Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
smp_64.c
Go to the documentation of this file.
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller ([email protected])
4  */
5 
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38 
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53 
54 #include "cpumap.h"
55 
56 int sparc64_multi_core __read_mostly;
57 
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60  { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61 
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
64 
66 
67 void smp_info(struct seq_file *m)
68 {
69  int i;
70 
71  seq_printf(m, "State:\n");
73  seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75 
76 void smp_bogo(struct seq_file *m)
77 {
78  int i;
79 
81  seq_printf(m,
82  "Cpu%dClkTck\t: %016lx\n",
83  i, cpu_data(i).clock_tick);
84 }
85 
86 extern void setup_sparc64_timer(void);
87 
88 static volatile unsigned long callin_flag = 0;
89 
91 {
93 
94  __local_per_cpu_offset = __per_cpu_offset(cpuid);
95 
96  if (tlb_type == hypervisor)
98 
100 
102 
105 
106  callin_flag = 1;
107  __asm__ __volatile__("membar #Sync\n\t"
108  "flush %%g6" : : : "memory");
109 
110  /* Clear this or we will die instantly when we
111  * schedule back to this idler...
112  */
113  current_thread_info()->new_child = 0;
114 
115  /* Attach to the address space of init_task. */
116  atomic_inc(&init_mm.mm_count);
117  current->active_mm = &init_mm;
118 
119  /* inform the notifiers about the new cpu */
120  notify_cpu_starting(cpuid);
121 
122  while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123  rmb();
124 
125  set_cpu_online(cpuid, true);
127 
128  /* idle thread is expected to have preempt disabled */
129  preempt_disable();
130 }
131 
132 void cpu_panic(void)
133 {
134  printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
135  panic("SMP bolixed\n");
136 }
137 
138 /* This tick register synchronization scheme is taken entirely from
139  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140  *
141  * The only change I've made is to rework it so that the master
142  * initiates the synchonization instead of the slave. -DaveM
143  */
144 
145 #define MASTER 0
146 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
147 
148 #define NUM_ROUNDS 64 /* magic value */
149 #define NUM_ITERS 5 /* likewise */
150 
151 static DEFINE_SPINLOCK(itc_sync_lock);
152 static unsigned long go[SLAVE + 1];
153 
154 #define DEBUG_TICK_SYNC 0
155 
156 static inline long get_delta (long *rt, long *master)
157 {
158  unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
159  unsigned long tcenter, t0, t1, tm;
160  unsigned long i;
161 
162  for (i = 0; i < NUM_ITERS; i++) {
163  t0 = tick_ops->get_tick();
164  go[MASTER] = 1;
165  membar_safe("#StoreLoad");
166  while (!(tm = go[SLAVE]))
167  rmb();
168  go[SLAVE] = 0;
169  wmb();
170  t1 = tick_ops->get_tick();
171 
172  if (t1 - t0 < best_t1 - best_t0)
173  best_t0 = t0, best_t1 = t1, best_tm = tm;
174  }
175 
176  *rt = best_t1 - best_t0;
177  *master = best_tm - best_t0;
178 
179  /* average best_t0 and best_t1 without overflow: */
180  tcenter = (best_t0/2 + best_t1/2);
181  if (best_t0 % 2 + best_t1 % 2 == 2)
182  tcenter++;
183  return tcenter - best_tm;
184 }
185 
187 {
188  long i, delta, adj, adjust_latency = 0, done = 0;
189  unsigned long flags, rt, master_time_stamp;
190 #if DEBUG_TICK_SYNC
191  struct {
192  long rt; /* roundtrip time */
193  long master; /* master's timestamp */
194  long diff; /* difference between midpoint and master's timestamp */
195  long lat; /* estimate of itc adjustment latency */
196  } t[NUM_ROUNDS];
197 #endif
198 
199  go[MASTER] = 1;
200 
201  while (go[MASTER])
202  rmb();
203 
204  local_irq_save(flags);
205  {
206  for (i = 0; i < NUM_ROUNDS; i++) {
207  delta = get_delta(&rt, &master_time_stamp);
208  if (delta == 0)
209  done = 1; /* let's lock on to this... */
210 
211  if (!done) {
212  if (i > 0) {
213  adjust_latency += -delta;
214  adj = -delta + adjust_latency/4;
215  } else
216  adj = -delta;
217 
218  tick_ops->add_tick(adj);
219  }
220 #if DEBUG_TICK_SYNC
221  t[i].rt = rt;
222  t[i].master = master_time_stamp;
223  t[i].diff = delta;
224  t[i].lat = adjust_latency/4;
225 #endif
226  }
227  }
228  local_irq_restore(flags);
229 
230 #if DEBUG_TICK_SYNC
231  for (i = 0; i < NUM_ROUNDS; i++)
232  printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
233  t[i].rt, t[i].master, t[i].diff, t[i].lat);
