[i];
424  if (voice->flags & VOICE_IN_USE)
425  continue;
426  voice->flags |= VOICE_IN_USE;
427  goto found_one;
428  }
429  voice = NULL;
430 
431 found_one:
432  return voice;
433 }
434 
435 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
436 {
437  struct voice *voice;
438  unsigned long flags;
439 
440  spin_lock_irqsave(&sis->voice_lock, flags);
441  voice = __sis_alloc_playback_voice(sis);
442  spin_unlock_irqrestore(&sis->voice_lock, flags);
443 
444  return voice;
445 }
446 
447 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
448  struct snd_pcm_hw_params *hw_params)
449 {
450  struct sis7019 *sis = snd_pcm_substream_chip(substream);
451  struct snd_pcm_runtime *runtime = substream->runtime;
452  struct voice *voice = runtime->private_data;
453  unsigned int period_size, buffer_size;
454  unsigned long flags;
455  int needed;
456 
457  /* If there are one or two periods per buffer, we don't need a
458  * timing voice, as we can use the capture channel's interrupts
459  * to clock out the periods.
460  */
461  period_size = params_period_size(hw_params);
462  buffer_size = params_buffer_size(hw_params);
463  needed = (period_size != buffer_size &&
464  period_size != (buffer_size / 2));
465 
466  if (needed && !voice->timing) {
467  spin_lock_irqsave(&sis->voice_lock, flags);
468  voice->timing = __sis_alloc_playback_voice(sis);
469  if (voice->timing)
470  __sis_map_silence(sis);
471  spin_unlock_irqrestore(&sis->voice_lock, flags);
472  if (!voice->timing)
473  return -ENOMEM;
474  voice->timing->substream = substream;
475  } else if (!needed && voice->timing) {
476  sis_free_voice(sis, voice);
477  voice->timing = NULL;
478  }
479 
480  return 0;
481 }
482 
483 static int sis_playback_open(struct snd_pcm_substream *substream)
484 {
485  struct sis7019 *sis = snd_pcm_substream_chip(substream);
486  struct snd_pcm_runtime *runtime = substream->runtime;
487  struct voice *voice;
488 
489  voice = sis_alloc_playback_voice(sis);
490  if (!voice)
491  return -EAGAIN;
492 
493  voice->substream = substream;
494  runtime->private_data = voice;
495  runtime->hw = sis_playback_hw_info;
497  9, 0xfff9);
499  9, 0xfff9);
500  snd_pcm_set_sync(substream);
501  return 0;
502 }
503 
504 static int sis_substream_close(struct snd_pcm_substream *substream)
505 {
506  struct sis7019 *sis = snd_pcm_substream_chip(substream);
507  struct snd_pcm_runtime *runtime = substream->runtime;
508  struct voice *voice = runtime->private_data;
509 
510  sis_free_voice(sis, voice);
511  return 0;
512 }
513 
514 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
515  struct snd_pcm_hw_params *hw_params)
516 {
517  return snd_pcm_lib_malloc_pages(substream,
518  params_buffer_bytes(hw_params));
519 }
520 
521 static int sis_hw_free(struct snd_pcm_substream *substream)
522 {
523  return snd_pcm_lib_free_pages(substream);
524 }
525 
526 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
527 {
528  struct snd_pcm_runtime *runtime = substream->runtime;
529  struct voice *voice = runtime->private_data;
530  void __iomem *ctrl_base = voice->ctrl_base;
531  void __iomem *wave_base = voice->wave_base;
532  u32 format, dma_addr, control, sso_eso, delta, reg;
533  u16 leo;
534 
535  /* We rely on the PCM core to ensure that the parameters for this
536  * substream do not change on us while we're programming the HW.
