Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mcbsp.c
Go to the documentation of this file.
1 /*
2  * sound/soc/omap/mcbsp.c
3  *
4  * Copyright (C) 2004 Nokia Corporation
5  * Author: Samuel Ortiz <[email protected]>
6  *
7  * Contact: Jarkko Nikula <[email protected]>
8  * Peter Ujfalusi <[email protected]>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * Multichannel mode not supported.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/platform_device.h>
21 #include <linux/interrupt.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/pm_runtime.h>
28 
30 
31 #include <plat/cpu.h>
32 
33 #include "mcbsp.h"
34 
35 static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
36 {
37  void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
38 
39  if (mcbsp->pdata->reg_size == 2) {
40  ((u16 *)mcbsp->reg_cache)[reg] = (u16)val;
41  __raw_writew((u16)val, addr);
42  } else {
43  ((u32 *)mcbsp->reg_cache)[reg] = val;
44  __raw_writel(val, addr);
45  }
46 }
47 
48 static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache)
49 {
50  void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
51 
52  if (mcbsp->pdata->reg_size == 2) {
53  return !from_cache ? __raw_readw(addr) :
54  ((u16 *)mcbsp->reg_cache)[reg];
55  } else {
56  return !from_cache ? __raw_readl(addr) :
57  ((u32 *)mcbsp->reg_cache)[reg];
58  }
59 }
60 
61 static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
62 {
63  __raw_writel(val, mcbsp->st_data->io_base_st + reg);
64 }
65 
66 static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg)
67 {
68  return __raw_readl(mcbsp->st_data->io_base_st + reg);
69 }
70 
71 #define MCBSP_READ(mcbsp, reg) \
72  omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0)
73 #define MCBSP_WRITE(mcbsp, reg, val) \
74  omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val)
75 #define MCBSP_READ_CACHE(mcbsp, reg) \
76  omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1)
77 
78 #define MCBSP_ST_READ(mcbsp, reg) \
79  omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg)
80 #define MCBSP_ST_WRITE(mcbsp, reg, val) \
81  omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val)
82 
83 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
84 {
85  dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
86  dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n",
87  MCBSP_READ(mcbsp, DRR2));
88  dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n",
89  MCBSP_READ(mcbsp, DRR1));
90  dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n",
91  MCBSP_READ(mcbsp, DXR2));
92  dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n",
93  MCBSP_READ(mcbsp, DXR1));
94  dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n",
95  MCBSP_READ(mcbsp, SPCR2));
96  dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n",
97  MCBSP_READ(mcbsp, SPCR1));
98  dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n",
99  MCBSP_READ(mcbsp, RCR2));
100  dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n",
101  MCBSP_READ(mcbsp, RCR1));
102  dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n",
103  MCBSP_READ(mcbsp, XCR2));
104  dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n",
105  MCBSP_READ(mcbsp, XCR1));
106  dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n",
107  MCBSP_READ(mcbsp, SRGR2));
108  dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n",
109  MCBSP_READ(mcbsp, SRGR1));
110  dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n",
111  MCBSP_READ(mcbsp, PCR0));
112  dev_dbg(mcbsp->dev, "***********************\n");
113 }
114 
115 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *dev_id)
116 {
117  struct omap_mcbsp *mcbsp = dev_id;
118  u16 irqst;
119 
120  irqst = MCBSP_READ(mcbsp, IRQST);
121  dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
122 
123  if (irqst & RSYNCERREN)
124  dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
125  if (irqst & RFSREN)
126  dev_dbg(mcbsp->dev, "RX Frame Sync\n");
127  if (irqst & REOFEN)
128  dev_dbg(mcbsp->dev, "RX End Of Frame\n");
129  if (irqst & RRDYEN)
130  dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
131  if (irqst & RUNDFLEN)
132  dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
133  if (irqst & ROVFLEN)
134  dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
135 
136  if (irqst & XSYNCERREN)