234 #endif
235 
236  printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
237  "(last diff %ld cycles, maxerr %lu cycles)\n",
238  smp_processor_id(), delta, rt);
239 }
240 
241 static void smp_start_sync_tick_client(int cpu);
242 
243 static void smp_synchronize_one_tick(int cpu)
244 {
245  unsigned long flags, i;
246 
247  go[MASTER] = 0;
248 
249  smp_start_sync_tick_client(cpu);
250 
251  /* wait for client to be ready */
252  while (!go[MASTER])
253  rmb();
254 
255  /* now let the client proceed into his loop */
256  go[MASTER] = 0;
257  membar_safe("#StoreLoad");
258 
259  spin_lock_irqsave(&itc_sync_lock, flags);
260  {
261  for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
262  while (!go[MASTER])
263  rmb();
264  go[MASTER] = 0;
265  wmb();
266  go[SLAVE] = tick_ops->get_tick();
267  membar_safe("#StoreLoad");
268  }
269  }
270  spin_unlock_irqrestore(&itc_sync_lock, flags);
271 }
272 
273 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
274 /* XXX Put this in some common place. XXX */
275 static unsigned long kimage_addr_to_ra(void *p)
276 {
277  unsigned long val = (unsigned long) p;
278 
279  return kern_base + (val - KERNBASE);
280 }
281 
282 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
283 {
284  extern unsigned long sparc64_ttable_tl0;
285  extern unsigned long kern_locked_tte_data;
286  struct hvtramp_descr *hdesc;
287  unsigned long trampoline_ra;
288  struct trap_per_cpu *tb;
289  u64 tte_vaddr, tte_data;
290  unsigned long hv_err;
291  int i;
292 
293  hdesc = kzalloc(sizeof(*hdesc) +
294  (sizeof(struct hvtramp_mapping) *
296  GFP_KERNEL);
297  if (!hdesc) {
298  printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
299  "hvtramp_descr.\n");
300  return;
301  }
302  *descrp = hdesc;
303 
304  hdesc->cpu = cpu;
306 
307  tb = &trap_block[cpu];
308 
309  hdesc->fault_info_va = (unsigned long) &tb->fault_info;
310  hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311 
312  hdesc->thread_reg = thread_reg;
313 
314  tte_vaddr = (unsigned long) KERNBASE;
315  tte_data = kern_locked_tte_data;
316 
317  for (i = 0; i < hdesc->num_mappings; i++) {
318  hdesc->maps[i].vaddr = tte_vaddr;
319  hdesc->maps[i].tte = tte_data;
320  tte_vaddr += 0x400000;
321  tte_data += 0x400000;
322  }
323 
324  trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
325 
326  hv_err = sun4v_cpu_start(cpu, trampoline_ra,
327  kimage_addr_to_ra(&sparc64_ttable_tl0),
328  __pa(hdesc));
329  if (hv_err)
330  printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
331  "gives error %lu\n", hv_err);
332 }
333 #endif
334 
335 extern unsigned long sparc64_cpu_startup;
336 
337 /* The OBP cpu startup callback truncates the 3rd arg cookie to
338  * 32-bits (I think) so to be safe we have it read the pointer
339  * contained here so we work on >4GB machines. -DaveM
340  */
341 static struct thread_info *cpu_new_thread = NULL;
342 
343 static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
344 {
345  unsigned long entry =
346  (unsigned long)(&sparc64_cpu_startup);
347  unsigned long cookie =
348  (unsigned long)(&cpu_new_thread);
349  void *descr = NULL;
350  int timeout, ret;
351 
352  callin_flag = 0;
353  cpu_new_thread = task_thread_info(idle);
354 
355  if (tlb_type == hypervisor) {
356 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
358  ldom_startcpu_cpuid(cpu,
359  (unsigned long) cpu_new_thread,
360  &descr);
361  else
362 #endif
363  prom_startcpu_cpuid(cpu, entry, cookie);
364  } else {
365  struct device_node *dp = of_find_node_by_cpuid(cpu);
366 
367  prom_startcpu(dp->phandle, entry, cookie);
368  }
369 
370  for (timeout = 0; timeout < 50000; timeout++) {
371  if (callin_flag)
372  break;
373  udelay(100);
374  }
375 
376  if (callin_flag) {
377  ret = 0;
378  } else {
379  printk("Processor %d is stuck.\n", cpu);
380  ret = -ENODEV;
381  }
382  cpu_new_thread = NULL;
383 
384  kfree(descr);
385 
386  return ret;
387 }
388 
389 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
390 {
391  u64 result, target;
392  int stuck, tmp;
393 
394  if (this_is_starfire) {
395  /* map to real upaid */
396  cpu = (((cpu & 0x3c) << 1) |
397  ((cpu & 0x40) >> 4) |
398  (cpu & 0x3));
399  }
400 
401  target = (cpu << 14) | 0x70;
402 again:
403  /* Ok, this is the real Spitfire Errata #54.
404  * One must read back from a UDB internal register
405  * after writes to the UDB interrupt dispatch, but
406  * before the membar Sync for that write.