537  */
538  format = 0;
539  if (snd_pcm_format_width(runtime->format) == 8)
540  format |= SIS_PLAY_DMA_FORMAT_8BIT;
541  if (!snd_pcm_format_signed(runtime->format))
543  if (runtime->channels == 1)
544  format |= SIS_PLAY_DMA_FORMAT_MONO;
545 
546  /* The baseline setup is for a single period per buffer, and
547  * we add bells and whistles as needed from there.
548  */
549  dma_addr = runtime->dma_addr;
550  leo = runtime->buffer_size - 1;
552  sso_eso = leo;
553 
554  if (runtime->period_size == (runtime->buffer_size / 2)) {
555  control |= SIS_PLAY_DMA_INTR_AT_MLP;
556  } else if (runtime->period_size != runtime->buffer_size) {
557  voice->flags |= VOICE_SSO_TIMING;
558  voice->sso = runtime->period_size - 1;
559  voice->period_size = runtime->period_size;
560  voice->buffer_size = runtime->buffer_size;
561 
562  control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
563  control |= SIS_PLAY_DMA_INTR_AT_SSO;
564  sso_eso |= (runtime->period_size - 1) << 16;
565  }
566 
567  delta = sis_rate_to_delta(runtime->rate);
568 
569  /* Ok, we're ready to go, set up the channel.
570  */
571  writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
572  writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
573  writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
574  writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
575 
576  for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
577  writel(0, wave_base + reg);
578 
580  writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
584  wave_base + SIS_WAVE_CHANNEL_CONTROL);
585 
586  /* Force PCI writes to post. */
587  readl(ctrl_base);
588 
589  return 0;
590 }
591 
592 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
593 {
594  struct sis7019 *sis = snd_pcm_substream_chip(substream);
595  unsigned long io = sis->ioport;
596  struct snd_pcm_substream *s;
597  struct voice *voice;
598  void *chip;
599  int starting;
600  u32 record = 0;
601  u32 play[2] = { 0, 0 };
602 
603  /* No locks needed, as the PCM core will hold the locks on the
604  * substreams, and the HW will only start/stop the indicated voices
605  * without changing the state of the others.
606  */
607  switch (cmd) {
611  starting = 1;
612  break;
616  starting = 0;
617  break;
618  default:
619  return -EINVAL;
620  }
621 
622  snd_pcm_group_for_each_entry(s, substream) {
623  /* Make sure it is for us... */
624  chip = snd_pcm_substream_chip(s);
625  if (chip != sis)
626  continue;
627 
628  voice = s->runtime->private_data;
629  if (voice->flags & VOICE_CAPTURE) {
630  record |= 1 << voice->num;
631  voice = voice->timing;
632  }
633 
634  /* voice could be NULL if this a recording stream, and it
635  * doesn't have an external timing channel.
636  */
637  if (voice)
638  play[voice->num / 32] |= 1 << (voice->num & 0x1f);
639 
640  snd_pcm_trigger_done(s, substream);
641  }
642 
643  if (starting) {
644  if (record)
645  outl(record, io + SIS_RECORD_START_REG);
646  if (play[0])
647  outl(play[0], io + SIS_PLAY_START_A_REG);
648  if (play[1])
649  outl(play[1], io + SIS_PLAY_START_B_REG);
650  } else {
651  if (record)
652  outl(record, io + SIS_RECORD_STOP_REG);
653  if (play[0])
654  outl(play[0], io + SIS_PLAY_STOP_A_REG);
655  if (play[1])
656  outl(play[1], io + SIS_PLAY_STOP_B_REG);
657  }
658  return 0;
659 }
660 
661 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
662 {
663  struct snd_pcm_runtime *runtime = substream->runtime;
664  struct voice *voice = runtime->private_data;
665  u32 cso;
666 
667  cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
668  cso &= 0xffff;
669  return cso;
670 }
671 
672 static int sis_capture_open(struct snd_pcm_substream *substream)
673 {
674  struct sis7019 *sis = snd_pcm_substream_chip(substream);
675  struct snd_pcm_runtime *runtime = substream->runtime;
676  struct voice *voice = &sis->capture_voice;
677  unsigned long flags;
678 
679  /* FIXME: The driver only supports recording from one channel
680  * at the moment, but it could support more.