137  dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
138  if (irqst & XFSXEN)
139  dev_dbg(mcbsp->dev, "TX Frame Sync\n");
140  if (irqst & XEOFEN)
141  dev_dbg(mcbsp->dev, "TX End Of Frame\n");
142  if (irqst & XRDYEN)
143  dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
144  if (irqst & XUNDFLEN)
145  dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
146  if (irqst & XOVFLEN)
147  dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
148  if (irqst & XEMPTYEOFEN)
149  dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
150 
151  MCBSP_WRITE(mcbsp, IRQST, irqst);
152 
153  return IRQ_HANDLED;
154 }
155 
156 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id)
157 {
158  struct omap_mcbsp *mcbsp_tx = dev_id;
159  u16 irqst_spcr2;
160 
161  irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2);
162  dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
163 
164  if (irqst_spcr2 & XSYNC_ERR) {
165  dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n",
166  irqst_spcr2);
167  /* Writing zero to XSYNC_ERR clears the IRQ */
168  MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2));
169  }
170 
171  return IRQ_HANDLED;
172 }
173 
174 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id)
175 {
176  struct omap_mcbsp *mcbsp_rx = dev_id;
177  u16 irqst_spcr1;
178 
179  irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1);
180  dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
181 
182  if (irqst_spcr1 & RSYNC_ERR) {
183  dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n",
184  irqst_spcr1);
185  /* Writing zero to RSYNC_ERR clears the IRQ */
186  MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1));
187  }
188 
189  return IRQ_HANDLED;
190 }
191 
192 /*
193  * omap_mcbsp_config simply write a config to the
194  * appropriate McBSP.
195  * You either call this function or set the McBSP registers
196  * by yourself before calling omap_mcbsp_start().
197  */
198 void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
199  const struct omap_mcbsp_reg_cfg *config)
200 {
201  dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
202  mcbsp->id, mcbsp->phys_base);
203 
204  /* We write the given config */
205  MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
206  MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
207  MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
208  MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
209  MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
210  MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
211  MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
212  MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
213  MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
214  MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
215  MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
216  if (mcbsp->pdata->has_ccr) {
217  MCBSP_WRITE(mcbsp, XCCR, config->xccr);
218  MCBSP_WRITE(mcbsp, RCCR, config->rccr);
219  }
220  /* Enable wakeup behavior */
221  if (mcbsp->pdata->has_wakeup)
222  MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
223 
224  /* Enable TX/RX sync error interrupts by default */
225  if (mcbsp->irq)
226  MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN);
227 }
228 
238 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
239  unsigned int stream)
240 {
241  int data_reg;
242 
243  if (mcbsp->pdata->reg_size == 2) {
244  if (stream)
245  data_reg = OMAP_MCBSP_REG_DRR1;
246  else
247  data_reg = OMAP_MCBSP_REG_DXR1;
248  } else {
249  if (stream)
250  data_reg = OMAP_MCBSP_REG_DRR;
251  else
252  data_reg = OMAP_MCBSP_REG_DXR;
253  }
254 
255  return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
256 }
257 
258 static void omap_st_on(struct omap_mcbsp *mcbsp)
259 {
260  unsigned int w;
261 
262  if (mcbsp->pdata->enable_st_clock)
263  mcbsp->pdata->enable_st_clock(mcbsp->id, 1);
264 
265  /* Enable McBSP Sidetone */
266  w = MCBSP_READ(mcbsp, SSELCR);
267  MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN);
268 
269  /* Enable Sidetone from Sidetone Core */
270  w = MCBSP_ST_READ(mcbsp, SSELCR);
271  MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN);
272 }
273 
274 static void omap_st_off(struct omap_mcbsp *mcbsp)
275 {
276  unsigned int w;
277 
278  w = MCBSP_ST_READ(mcbsp, SSELCR);