407  * So we use the high UDB control register (ASI 0x7f,
408  * ADDR 0x20) for the dummy read. -DaveM
409  */
410  tmp = 0x40;
411  __asm__ __volatile__(
412  "wrpr %1, %2, %%pstate\n\t"
413  "stxa %4, [%0] %3\n\t"
414  "stxa %5, [%0+%8] %3\n\t"
415  "add %0, %8, %0\n\t"
416  "stxa %6, [%0+%8] %3\n\t"
417  "membar #Sync\n\t"
418  "stxa %%g0, [%7] %3\n\t"
419  "membar #Sync\n\t"
420  "mov 0x20, %%g1\n\t"
421  "ldxa [%%g1] 0x7f, %%g0\n\t"
422  "membar #Sync"
423  : "=r" (tmp)
424  : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
425  "r" (data0), "r" (data1), "r" (data2), "r" (target),
426  "r" (0x10), "0" (tmp)
427  : "g1");
428 
429  /* NOTE: PSTATE_IE is still clear. */
430  stuck = 100000;
431  do {
432  __asm__ __volatile__("ldxa [%%g0] %1, %0"
433  : "=r" (result)
434  : "i" (ASI_INTR_DISPATCH_STAT));
435  if (result == 0) {
436  __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
437  : : "r" (pstate));
438  return;
439  }
440  stuck -= 1;
441  if (stuck == 0)
442  break;
443  } while (result & 0x1);
444  __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445  : : "r" (pstate));
446  if (stuck == 0) {
447  printk("CPU[%d]: mondo stuckage result[%016llx]\n",
448  smp_processor_id(), result);
449  } else {
450  udelay(2);
451  goto again;
452  }
453 }
454 
455 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
456 {
457  u64 *mondo, data0, data1, data2;
458  u16 *cpu_list;
459  u64 pstate;
460  int i;
461 
462  __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
463  cpu_list = __va(tb->cpu_list_pa);
464  mondo = __va(tb->cpu_mondo_block_pa);
465  data0 = mondo[0];
466  data1 = mondo[1];
467  data2 = mondo[2];
468  for (i = 0; i < cnt; i++)
469  spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
470 }
471 
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473  * packet, but we have no use for that. However we do take advantage of
474  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
475  */
476 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
477 {
478  int nack_busy_id, is_jbus, need_more;
479  u64 *mondo, pstate, ver, busy_mask;
480  u16 *cpu_list;
481 
482  cpu_list = __va(tb->cpu_list_pa);
483  mondo = __va(tb->cpu_mondo_block_pa);
484 
485  /* Unfortunately, someone at Sun had the brilliant idea to make the
486  * busy/nack fields hard-coded by ITID number for this Ultra-III
487  * derivative processor.
488  */
489  __asm__ ("rdpr %%ver, %0" : "=r" (ver));
490  is_jbus = ((ver >> 32) == __JALAPENO_ID ||
491  (ver >> 32) == __SERRANO_ID);
492 
493  __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
494 
495 retry:
496  need_more = 0;
497  __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
498  : : "r" (pstate), "i" (PSTATE_IE));
499 
500  /* Setup the dispatch data registers. */
501  __asm__ __volatile__("stxa %0, [%3] %6\n\t"
502  "stxa %1, [%4] %6\n\t"
503  "stxa %2, [%5] %6\n\t"
504  "membar #Sync\n\t"
505  : /* no outputs */
506  : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
507  "r" (0x40), "r" (0x50), "r" (0x60),
508  "i" (ASI_INTR_W));
509 
510  nack_busy_id = 0;
511  busy_mask = 0;
512  {
513  int i;
514 
515  for (i = 0; i < cnt; i++) {
516  u64 target, nr;
517 
518  nr = cpu_list[i];
519  if (nr == 0xffff)
520  continue;
521 
522  target = (nr << 14) | 0x70;
523  if (is_jbus) {
524  busy_mask |= (0x1UL << (nr * 2));
525  } else {
526  target |= (nack_busy_id << 24);
527  busy_mask |= (0x1UL <<
528  (nack_busy_id * 2));
529  }
530  __asm__ __volatile__(
531  "stxa %%g0, [%0] %1\n\t"
532  "membar #Sync\n\t"
533  : /* no outputs */
534  : "r" (target), "i" (ASI_INTR_W));
535  nack_busy_id++;
536  if (nack_busy_id == 32) {
537  need_more = 1;
538  break;
539  }
540  }
541  }
542 
543  /* Now, poll for completion. */
544  {
545  u64 dispatch_stat, nack_mask;
546  long stuck;
547 
548  stuck = 100000 * nack_busy_id;
549  nack_mask = busy_mask << 1;
550  do {
551  __asm__ __volatile__("ldxa [%%g0] %1, %0"
552  : "=r" (dispatch_stat)
553  : "i" (ASI_INTR_DISPATCH_STAT));
554  if (!(dispatch_stat & (busy_mask | nack_mask))) {
555  __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
556  : : "r" (pstate));
557  if (unlikely(need_more)) {
558  int i, this_cnt = 0;
559  for (i = 0; i < cnt; i++) {
560  if (cpu_list[i] == 0xffff)
561  continue;
562  cpu_list[i] = 0xffff;
563  this_cnt++;
564  if (this_cnt == 32)
565  break;
566  }
567  goto retry;
568  }
569  return;
570  }
571  if (!--stuck)
572  break;
573  } while (dispatch_stat & busy_mask);
574 
575  __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
576  : : "r" (pstate));
577 
578  if (dispatch_stat & busy_mask) {
579  /* Busy bits will not clear, continue instead
580  * of freezing up on this cpu.