681  */
682  spin_lock_irqsave(&sis->voice_lock, flags);
683  if (voice->flags & VOICE_IN_USE)
684  voice = NULL;
685  else
686  voice->flags |= VOICE_IN_USE;
687  spin_unlock_irqrestore(&sis->voice_lock, flags);
688 
689  if (!voice)
690  return -EAGAIN;
691 
692  voice->substream = substream;
693  runtime->private_data = voice;
694  runtime->hw = sis_capture_hw_info;
695  runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
696  snd_pcm_limit_hw_rates(runtime);
698  9, 0xfff9);
700  9, 0xfff9);
701  snd_pcm_set_sync(substream);
702  return 0;
703 }
704 
705 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
706  struct snd_pcm_hw_params *hw_params)
707 {
708  struct sis7019 *sis = snd_pcm_substream_chip(substream);
709  int rc;
710 
712  params_rate(hw_params));
713  if (rc)
714  goto out;
715 
716  rc = snd_pcm_lib_malloc_pages(substream,
717  params_buffer_bytes(hw_params));
718  if (rc < 0)
719  goto out;
720 
721  rc = sis_alloc_timing_voice(substream, hw_params);
722 
723 out:
724  return rc;
725 }
726 
727 static void sis_prepare_timing_voice(struct voice *voice,
728  struct snd_pcm_substream *substream)
729 {
730  struct sis7019 *sis = snd_pcm_substream_chip(substream);
731  struct snd_pcm_runtime *runtime = substream->runtime;
732  struct voice *timing = voice->timing;
733  void __iomem *play_base = timing->ctrl_base;
734  void __iomem *wave_base = timing->wave_base;
736  u32 format, control, sso_eso, delta;
737  u32 vperiod, sso, reg;
738 
739  /* Set our initial buffer and period as large as we can given a
740  * single page of silence.
741  */
742  buffer_size = 4096 / runtime->channels;
743  buffer_size /= snd_pcm_format_size(runtime->format, 1);
744  period_size = buffer_size;
745 
746  /* Initially, we want to interrupt just a bit behind the end of
747  * the period we're clocking out. 12 samples seems to give a good
748  * delay.
749  *
750  * We want to spread our interrupts throughout the virtual period,
751  * so that we don't end up with two interrupts back to back at the
752  * end -- this helps minimize the effects of any jitter. Adjust our
753  * clocking period size so that the last period is at least a fourth
754  * of a full period.
755  *
756  * This is all moot if we don't need to use virtual periods.
757  */
758  vperiod = runtime->period_size + 12;
759  if (vperiod > period_size) {
760  u16 tail = vperiod % period_size;
761  u16 quarter_period = period_size / 4;
762 
763  if (tail && tail < quarter_period) {
764  u16 loops = vperiod / period_size;
765 
766  tail = quarter_period - tail;
767  tail += loops - 1;
768  tail /= loops;
769  period_size -= tail;
770  }
771 
772  sso = period_size - 1;
773  } else {
774  /* The initial period will fit inside the buffer, so we
775  * don't need to use virtual periods -- disable them.
776  */
777  period_size = runtime->period_size;
778  sso = vperiod - 1;
779  vperiod = 0;
780  }
781 
782  /* The interrupt handler implements the timing synchronization, so
783  * setup its state.
784  */
785  timing->flags |= VOICE_SYNC_TIMING;
786  timing->sync_base = voice->ctrl_base;
787  timing->sync_cso = runtime->period_size;
788  timing->sync_period_size = runtime->period_size;
789  timing->sync_buffer_size = runtime->buffer_size;
790  timing->period_size = period_size;
791  timing->buffer_size = buffer_size;
792  timing->sso = sso;
793  timing->vperiod = vperiod;
794 
795  /* Using unsigned samples with the all-zero silence buffer
796  * forces the output to the lower rail, killing playback.