279  MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN));
280 
281  w = MCBSP_READ(mcbsp, SSELCR);
282  MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN));
283 
284  if (mcbsp->pdata->enable_st_clock)
285  mcbsp->pdata->enable_st_clock(mcbsp->id, 0);
286 }
287 
288 static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir)
289 {
290  u16 val, i;
291 
292  val = MCBSP_ST_READ(mcbsp, SSELCR);
293 
294  if (val & ST_COEFFWREN)
295  MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
296 
297  MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN);
298 
299  for (i = 0; i < 128; i++)
300  MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]);
301 
302  i = 0;
303 
304  val = MCBSP_ST_READ(mcbsp, SSELCR);
305  while (!(val & ST_COEFFWRDONE) && (++i < 1000))
306  val = MCBSP_ST_READ(mcbsp, SSELCR);
307 
308  MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
309 
310  if (i == 1000)
311  dev_err(mcbsp->dev, "McBSP FIR load error!\n");
312 }
313 
314 static void omap_st_chgain(struct omap_mcbsp *mcbsp)
315 {
316  u16 w;
317  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
318 
319  w = MCBSP_ST_READ(mcbsp, SSELCR);
320 
321  MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \
322  ST_CH1GAIN(st_data->ch1gain));
323 }
324 
325 int omap_st_set_chgain(struct omap_mcbsp *mcbsp, int channel, s16 chgain)
326 {
327  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
328  int ret = 0;
329 
330  if (!st_data)
331  return -ENOENT;
332 
333  spin_lock_irq(&mcbsp->lock);
334  if (channel == 0)
335  st_data->ch0gain = chgain;
336  else if (channel == 1)
337  st_data->ch1gain = chgain;
338  else
339  ret = -EINVAL;
340 
341  if (st_data->enabled)
342  omap_st_chgain(mcbsp);
343  spin_unlock_irq(&mcbsp->lock);
344 
345  return ret;
346 }
347 
348 int omap_st_get_chgain(struct omap_mcbsp *mcbsp, int channel, s16 *chgain)
349 {
350  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
351  int ret = 0;
352 
353  if (!st_data)
354  return -ENOENT;
355 
356  spin_lock_irq(&mcbsp->lock);
357  if (channel == 0)
358  *chgain = st_data->ch0gain;
359  else if (channel == 1)
360  *chgain = st_data->ch1gain;
361  else
362  ret = -EINVAL;
363  spin_unlock_irq(&mcbsp->lock);
364 
365  return ret;
366 }
367 
368 static int omap_st_start(struct omap_mcbsp *mcbsp)
369 {
370  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
371 
372  if (st_data->enabled && !st_data->running) {
373  omap_st_fir_write(mcbsp, st_data->taps);
374  omap_st_chgain(mcbsp);
375 
376  if (!mcbsp->free) {
377  omap_st_on(mcbsp);
378  st_data->running = 1;
379  }
380  }
381 
382  return 0;
383 }
384 
385 int omap_st_enable(struct omap_mcbsp *mcbsp)
386 {
387  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
388 
389  if (!st_data)
390  return -ENODEV;
391 
392  spin_lock_irq(&mcbsp->lock);
393  st_data->enabled = 1;
394  omap_st_start(mcbsp);
395  spin_unlock_irq(&mcbsp->lock);
396 
397  return 0;
398 }
399 
400 static int omap_st_stop(struct omap_mcbsp *mcbsp)
401 {
402  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
403 
404  if (st_data->running) {
405  if (!mcbsp->free) {
406  omap_st_off(mcbsp);
407  st_data->running = 0;
408  }
409  }
410 
411  return 0;
412 }
413 
414 int omap_st_disable(struct omap_mcbsp *mcbsp)
415 {
416  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
417  int ret = 0;
418 
419  if (!st_data)
420  return -ENODEV;
421 
422  spin_lock_irq(&mcbsp->lock);
423  omap_st_stop(mcbsp);
424  st_data->enabled = 0;
425  spin_unlock_irq(&mcbsp->lock);
426 
427  return ret;
428 }
429 
430 int omap_st_is_enabled(struct omap_mcbsp *mcbsp)
431 {
432  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
433 
434  if (!st_data)
435  return -ENODEV;
436 
437  return st_data->enabled;
438 }
439 
440 /*
441  * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
442  * The threshold parameter is 1 based, and it is converted (threshold - 1)
443  * for the THRSH2 register.
444  */
446 {
447  if (mcbsp->pdata->buffer_size == 0)
448  return;
449 
450  if (threshold && threshold <= mcbsp->max_tx_thres)
451  MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
452 }
453 
454 /*
455  * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
456  * The threshold parameter is 1 based, and it is converted (threshold - 1)
457  * for the THRSH1 register.