581  */
582  printk("CPU[%d]: mondo stuckage result[%016llx]\n",
583  smp_processor_id(), dispatch_stat);
584  } else {
585  int i, this_busy_nack = 0;
586 
587  /* Delay some random time with interrupts enabled
588  * to prevent deadlock.
589  */
590  udelay(2 * nack_busy_id);
591 
592  /* Clear out the mask bits for cpus which did not
593  * NACK us.
594  */
595  for (i = 0; i < cnt; i++) {
596  u64 check_mask, nr;
597 
598  nr = cpu_list[i];
599  if (nr == 0xffff)
600  continue;
601 
602  if (is_jbus)
603  check_mask = (0x2UL << (2*nr));
604  else
605  check_mask = (0x2UL <<
606  this_busy_nack);
607  if ((dispatch_stat & check_mask) == 0)
608  cpu_list[i] = 0xffff;
609  this_busy_nack += 2;
610  if (this_busy_nack == 64)
611  break;
612  }
613 
614  goto retry;
615  }
616  }
617 }
618 
619 /* Multi-cpu list version. */
620 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
621 {
622  int retries, this_cpu, prev_sent, i, saw_cpu_error;
623  unsigned long status;
624  u16 *cpu_list;
625 
626  this_cpu = smp_processor_id();
627 
628  cpu_list = __va(tb->cpu_list_pa);
629 
630  saw_cpu_error = 0;
631  retries = 0;
632  prev_sent = 0;
633  do {
634  int forward_progress, n_sent;
635 
636  status = sun4v_cpu_mondo_send(cnt,
637  tb->cpu_list_pa,
638  tb->cpu_mondo_block_pa);
639 
640  /* HV_EOK means all cpus received the xcall, we're done. */
641  if (likely(status == HV_EOK))
642  break;
643 
644  /* First, see if we made any forward progress.
645  *
646  * The hypervisor indicates successful sends by setting
647  * cpu list entries to the value 0xffff.
648  */
649  n_sent = 0;
650  for (i = 0; i < cnt; i++) {
651  if (likely(cpu_list[i] == 0xffff))
652  n_sent++;
653  }
654 
655  forward_progress = 0;
656  if (n_sent > prev_sent)
657  forward_progress = 1;
658 
659  prev_sent = n_sent;
660 
661  /* If we get a HV_ECPUERROR, then one or more of the cpus
662  * in the list are in error state. Use the cpu_state()
663  * hypervisor call to find out which cpus are in error state.
664  */
665  if (unlikely(status == HV_ECPUERROR)) {
666  for (i = 0; i < cnt; i++) {
667  long err;
668  u16 cpu;
669 
670  cpu = cpu_list[i];
671  if (cpu == 0xffff)
672  continue;
673 
674  err = sun4v_cpu_state(cpu);
675  if (err == HV_CPU_STATE_ERROR) {
676  saw_cpu_error = (cpu + 1);
677  cpu_list[i] = 0xffff;
678  }
679  }
680  } else if (unlikely(status != HV_EWOULDBLOCK))
681  goto fatal_mondo_error;
682 
683  /* Don't bother rewriting the CPU list, just leave the
684  * 0xffff and non-0xffff entries in there and the
685  * hypervisor will do the right thing.
686  *
687  * Only advance timeout state if we didn't make any
688  * forward progress.
689  */
690  if (unlikely(!forward_progress)) {
691  if (unlikely(++retries > 10000))
692  goto fatal_mondo_timeout;
693 
694  /* Delay a little bit to let other cpus catch up
695  * on their cpu mondo queue work.
696  */
697  udelay(2 * cnt);
698  }
699  } while (1);
700 
701  if (unlikely(saw_cpu_error))
702  goto fatal_mondo_cpu_error;
703 
704  return;
705 
706 fatal_mondo_cpu_error:
707  printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
708  "(including %d) were in error state\n",
709  this_cpu, saw_cpu_error - 1);
710  return;
711 
712 fatal_mondo_timeout:
713  printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
714  " progress after %d retries.\n",
715  this_cpu, retries);
716  goto dump_cpu_list_and_out;
717 
718 fatal_mondo_error:
719  printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
720  this_cpu, status);
721  printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
722  "mondo_block_pa(%lx)\n",
723  this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
724 
725 dump_cpu_list_and_out:
726  printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
727  for (i = 0; i < cnt; i++)
728  printk("%u ", cpu_list[i]);
729  printk("]\n");
730 }
731 
732 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
733 
734 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
735 {
736  struct trap_per_cpu *tb;
737  int this_cpu, i, cnt;
738  unsigned long flags;
739  u16 *cpu_list;
740  u64 *mondo;
741 
742  /* We have to do this whole thing with interrupts fully disabled.
743  * Otherwise if we send an xcall from interrupt context it will
744  * corrupt both our mondo block and cpu list state.
745  *
746  * One consequence of this is that we cannot use timeout mechanisms
747  * that depend upon interrupts being delivered locally. So, for
748  * example, we cannot sample jiffies and expect it to advance.
749  *
750  * Fortunately, udelay() uses %stick/%tick so we can use that.