797  * So ignore unsigned vs signed -- it doesn't change the timing.
798  */
799  format = 0;
800  if (snd_pcm_format_width(runtime->format) == 8)
802  if (runtime->channels == 1)
803  format |= SIS_CAPTURE_DMA_FORMAT_MONO;
804 
805  control = timing->buffer_size - 1;
807  sso_eso = timing->buffer_size - 1;
808  sso_eso |= timing->sso << 16;
809 
810  delta = sis_rate_to_delta(runtime->rate);
811 
812  /* We've done the math, now configure the channel.
813  */
814  writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
815  writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
816  writel(control, play_base + SIS_PLAY_DMA_CONTROL);
817  writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
818 
819  for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
820  writel(0, wave_base + reg);
821 
823  writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
827  wave_base + SIS_WAVE_CHANNEL_CONTROL);
828 }
829 
830 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
831 {
832  struct snd_pcm_runtime *runtime = substream->runtime;
833  struct voice *voice = runtime->private_data;
834  void __iomem *rec_base = voice->ctrl_base;
836  u16 leo;
837 
838  /* We rely on the PCM core to ensure that the parameters for this
839  * substream do not change on us while we're programming the HW.
840  */
841  format = 0;
842  if (snd_pcm_format_width(runtime->format) == 8)
844  if (!snd_pcm_format_signed(runtime->format))
846  if (runtime->channels == 1)
847  format |= SIS_CAPTURE_DMA_FORMAT_MONO;
848 
849  dma_addr = runtime->dma_addr;
850  leo = runtime->buffer_size - 1;
851  control = leo | SIS_CAPTURE_DMA_LOOP;
852 
853  /* If we've got more than two periods per buffer, then we have
854  * use a timing voice to clock out the periods. Otherwise, we can
855  * use the capture channel's interrupts.
856  */
857  if (voice->timing) {
858  sis_prepare_timing_voice(voice, substream);
859  } else {
860  control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
861  if (runtime->period_size != runtime->buffer_size)
862  control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
863  }
864 
865  writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
866  writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
867  writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
868 
869  /* Force the writes to post. */
870  readl(rec_base);
871 
872  return 0;
873 }
874 
875 static struct snd_pcm_ops sis_playback_ops = {
876  .open = sis_playback_open,
877  .close = sis_substream_close,
878  .ioctl = snd_pcm_lib_ioctl,
879  .hw_params = sis_playback_hw_params,
880  .hw_free = sis_hw_free,
881  .prepare = sis_pcm_playback_prepare,
882  .trigger = sis_pcm_trigger,
883  .pointer = sis_pcm_pointer,
884 };
885 
886 static struct snd_pcm_ops sis_capture_ops = {
887  .open = sis_capture_open,
888  .close = sis_substream_close,
889  .ioctl = snd_pcm_lib_ioctl,
890  .hw_params = sis_capture_hw_params,
891  .hw_free = sis_hw_free,
892  .prepare = sis_pcm_capture_prepare,
893  .trigger = sis_pcm_trigger,
894  .pointer = sis_pcm_pointer,
895 };
896 
897 static int __devinit sis_pcm_create(struct sis7019 *sis)
898 {
899  struct snd_pcm *pcm;
900  int rc;
901 
902  /* We have 64 voices, and the driver currently records from
903  * only one channel, though that could change in the future.
904  */
905  rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
906  if (rc)
907  return rc;
908 
909  pcm->private_data = sis;
910  strcpy(pcm->name, "SiS7019");
911  sis->pcm = pcm;
912 
913  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
914  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
915 
916  /* Try to preallocate some memory, but it's not the end of the
917  * world if this fails.