458  */
460 {
461  if (mcbsp->pdata->buffer_size == 0)
462  return;
463 
464  if (threshold && threshold <= mcbsp->max_rx_thres)
465  MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
466 }
467 
468 /*
469  * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
470  */
472 {
473  u16 buffstat;
474 
475  if (mcbsp->pdata->buffer_size == 0)
476  return 0;
477 
478  /* Returns the number of free locations in the buffer */
479  buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
480 
481  /* Number of slots are different in McBSP ports */
482  return mcbsp->pdata->buffer_size - buffstat;
483 }
484 
485 /*
486  * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
487  * to reach the threshold value (when the DMA will be triggered to read it)
488  */
490 {
491  u16 buffstat, threshold;
492 
493  if (mcbsp->pdata->buffer_size == 0)
494  return 0;
495 
496  /* Returns the number of used locations in the buffer */
497  buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
498  /* RX threshold */
499  threshold = MCBSP_READ(mcbsp, THRSH1);
500 
501  /* Return the number of location till we reach the threshold limit */
502  if (threshold <= buffstat)
503  return 0;
504  else
505  return threshold - buffstat;
506 }
507 
508 int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
509 {
510  void *reg_cache;
511  int err;
512 
513  reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
514  if (!reg_cache) {
515  return -ENOMEM;
516  }
517 
518  spin_lock(&mcbsp->lock);
519  if (!mcbsp->free) {
520  dev_err(mcbsp->dev, "McBSP%d is currently in use\n",
521  mcbsp->id);
522  err = -EBUSY;
523  goto err_kfree;
524  }
525 
526  mcbsp->free = false;
527  mcbsp->reg_cache = reg_cache;
528  spin_unlock(&mcbsp->lock);
529 
530  if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request)
531  mcbsp->pdata->ops->request(mcbsp->id - 1);
532 
533  /*
534  * Make sure that transmitter, receiver and sample-rate generator are
535  * not running before activating IRQs.
536  */
537  MCBSP_WRITE(mcbsp, SPCR1, 0);
538  MCBSP_WRITE(mcbsp, SPCR2, 0);
539 
540  if (mcbsp->irq) {
541  err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
542  "McBSP", (void *)mcbsp);
543  if (err != 0) {
544  dev_err(mcbsp->dev, "Unable to request IRQ\n");
545  goto err_clk_disable;
546  }
547  } else {
548  err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
549  "McBSP TX", (void *)mcbsp);
550  if (err != 0) {
551  dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
552  goto err_clk_disable;
553  }
554 
555  err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
556  "McBSP RX", (void *)mcbsp);
557  if (err != 0) {
558  dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
559  goto err_free_irq;
560  }
561  }
562 
563  return 0;
564 err_free_irq:
565  free_irq(mcbsp->tx_irq, (void *)mcbsp);
566 err_clk_disable:
567  if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
568  mcbsp->pdata->ops->free(mcbsp->id - 1);
569 
570  /* Disable wakeup behavior */
571  if (mcbsp->pdata->has_wakeup)
572  MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
573 
574  spin_lock(&mcbsp->lock);
575  mcbsp->free = true;
576  mcbsp->reg_cache = NULL;
577 err_kfree:
578  spin_unlock(&mcbsp->lock);
579  kfree(reg_cache);
580 
581  return err;
582 }
583 
584 void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
585 {
586  void *reg_cache;
587 
588  if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
589  mcbsp->pdata->ops->free(mcbsp->id - 1);
590 
591  /* Disable wakeup behavior */
592  if (mcbsp->pdata->has_wakeup)
593  MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
594 
595  /* Disable interrupt requests */
596  if (mcbsp->irq)
597  MCBSP_WRITE(mcbsp, IRQEN, 0);
598 
599  if (mcbsp->irq) {
600  free_irq(mcbsp->irq, (void *)mcbsp);
601  } else {
602  free_irq(mcbsp->rx_irq, (void *)mcbsp);
603  free_irq(mcbsp->tx_irq, (void *)mcbsp);
604  }
605 
606  reg_cache = mcbsp->reg_cache;
607 
608  /*
609  * Select CLKS source from internal source unconditionally before
610  * marking the McBSP port as free.