751  */
752  local_irq_save(flags);
753 
754  this_cpu = smp_processor_id();
755  tb = &trap_block[this_cpu];
756 
757  mondo = __va(tb->cpu_mondo_block_pa);
758  mondo[0] = data0;
759  mondo[1] = data1;
760  mondo[2] = data2;
761  wmb();
762 
763  cpu_list = __va(tb->cpu_list_pa);
764 
765  /* Setup the initial cpu list. */
766  cnt = 0;
767  for_each_cpu(i, mask) {
768  if (i == this_cpu || !cpu_online(i))
769  continue;
770  cpu_list[cnt++] = i;
771  }
772 
773  if (cnt)
774  xcall_deliver_impl(tb, cnt);
775 
776  local_irq_restore(flags);
777 }
778 
779 /* Send cross call to all processors mentioned in MASK_P
780  * except self. Really, there are only two cases currently,
781  * "cpu_online_mask" and "mm_cpumask(mm)".
782  */
783 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
784 {
785  u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
786 
787  xcall_deliver(data0, data1, data2, mask);
788 }
789 
790 /* Send cross call to all processors except self. */
791 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
792 {
793  smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
794 }
795 
796 extern unsigned long xcall_sync_tick;
797 
798 static void smp_start_sync_tick_client(int cpu)
799 {
800  xcall_deliver((u64) &xcall_sync_tick, 0, 0,
801  cpumask_of(cpu));
802 }
803 
804 extern unsigned long xcall_call_function;
805 
807 {
808  xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
809 }
810 
811 extern unsigned long xcall_call_function_single;
812 
814 {
815  xcall_deliver((u64) &xcall_call_function_single, 0, 0,
816  cpumask_of(cpu));
817 }
818 
820 {
821  clear_softint(1 << irq);
822  generic_smp_call_function_interrupt();
823 }
824 
826 {
827  clear_softint(1 << irq);
828  generic_smp_call_function_single_interrupt();
829 }
830 
831 static void tsb_sync(void *info)
832 {
834  struct mm_struct *mm = info;
835 
836  /* It is not valid to test "current->active_mm == mm" here.
837  *
838  * The value of "current" is not changed atomically with
839  * switch_mm(). But that's OK, we just need to check the
840  * current cpu's trap block PGD physical address.
841  */
842  if (tp->pgd_paddr == __pa(mm->pgd))
843  tsb_context_switch(mm);
844 }
845 
846 void smp_tsb_sync(struct mm_struct *mm)
847 {
848  smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
849 }
850 
851 extern unsigned long xcall_flush_tlb_mm;
852 extern unsigned long xcall_flush_tlb_pending;
853 extern unsigned long xcall_flush_tlb_kernel_range;
854 extern unsigned long xcall_fetch_glob_regs;
855 extern unsigned long xcall_fetch_glob_pmu;
856 extern unsigned long xcall_fetch_glob_pmu_n4;
857 extern unsigned long xcall_receive_signal;
858 extern unsigned long xcall_new_mmu_context_version;
859 #ifdef CONFIG_KGDB
860 extern unsigned long xcall_kgdb_capture;
861 #endif
862 
863 #ifdef DCACHE_ALIASING_POSSIBLE
864 extern unsigned long xcall_flush_dcache_page_cheetah;
865 #endif
866 extern unsigned long xcall_flush_dcache_page_spitfire;
867 
868 #ifdef CONFIG_DEBUG_DCFLUSH
869 extern atomic_t dcpage_flushes;
870 extern atomic_t dcpage_flushes_xcall;
871 #endif
872 
873 static inline void __local_flush_dcache_page(struct page *page)
874 {
875 #ifdef DCACHE_ALIASING_POSSIBLE
877  ((tlb_type == spitfire) &&
878  page_mapping(page) != NULL));
879 #else
880  if (page_mapping(page) != NULL &&
881  tlb_type == spitfire)
883 #endif
884 }
885 
886 void smp_flush_dcache_page_impl(struct page *page, int cpu)
887 {
888  int this_cpu;
889 
890  if (tlb_type == hypervisor)
891  return;
892 
893 #ifdef CONFIG_DEBUG_DCFLUSH
894  atomic_inc(&dcpage_flushes);
895 #endif
896 
897  this_cpu = get_cpu();
898 
899  if (cpu == this_cpu) {
900  __local_flush_dcache_page(page);
901  } else if (cpu_online(cpu)) {
902  void *pg_addr = page_address(page);
903  u64 data0 = 0;
904 
905  if (tlb_type == spitfire) {
906  data0 = ((u64)&xcall_flush_dcache_page_spitfire);
907  if (page_mapping(page) != NULL)
908  data0 |= ((u64)1 << 32);
909  } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
910 #ifdef DCACHE_ALIASING_POSSIBLE
911  data0 = ((u64)&xcall_flush_dcache_page_cheetah);
912 #endif
913  }
914  if (data0) {
915  xcall_deliver(data0, __pa(pg_addr),
916  (u64) pg_addr, cpumask_of(cpu));
917 #ifdef CONFIG_DEBUG_DCFLUSH
918  atomic_inc(&dcpage_flushes_xcall);
919 #endif
920  }
921  }
922 
923  put_cpu();
924 }
925 
926 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
927 {
928  void *pg_addr;
929  u64 data0;
930 
931  if (tlb_type == hypervisor)
932  return;
933 
934  preempt_disable();
935 
936 #ifdef CONFIG_DEBUG_DCFLUSH
937  atomic_inc(&dcpage_flushes);
938 #endif
939  data0 = 0;
940  pg_addr = page_address(page);
941  if (tlb_type == spitfire) {
942  data0 = ((u64)&xcall_flush_dcache_page_spitfire);
943  if (page_mapping(page) != NULL)
944  data0 |= ((u64)1 << 32);
945  } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
946 #ifdef DCACHE_ALIASING_POSSIBLE
947  data0 = ((u64)&xcall_flush_dcache_page_cheetah);
948 #endif
949  }
950  if (data0) {
951  xcall_deliver(data0, __pa(pg_addr),
952  (u64) pg_addr, cpu_online_mask);
953 #ifdef CONFIG_DEBUG_DCFLUSH
954  atomic_inc(&dcpage_flushes_xcall);
955 #endif
956  }
957  __local_flush_dcache_page(page);
958 
959  preempt_enable();
960 }
961 
963 {
964  struct mm_struct *mm;
965  unsigned long flags;
966 
967  clear_softint(1 << irq);
968 
969  /* See if we need to allocate a new TLB context because
970  * the version of the one we are using is now out of date.