918  */
920  snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
921 
922  return 0;
923 }
924 
925 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
926 {
927  unsigned long io = sis->ioport;
928  unsigned short val = 0xffff;
929  u16 status;
930  u16 rdy;
931  int count;
932  static const u16 codec_ready[3] = {
936  };
937 
938  rdy = codec_ready[codec];
939 
940 
941  /* Get the AC97 semaphore -- software first, so we don't spin
942  * pounding out IO reads on the hardware semaphore...
943  */
944  mutex_lock(&sis->ac97_mutex);
945 
946  count = 0xffff;
947  while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
948  udelay(1);
949 
950  if (!count)
951  goto timeout;
952 
953  /* ... and wait for any outstanding commands to complete ...
954  */
955  count = 0xffff;
956  do {
957  status = inw(io + SIS_AC97_STATUS);
958  if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
959  break;
960 
961  udelay(1);
962  } while (--count);
963 
964  if (!count)
965  goto timeout_sema;
966 
967  /* ... before sending our command and waiting for it to finish ...
968  */
969  outl(cmd, io + SIS_AC97_CMD);
970  udelay(10);
971 
972  count = 0xffff;
973  while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
974  udelay(1);
975 
976  /* ... and reading the results (if any).
977  */
978  val = inl(io + SIS_AC97_CMD) >> 16;
979 
980 timeout_sema:
982 timeout:
983  mutex_unlock(&sis->ac97_mutex);
984 
985  if (!count) {
986  dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
987  codec, cmd);
988  }
989 
990  return val;
991 }
992 
993 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
994  unsigned short val)
995 {
996  static const u32 cmd[3] = {
1000  };
1001  sis_ac97_rw(ac97->private_data, ac97->num,
1002  (val << 16) | (reg << 8) | cmd[ac97->num]);
1003 }
1004 
1005 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
1006 {
1007  static const u32 cmd[3] = {
1011  };
1012  return sis_ac97_rw(ac97->private_data, ac97->num,
1013  (reg << 8) | cmd[ac97->num]);
1014 }
1015 
1016 static int __devinit sis_mixer_create(struct sis7019 *sis)
1017 {
1018  struct snd_ac97_bus *bus;
1019  struct snd_ac97_template ac97;
1020  static struct snd_ac97_bus_ops ops = {
1021  .write = sis_ac97_write,
1022  .read = sis_ac97_read,
1023  };
1024  int rc;
1025 
1026  memset(&ac97, 0, sizeof(ac97));
1027  ac97.private_data = sis;
1028 
1029  rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1030  if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1031  rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1032  ac97.num = 1;
1033  if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1034  rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1035  ac97.num = 2;
1036  if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1037  rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1038 
1039  /* If we return an error here, then snd_card_free() should
1040  * free up any ac97 codecs that got created, as well as the bus.
1041  */
1042  return rc;
1043 }
1044 
1045 static void sis_free_suspend(struct sis7019 *sis)
1046 {
1047  int i;
1048 
1049  for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1050  kfree(sis->suspend_state[i]);
1051 }
1052 
1053 static int sis_chip_free(struct sis7019 *sis)
1054 {
1055  /* Reset the chip, and disable all interrputs.
1056  */
1058  udelay(25);
1059  outl(0, sis->ioport + SIS_GCR);
1060  outl(0, sis->ioport + SIS_GIER);
1061 
1062  /* Now, free everything we allocated.
1063  */
1064  if (sis->irq >= 0)
1065  free_irq(sis->irq, sis);
1066 
1067  if (sis->ioaddr)
1068  iounmap(sis->ioaddr);
1069 
1070  pci_release_regions(sis->pci);
1071  pci_disable_device(sis->pci);
1072 
1073  sis_free_suspend(sis);
1074  return 0;
1075 }
1076 
1077 static int sis_dev_free(struct snd_device *dev)
1078 {
1079  struct sis7019 *sis = dev->device_data;
1080  return sis_chip_free(sis);
1081 }
1082 
1083 static int sis_chip_init(struct sis7019 *sis)
1084 {
1085  unsigned long io = sis->ioport;
1086  void __iomem *ioaddr = sis->ioaddr;
1087  unsigned long timeout;
1088  u16 status;
1089  int count;
1090  int i;
1091 
1092  /* Reset the audio controller
1093  */
1095  udelay(25);
1096  outl(0, io + SIS_GCR);
1097 
1098  /* Get the AC-link semaphore, and reset the codecs
1099  */
1100  count = 0xffff;
1101  while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1102  udelay(1);
1103 
1104  if (!count)
1105  return -EIO;
1106 
1108  udelay(250);
1109 
1110  count = 0xffff;
1111  while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1112  udelay(1);
1113 
1114  /* Command complete, we can let go of the semaphore now.