611  * If the external clock source via MCBSP_CLKS pin has been selected the
612  * system will refuse to enter idle if the CLKS pin source is not reset
613  * back to internal source.
614  */
615  if (!cpu_class_is_omap1())
617 
618  spin_lock(&mcbsp->lock);
619  if (mcbsp->free)
620  dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
621  else
622  mcbsp->free = true;
623  mcbsp->reg_cache = NULL;
624  spin_unlock(&mcbsp->lock);
625 
626  if (reg_cache)
627  kfree(reg_cache);
628 }
629 
630 /*
631  * Here we start the McBSP, by enabling transmitter, receiver or both.
632  * If no transmitter or receiver is active prior calling, then sample-rate
633  * generator and frame sync are started.
634  */
635 void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int tx, int rx)
636 {
637  int enable_srg = 0;
638  u16 w;
639 
640  if (mcbsp->st_data)
641  omap_st_start(mcbsp);
642 
643  /* Only enable SRG, if McBSP is master */
644  w = MCBSP_READ_CACHE(mcbsp, PCR0);
645  if (w & (FSXM | FSRM | CLKXM | CLKRM))
646  enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
647  MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
648 
649  if (enable_srg) {
650  /* Start the sample generator */
651  w = MCBSP_READ_CACHE(mcbsp, SPCR2);
652  MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
653  }
654 
655  /* Enable transmitter and receiver */
656  tx &= 1;
657  w = MCBSP_READ_CACHE(mcbsp, SPCR2);
658  MCBSP_WRITE(mcbsp, SPCR2, w | tx);
659 
660  rx &= 1;
661  w = MCBSP_READ_CACHE(mcbsp, SPCR1);
662  MCBSP_WRITE(mcbsp, SPCR1, w | rx);
663 
664  /*
665  * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
666  * REVISIT: 100us may give enough time for two CLKSRG, however
667  * due to some unknown PM related, clock gating etc. reason it
668  * is now at 500us.
669  */
670  udelay(500);
671 
672  if (enable_srg) {
673  /* Start frame sync */
674  w = MCBSP_READ_CACHE(mcbsp, SPCR2);
675  MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
676  }
677 
678  if (mcbsp->pdata->has_ccr) {
679  /* Release the transmitter and receiver */
680  w = MCBSP_READ_CACHE(mcbsp, XCCR);
681  w &= ~(tx ? XDISABLE : 0);
682  MCBSP_WRITE(mcbsp, XCCR, w);
683  w = MCBSP_READ_CACHE(mcbsp, RCCR);
684  w &= ~(rx ? RDISABLE : 0);
685  MCBSP_WRITE(mcbsp, RCCR, w);
686  }
687 
688  /* Dump McBSP Regs */
689  omap_mcbsp_dump_reg(mcbsp);
690 }
691 
692 void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int tx, int rx)
693 {
694  int idle;
695  u16 w;
696 
697  /* Reset transmitter */
698  tx &= 1;
699  if (mcbsp->pdata->has_ccr) {
700  w = MCBSP_READ_CACHE(mcbsp, XCCR);
701  w |= (tx ? XDISABLE : 0);
702  MCBSP_WRITE(mcbsp, XCCR, w);
703  }
704  w = MCBSP_READ_CACHE(mcbsp, SPCR2);
705  MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
706 
707  /* Reset receiver */
708  rx &= 1;
709  if (mcbsp->pdata->has_ccr) {
710  w = MCBSP_READ_CACHE(mcbsp, RCCR);
711  w |= (rx ? RDISABLE : 0);
712  MCBSP_WRITE(mcbsp, RCCR, w);
713  }
714  w = MCBSP_READ_CACHE(mcbsp, SPCR1);
715  MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
716 
717  idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
718  MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
719 
720  if (idle) {
721  /* Reset the sample rate generator */
722  w = MCBSP_READ_CACHE(mcbsp, SPCR2);
723  MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
724  }
725 
726  if (mcbsp->st_data)
727  omap_st_stop(mcbsp);
728 }
729 
730 int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
731 {
732  struct clk *fck_src;
733  const char *src;
734  int r;
735 
736  if (fck_src_id == MCBSP_CLKS_PAD_SRC)
737  src = "pad_fck";