971  */
972  mm = current->active_mm;
973  if (unlikely(!mm || (mm == &init_mm)))
974  return;
975 
976  spin_lock_irqsave(&mm->context.lock, flags);
977 
978  if (unlikely(!CTX_VALID(mm->context)))
980 
981  spin_unlock_irqrestore(&mm->context.lock, flags);
982 
985  SECONDARY_CONTEXT);
986 }
987 
989 {
990  smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
991 }
992 
993 #ifdef CONFIG_KGDB
994 void kgdb_roundup_cpus(unsigned long flags)
995 {
996  smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
997 }
998 #endif
999 
1001 {
1002  smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003 }
1004 
1006 {
1007  if (tlb_type == hypervisor &&
1008  sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009  smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010  else
1011  smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012 }
1013 
1014 /* We know that the window frames of the user have been flushed
1015  * to the stack before we get here because all callers of us
1016  * are flush_tlb_*() routines, and these run after flush_cache_*()
1017  * which performs the flushw.
1018  *
1019  * The SMP TLB coherency scheme we use works as follows:
1020  *
1021  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022  * space has (potentially) executed on, this is the heuristic
1023  * we use to avoid doing cross calls.
1024  *
1025  * Also, for flushing from kswapd and also for clones, we
1026  * use cpu_vm_mask as the list of cpus to make run the TLB.
1027  *
1028  * 2) TLB context numbers are shared globally across all processors
1029  * in the system, this allows us to play several games to avoid
1030  * cross calls.
1031  *
1032  * One invariant is that when a cpu switches to a process, and
1033  * that processes tsk->active_mm->cpu_vm_mask does not have the
1034  * current cpu's bit set, that tlb context is flushed locally.
1035  *
1036  * If the address space is non-shared (ie. mm->count == 1) we avoid
1037  * cross calls when we want to flush the currently running process's
1038  * tlb state. This is done by clearing all cpu bits except the current
1039  * processor's in current->mm->cpu_vm_mask and performing the
1040  * flush locally only. This will force any subsequent cpus which run
1041  * this task to flush the context from the local tlb if the process
1042  * migrates to another cpu (again).
1043  *
1044  * 3) For shared address spaces (threads) and swapping we bite the
1045  * bullet for most cases and perform the cross call (but only to
1046  * the cpus listed in cpu_vm_mask).
1047  *
1048  * The performance gain from "optimizing" away the cross call for threads is
1049  * questionable (in theory the big win for threads is the massive sharing of
1050  * address space state across processors).
1051  */
1052 
1053 /* This currently is only used by the hugetlb arch pre-fault
1054  * hook on UltraSPARC-III+ and later when changing the pagesize
1055  * bits of the context register for an address space.