1115  */
1117  if (!count)
1118  return -EIO;
1119 
1120  /* Now that we've finished the reset, find out what's attached.
1121  * There are some codec/board combinations that take an extremely
1122  * long time to come up. 350+ ms has been observed in the field,
1123  * so we'll give them up to 500ms.
1124  */
1125  sis->codecs_present = 0;
1126  timeout = msecs_to_jiffies(500) + jiffies;
1127  while (time_before_eq(jiffies, timeout)) {
1128  status = inl(io + SIS_AC97_STATUS);
1129  if (status & SIS_AC97_STATUS_CODEC_READY)
1131  if (status & SIS_AC97_STATUS_CODEC2_READY)
1133  if (status & SIS_AC97_STATUS_CODEC3_READY)
1135 
1136  if (sis->codecs_present == codecs)
1137  break;
1138 
1139  msleep(1);
1140  }
1141 
1142  /* All done, check for errors.
1143  */
1144  if (!sis->codecs_present) {
1145  dev_err(&sis->pci->dev, "could not find any codecs\n");
1146  return -EIO;
1147  }
1148 
1149  if (sis->codecs_present != codecs) {
1150  dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1151  sis->codecs_present, codecs);
1152  }
1153 
1154  /* Let the hardware know that the audio driver is alive,
1155  * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1156  * record channels. We're going to want to use Variable Rate Audio
1157  * for recording, to avoid needlessly resampling from 48kHZ.
1158  */
1164 
1165  /* All AC97 PCM slots should be sourced from sub-mixer 0.
1166  */
1167  outl(0, io + SIS_AC97_PSR);
1168 
1169  /* There is only one valid DMA setup for a PCI environment.
1170  */
1172 
1173  /* Reset the synchronization groups for all of the channels
1174  * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1175  * we'll need to change how we handle these. Until then, we just
1176  * assign sub-mixer 0 to all playback channels, and avoid any
1177  * attenuation on the audio.
1178  */
1179  outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1180  outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1181  outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1182  outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1183  outl(0, io + SIS_MIXER_SYNC_GROUP);
1184 
1185  for (i = 0; i < 64; i++) {
1186  writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1188  SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1189  }
1190 
1191  /* Don't attenuate any audio set for the wave amplifier.
1192  *
1193  * FIXME: Maximum attenuation is set for the music amp, which will
1194  * need to change if we start using the synth engine.
1195  */
1196  outl(0xffff0000, io + SIS_WEVCR);
1197 
1198  /* Ensure that the wave engine is in normal operating mode.
1199  */
1200  outl(0, io + SIS_WECCR);
1201 
1202  /* Go ahead and enable the DMA interrupts. They won't go live
1203  * until we start a channel.