738  else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
739  src = "prcm_fck";
740  else
741  return -EINVAL;
742 
743  fck_src = clk_get(mcbsp->dev, src);
744  if (IS_ERR(fck_src)) {
745  dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
746  return -EINVAL;
747  }
748 
749  pm_runtime_put_sync(mcbsp->dev);
750 
751  r = clk_set_parent(mcbsp->fclk, fck_src);
752  if (r) {
753  dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
754  src);
755  clk_put(fck_src);
756  return r;
757  }
758 
759  pm_runtime_get_sync(mcbsp->dev);
760 
761  clk_put(fck_src);
762 
763  return 0;
764 
765 }
766 
767 #define max_thres(m) (mcbsp->pdata->buffer_size)
768 #define valid_threshold(m, val) ((val) <= max_thres(m))
769 #define THRESHOLD_PROP_BUILDER(prop) \
770 static ssize_t prop##_show(struct device *dev, \
771  struct device_attribute *attr, char *buf) \
772 { \
773  struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
774  \
775  return sprintf(buf, "%u\n", mcbsp->prop); \
776 } \
777  \
778 static ssize_t prop##_store(struct device *dev, \
779  struct device_attribute *attr, \
780  const char *buf, size_t size) \
781 { \
782  struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
783  unsigned long val; \
784  int status; \
785  \
786  status = strict_strtoul(buf, 0, &val); \
787  if (status) \
788  return status; \
789  \
790  if (!valid_threshold(mcbsp, val)) \
791  return -EDOM; \
792  \
793  mcbsp->prop = val; \
794  return size; \
795 } \
796  \
797 static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store);
798 
799 THRESHOLD_PROP_BUILDER(max_tx_thres);
800 THRESHOLD_PROP_BUILDER(max_rx_thres);
801 
802 static const char *dma_op_modes[] = {
803  "element", "threshold",
804 };
805 
806 static ssize_t dma_op_mode_show(struct device *dev,
807  struct device_attribute *attr, char *buf)
808 {
809  struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
810  int dma_op_mode, i = 0;
811  ssize_t len = 0;
812  const char * const *s;
813 
814  dma_op_mode = mcbsp->dma_op_mode;
815 
816  for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
817  if (dma_op_mode == i)
818  len += sprintf(buf + len, "[%s] ", *s);
819  else
820  len += sprintf(buf + len, "%s ", *s);
821  }
822  len += sprintf(buf + len, "\n");
823 
824  return len;
825 }
826 
827 static ssize_t dma_op_mode_store(struct device *dev,
828  struct device_attribute *attr,
829  const char *buf, size_t size)
830 {
831  struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
832  const char * const *s;
833  int i = 0;
834 
835  for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++)
836  if (sysfs_streq(buf, *s))
837  break;
838 
839  if (i == ARRAY_SIZE(dma_op_modes))
840  return -EINVAL;
841 
842  spin_lock_irq(&mcbsp->lock);
843  if (!mcbsp->free) {
844  size = -EBUSY;
845  goto unlock;
846  }
847  mcbsp->dma_op_mode = i;
848 
849 unlock:
850  spin_unlock_irq(&mcbsp->lock);
851 
852  return size;
853 }
854 
855 static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store);
856 
857 static const struct attribute *additional_attrs[] = {
858  &dev_attr_max_tx_thres.attr,
859  &dev_attr_max_rx_thres.attr,
860  &dev_attr_dma_op_mode.attr,
861  NULL,
862 };
863 
864 static const struct attribute_group additional_attr_group = {
865  .attrs = (struct attribute **)additional_attrs,
866 };
867 
868 static ssize_t st_taps_show(struct device *dev,
869  struct device_attribute *attr, char *buf)
870 {
871  struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
872  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
873  ssize_t status = 0;
874  int i;
875 
876  spin_lock_irq(&mcbsp->lock);