1056  */
1057 void smp_flush_tlb_mm(struct mm_struct *mm)
1058 {
1059  u32 ctx = CTX_HWBITS(mm->context);
1060  int cpu = get_cpu();
1061 
1062  if (atomic_read(&mm->mm_users) == 1) {
1063  cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1064  goto local_flush_and_out;
1065  }
1066 
1067  smp_cross_call_masked(&xcall_flush_tlb_mm,
1068  ctx, 0, 0,
1069  mm_cpumask(mm));
1070 
1071 local_flush_and_out:
1072  __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073 
1074  put_cpu();
1075 }
1076 
1077 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1078 {
1079  u32 ctx = CTX_HWBITS(mm->context);
1080  int cpu = get_cpu();
1081 
1082  if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1083  cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1084  else
1085  smp_cross_call_masked(&xcall_flush_tlb_pending,
1086  ctx, nr, (unsigned long) vaddrs,
1087  mm_cpumask(mm));
1088 
1089  __flush_tlb_pending(ctx, nr, vaddrs);
1090 
1091  put_cpu();
1092 }
1093 
1094 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1095 {
1096  start &= PAGE_MASK;
1097  end = PAGE_ALIGN(end);
1098  if (start != end) {
1099  smp_cross_call(&xcall_flush_tlb_kernel_range,
1100  0, start, end);
1101 
1102  __flush_tlb_kernel_range(start, end);
1103  }
1104 }
1105 
1106 /* CPU capture. */
1107 /* #define CAPTURE_DEBUG */
1108 extern unsigned long xcall_capture;
1109 
1110 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1111 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1112 static unsigned long penguins_are_doing_time;
1113 
1114 void smp_capture(void)
1115 {
1116  int result = atomic_add_ret(1, &smp_capture_depth);
1117 
1118  if (result == 1) {
1119  int ncpus = num_online_cpus();
1120 
1121 #ifdef CAPTURE_DEBUG
1122  printk("CPU[%d]: Sending penguins to jail...",
1123  smp_processor_id());
1124 #endif
1125  penguins_are_doing_time = 1;
1126  atomic_inc(&smp_capture_registry);
1127  smp_cross_call(&xcall_capture, 0, 0, 0);
1128  while (atomic_read(&smp_capture_registry) != ncpus)
1129  rmb();
1130 #ifdef CAPTURE_DEBUG
1131  printk("done\n");
1132 #endif
1133  }
1134 }
1135 
1136 void smp_release(void)
1137 {
1138  if (atomic_dec_and_test(&smp_capture_depth)) {
1139 #ifdef CAPTURE_DEBUG
1140  printk("CPU[%d]: Giving pardon to "
1141  "imprisoned penguins\n",
1142  smp_processor_id());
1143 #endif
1144  penguins_are_doing_time = 0;
1145  membar_safe("#StoreLoad");
1146  atomic_dec(&smp_capture_registry);
1147  }
1148 }
1149 
1150 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1151  * set, so they can service tlb flush xcalls...
1152  */
1153 extern void prom_world(int);
1154 
1156 {
1157  clear_softint(1 << irq);
1158 
1159  preempt_disable();
1160 
1161  __asm__ __volatile__("flushw");
1162  prom_world(1);
1163  atomic_inc(&smp_capture_registry);
1164  membar_safe("#StoreLoad");
1165  while (penguins_are_doing_time)
1166  rmb();
1167  atomic_dec(&smp_capture_registry);
1168  prom_world(0);
1169 
1170  preempt_enable();
1171 }
1172 
1173 /* /proc/profile writes can call this, don't __init it please. */
1174 int setup_profiling_timer(unsigned int multiplier)
1175 {
1176  return -EINVAL;
1177 }
1178 
1179 void __init smp_prepare_cpus(unsigned int max_cpus)
1180 {
1181 }
1182 
1184 {
1185 }
1186 
1188 {
1189  if (tlb_type == spitfire)
1190  xcall_deliver_impl = spitfire_xcall_deliver;
1191  else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1192  xcall_deliver_impl = cheetah_xcall_deliver;
1193  else
1194  xcall_deliver_impl = hypervisor_xcall_deliver;
1195 }
1196 
1198 {
1199  unsigned int i;
1200 
1202  unsigned int j;
1203 
1204  cpumask_clear(&cpu_core_map[i]);
1205  if (cpu_data(i).core_id == 0) {
1206  cpumask_set_cpu(i, &cpu_core_map[i]);
1207  continue;
1208  }
1209 
1211  if (cpu_data(i).core_id ==
1212  cpu_data(j).core_id)
1213  cpumask_set_cpu(j, &cpu_core_map[i]);
1214  }
1215  }
1216 
1218  unsigned int j;
1219 
1220  cpumask_clear(&per_cpu(cpu_sibling_map, i));
1221  if (cpu_data(i).proc_id == -1) {
1222  cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1223  continue;
1224  }
1225 
1227  if (cpu_data(i).proc_id ==
1228  cpu_data(j).proc_id)
1229  cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1230  }
1231  }
1232 }
1233 
1234 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1235 {
1236  int ret = smp_boot_one_cpu(cpu, tidle);
1237 
1238  if (!ret) {
1239  cpumask_set_cpu(cpu, &smp_commenced_mask);
1240  while (!cpu_online(cpu))
1241  mb();
1242  if (!cpu_online(cpu)) {
1243  ret = -ENODEV;
1244  } else {
1245  /* On SUN4V, writes to %tick and %stick are
1246  * not allowed.