1204  */
1207 
1208  return 0;
1209 }
1210 
1211 #ifdef CONFIG_PM_SLEEP
1212 static int sis_suspend(struct device *dev)
1213 {
1214  struct pci_dev *pci = to_pci_dev(dev);
1215  struct snd_card *card = dev_get_drvdata(dev);
1216  struct sis7019 *sis = card->private_data;
1217  void __iomem *ioaddr = sis->ioaddr;
1218  int i;
1219 
1221  snd_pcm_suspend_all(sis->pcm);
1223  snd_ac97_suspend(sis->ac97[0]);
1225  snd_ac97_suspend(sis->ac97[1]);
1227  snd_ac97_suspend(sis->ac97[2]);
1228 
1229  /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1230  */
1231  if (sis->irq >= 0) {
1232  free_irq(sis->irq, sis);
1233  sis->irq = -1;
1234  }
1235 
1236  /* Save the internal state away
1237  */
1238  for (i = 0; i < 4; i++) {
1239  memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1240  ioaddr += 4096;
1241  }
1242 
1243  pci_disable_device(pci);
1244  pci_save_state(pci);
1246  return 0;
1247 }
1248 
1249 static int sis_resume(struct device *dev)
1250 {
1251  struct pci_dev *pci = to_pci_dev(dev);
1252  struct snd_card *card = dev_get_drvdata(dev);
1253  struct sis7019 *sis = card->private_data;
1254  void __iomem *ioaddr = sis->ioaddr;
1255  int i;
1256 
1258  pci_restore_state(pci);
1259 
1260  if (pci_enable_device(pci) < 0) {
1261  dev_err(&pci->dev, "unable to re-enable device\n");
1262  goto error;
1263  }
1264 
1265  if (sis_chip_init(sis)) {
1266  dev_err(&pci->dev, "unable to re-init controller\n");
1267  goto error;
1268  }
1269 
1270  if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1271  KBUILD_MODNAME, sis)) {
1272  dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1273  goto error;
1274  }
1275 
1276  /* Restore saved state, then clear out the page we use for the
1277  * silence buffer.
1278  */
1279  for (i = 0; i < 4; i++) {
1280  memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1281  ioaddr += 4096;
1282  }
1283 
1284  memset(sis->suspend_state[0], 0, 4096);
1285 
1286  sis->irq = pci->irq;
1287  pci_set_master(pci);
1288 
1290  snd_ac97_resume(sis->ac97[0]);
1292  snd_ac97_resume(sis->ac97[1]);
1294  snd_ac97_resume(sis->ac97[2]);
1295 
1297  return 0;
1298 
1299 error:
1300  snd_card_disconnect(card);
1301  return -EIO;
1302 }
1303 
1304 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1305 #define SIS_PM_OPS &sis_pm
1306 #else
1307 #define SIS_PM_OPS NULL
1308 #endif /* CONFIG_PM_SLEEP */
1309 
1310 static int sis_alloc_suspend(struct sis7019 *sis)
1311 {
1312  int i;
1313 
1314  /* We need 16K to store the internal wave engine state during a
1315  * suspend, but we don't need it to be contiguous, so play nice
1316  * with the memory system. We'll also use this area for a silence
1317  * buffer.
1318  */
1319  for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1320  sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1321  if (!sis->suspend_state[i])
1322  return -ENOMEM;
1323  }
1324  memset(sis->suspend_state[0], 0, 4096);
1325 
1326  return 0;
1327 }
1328 
1329 static int __devinit sis_chip_create(struct snd_card *card,
1330  struct pci_dev *pci)
1331 {
1332  struct sis7019 *sis = card->private_data;
1333  struct voice *voice;
1334  static struct snd_device_ops ops = {
1335  .dev_free = sis_dev_free,
1336  };
1337  int rc;
1338  int i;
1339 
1340  rc = pci_enable_device(pci);
1341  if (rc)
1342  goto error_out;
1343 
1344  if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
1345  dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1346  goto error_out_enabled;
1347  }
1348 
1349  memset(sis, 0, sizeof(*sis));
1350  mutex_init(&sis->ac97_mutex);
1351  spin_lock_init(&sis->voice_lock);
1352  sis->card = card;
1353  sis->pci = pci;
1354  sis->irq = -1;
1355  sis->ioport = pci_resource_start(pci, 0);
1356 
1357  rc = pci_request_regions(pci, "SiS7019");
1358  if (rc) {
1359  dev_err(&pci->dev, "unable request regions\n");
1360  goto error_out_enabled;
1361  }
1362 
1363  rc = -EIO;
1364  sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1365  if (!sis->ioaddr) {
1366  dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1367  goto error_out_cleanup;
1368  }
1369 
1370  rc = sis_alloc_suspend(sis);
1371  if (rc < 0) {
1372  dev_err(&pci->dev, "unable to allocate state storage\n");
1373  goto error_out_cleanup;
1374  }
1375 
1376  rc = sis_chip_init(sis);
1377  if (rc)
1378  goto error_out_cleanup;
1379 
1380  rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1381  sis);
1382  if (rc) {
1383  dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1384  goto error_out_cleanup;
1385  }
1386 
1387  sis->irq = pci->irq;
1388  pci_set_master(pci);
1389 
1390  for (i = 0; i < 64; i++) {
1391  voice = &sis->voices[i];
1392  voice->num = i;
1393  voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1394  voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1395  }
1396 
1397  voice = &sis->capture_voice;
1398  voice->flags = VOICE_CAPTURE;
1400  voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1401 
1402  rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1403  if (rc)
1404  goto error_out_cleanup;
1405 
1406  snd_card_set_dev(card, &pci->dev);
1407 
1408  return 0;
1409 
1410 error_out_cleanup:
1411  sis_chip_free(sis);
1412 
1413 error_out_enabled:
1414  pci_disable_device(pci);
1415 
1416 error_out:
1417  return rc;
1418 }
1419 
1420 static int __devinit snd_sis7019_probe(struct pci_dev *pci,
1421  const struct pci_device_id *pci_id)
1422 {
1423  struct snd_card *card;
1424  struct sis7019 *sis;
1425  int rc;
1426 
1427  rc = -ENOENT;
1428  if (!enable)
1429  goto error_out;
1430 
1431  /* The user can specify which codecs should be present so that we
1432  * can wait for them to show up if they are slow to recover from
1433  * the AC97 cold reset. We default to a single codec, the primary.
1434  *
1435  * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1436  */
1439  if (!codecs)
1440  codecs = SIS_PRIMARY_CODEC_PRESENT;
1441 
1442  rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
1443  if (rc < 0)
1444  goto error_out;
1445 
1446  strcpy(card->driver, "SiS7019");
1447  strcpy(card->shortname, "SiS7019");
1448  rc = sis_chip_create(card, pci);
1449  if (rc)
1450  goto card_error_out;
1451 
1452  sis = card->private_data;
1453 
1454  rc = sis_mixer_create(sis);
1455  if (rc)
1456  goto card_error_out;
1457 
1458  rc = sis_pcm_create(sis);
1459  if (rc)
1460  goto card_error_out;
1461 
1462  snprintf(card->longname, sizeof(card->longname),
1463  "%s Audio Accelerator with %s at 0x%lx, irq %d",
1464  card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1465  sis->ioport, sis->irq);
1466 
1467  rc = snd_card_register(card);
1468  if (rc)
1469  goto card_error_out;
1470 
1471  pci_set_drvdata(pci, card);
1472  return 0;
1473 
1474 card_error_out:
1475  snd_card_free(card);
1476 
1477 error_out:
1478  return rc;
1479 }
1480 
1481 static void __devexit snd_sis7019_remove(struct pci_dev *pci)
1482 {
1483  snd_card_free(pci_get_drvdata(pci));
1484  pci_set_drvdata(pci, NULL);
1485 }
1486 
1487 static struct pci_driver sis7019_driver = {
1488  .name = KBUILD_MODNAME,
1489  .id_table = snd_sis7019_ids,
1490  .probe = snd_sis7019_probe,
1491  .remove = __devexit_p(snd_sis7019_remove),
1492  .driver = {
1493  .pm = SIS_PM_OPS,
1494  },
1495 };
1496 
1497 module_pci_driver(sis7019_driver);