1247  */
1248  if (tlb_type != hypervisor)
1249  smp_synchronize_one_tick(cpu);
1250  }
1251  }
1252  return ret;
1253 }
1254 
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 void cpu_play_dead(void)
1257 {
1258  int cpu = smp_processor_id();
1259  unsigned long pstate;
1260 
1261  idle_task_exit();
1262 
1263  if (tlb_type == hypervisor) {
1264  struct trap_per_cpu *tb = &trap_block[cpu];
1265 
1267  tb->cpu_mondo_pa, 0);
1269  tb->dev_mondo_pa, 0);
1271  tb->resum_mondo_pa, 0);
1273  tb->nonresum_mondo_pa, 0);
1274  }
1275 
1276  cpumask_clear_cpu(cpu, &smp_commenced_mask);
1277  membar_safe("#Sync");
1278 
1280 
1281  __asm__ __volatile__(
1282  "rdpr %%pstate, %0\n\t"
1283  "wrpr %0, %1, %%pstate"
1284  : "=r" (pstate)
1285  : "i" (PSTATE_IE));
1286 
1287  while (1)
1288  barrier();
1289 }
1290 
1291 int __cpu_disable(void)
1292 {
1293  int cpu = smp_processor_id();
1294  cpuinfo_sparc *c;
1295  int i;
1296 
1297  for_each_cpu(i, &cpu_core_map[cpu])
1298  cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1299  cpumask_clear(&cpu_core_map[cpu]);
1300 
1301  for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1302  cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1303  cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1304 
1305  c = &cpu_data(cpu);
1306 
1307  c->core_id = 0;
1308  c->proc_id = -1;
1309 
1310  smp_wmb();
1311 
1312  /* Make sure no interrupts point to this cpu. */
1313  fixup_irqs();
1314 
1315  local_irq_enable();
1316  mdelay(1);
1318 
1319  set_cpu_online(cpu, false);
1320 
1321  cpu_map_rebuild();
1322 
1323  return 0;
1324 }
1325 
1326 void __cpu_die(unsigned int cpu)
1327 {
1328  int i;
1329 
1330  for (i = 0; i < 100; i++) {
1331  smp_rmb();
1332  if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1333  break;
1334  msleep(100);
1335  }
1336  if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1337  printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1338  } else {
1339 #if defined(CONFIG_SUN_LDOMS)
1340  unsigned long hv_err;
1341  int limit = 100;
1342 
1343  do {
1344  hv_err = sun4v_cpu_stop(cpu);
1345  if (hv_err == HV_EOK) {
1346  set_cpu_present(cpu, false);
1347  break;
1348  }
1349  } while (--limit > 0);
1350  if (limit <= 0) {
1351  printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1352  hv_err);
1353  }
1354 #endif
1355  }
1356 }
1357 #endif
1358 
1359 void __init smp_cpus_done(unsigned int max_cpus)
1360 {
1361  pcr_arch_init();
1362 }
1363 
1364 void smp_send_reschedule(int cpu)
1365 {
1366  xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1367  cpumask_of(cpu));
1368 }
1369 
1371 {
1372  clear_softint(1 << irq);
1373  scheduler_ipi();
1374 }
1375 
1376 /* This is a nop because we capture all other cpus
1377  * anyways when making the PROM active.
1378  */
1379 void smp_send_stop(void)
1380 {
1381 }
1382 
1396 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1397  size_t align)
1398 {
1399  const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1400 #ifdef CONFIG_NEED_MULTIPLE_NODES
1401  int node = cpu_to_node(cpu);
1402  void *ptr;
1403 
1404  if (!node_online(node) || !NODE_DATA(node)) {
1405  ptr = __alloc_bootmem(size, align, goal);
1406  pr_info("cpu %d has no node %d or node-local memory\n",
1407  cpu, node);
1408  pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1409  cpu, size, __pa(ptr));
1410  } else {
1411  ptr = __alloc_bootmem_node(NODE_DATA(node),
1412  size, align, goal);
1413  pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1414  "%016lx\n", cpu, size, node, __pa(ptr));
1415  }
1416  return ptr;
1417 #else
1418  return __alloc_bootmem(size, align, goal);
1419 #endif
1420 }
1421 
1422 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1423 {
1424  free_bootmem(__pa(ptr), size);
1425 }
1426 
1427 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1428 {
1429  if (cpu_to_node(from) == cpu_to_node(to))
1430  return LOCAL_DISTANCE;
1431  else
1432  return REMOTE_DISTANCE;
1433 }
1434 
1435 static void __init pcpu_populate_pte(unsigned long addr)
1436 {
1437  pgd_t *pgd = pgd_offset_k(addr);
1438  pud_t *pud;
1439  pmd_t *pmd;
1440 
1441  pud = pud_offset(pgd, addr);
1442  if (pud_none(*pud)) {
1443  pmd_t *new;
1444 
1446  pud_populate(&init_mm, pud, new);
1447  }
1448 
1449  pmd = pmd_offset(pud, addr);
1450  if (!pmd_present(*pmd)) {
1451  pte_t *new;
1452 
1454  pmd_populate_kernel(&init_mm, pmd, new);
1455  }
1456 }
1457 
1459 {
1460  unsigned long delta;
1461  unsigned int cpu;
1462  int rc = -EINVAL;
1463 
1464  if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1465  rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1466  PERCPU_DYNAMIC_RESERVE, 4 << 20,
1467  pcpu_cpu_distance,
1468  pcpu_alloc_bootmem,
1469  pcpu_free_bootmem);
1470  if (rc)
1471  pr_warning("PERCPU: %s allocator failed (%d), "
1472  "falling back to page size\n",
1474  }
1475  if (rc < 0)
1476  rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1477  pcpu_alloc_bootmem,
1478  pcpu_free_bootmem,
1479  pcpu_populate_pte);
1480  if (rc < 0)
1481  panic("cannot initialize percpu area (err=%d)", rc);
1482 
1483  delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1485  __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1486 
1487  /* Setup %g5 for the boot cpu. */
1488  __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1489 
1491  if (tlb_type == hypervisor)
1493 }