877  for (i = 0; i < st_data->nr_taps; i++)
878  status += sprintf(&buf[status], (i ? ", %d" : "%d"),
879  st_data->taps[i]);
880  if (i)
881  status += sprintf(&buf[status], "\n");
882  spin_unlock_irq(&mcbsp->lock);
883 
884  return status;
885 }
886 
887 static ssize_t st_taps_store(struct device *dev,
888  struct device_attribute *attr,
889  const char *buf, size_t size)
890 {
891  struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
892  struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
893  int val, tmp, status, i = 0;
894 
895  spin_lock_irq(&mcbsp->lock);
896  memset(st_data->taps, 0, sizeof(st_data->taps));
897  st_data->nr_taps = 0;
898 
899  do {
900  status = sscanf(buf, "%d%n", &val, &tmp);
901  if (status < 0 || status == 0) {
902  size = -EINVAL;
903  goto out;
904  }
905  if (val < -32768 || val > 32767) {
906  size = -EINVAL;
907  goto out;
908  }
909  st_data->taps[i++] = val;
910  buf += tmp;
911  if (*buf != ',')
912  break;
913  buf++;
914  } while (1);
915 
916  st_data->nr_taps = i;
917 
918 out:
919  spin_unlock_irq(&mcbsp->lock);
920 
921  return size;
922 }
923 
924 static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store);
925 
926 static const struct attribute *sidetone_attrs[] = {
927  &dev_attr_st_taps.attr,
928  NULL,
929 };
930 
931 static const struct attribute_group sidetone_attr_group = {
932  .attrs = (struct attribute **)sidetone_attrs,
933 };
934 
935 static int __devinit omap_st_add(struct omap_mcbsp *mcbsp,
936  struct resource *res)
937 {
938  struct omap_mcbsp_st_data *st_data;
939  int err;
940 
941  st_data = devm_kzalloc(mcbsp->dev, sizeof(*mcbsp->st_data), GFP_KERNEL);
942  if (!st_data)
943  return -ENOMEM;
944 
945  st_data->io_base_st = devm_ioremap(mcbsp->dev, res->start,
946  resource_size(res));
947  if (!st_data->io_base_st)
948  return -ENOMEM;
949 
950  err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group);
951  if (err)
952  return err;
953 
954  mcbsp->st_data = st_data;
955  return 0;
956 }
957 
958 /*
959  * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
960  * 730 has only 2 McBSP, and both of them are MPU peripherals.
961  */
963 {
964  struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
965  struct resource *res;
966  int ret = 0;
967 
968  spin_lock_init(&mcbsp->lock);
969  mcbsp->free = true;
970 
971  res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
972  if (!res) {
973  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
974  if (!res) {
975  dev_err(mcbsp->dev, "invalid memory resource\n");
976  return -ENOMEM;
977  }
978  }
979  if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
980  dev_name(&pdev->dev))) {
981  dev_err(mcbsp->dev, "memory region already claimed\n");
982  return -ENODEV;
983  }
984 
985  mcbsp->phys_base = res->start;
986  mcbsp->reg_cache_size = resource_size(res);
987  mcbsp->io_base = devm_ioremap(&pdev->dev, res->start,
988  resource_size(res));
989  if (!mcbsp->io_base)
990  return -ENOMEM;
991 
992  res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
993  if (!res)
994  mcbsp->phys_dma_base = mcbsp->phys_base;
995  else
996  mcbsp->phys_dma_base = res->start;
997 
998  /*
999  * OMAP1, 2 uses two interrupt lines: TX, RX
1000  * OMAP2430, OMAP3 SoC have combined IRQ line as well.
1001  * OMAP4 and newer SoC only have the combined IRQ line.
1002  * Use the combined IRQ if available since it gives better debugging
1003  * possibilities.
1004  */
1005  mcbsp->irq = platform_get_irq_byname(pdev, "common");
1006  if (mcbsp->irq == -ENXIO) {
1007  mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
1008 
1009  if (mcbsp->tx_irq == -ENXIO) {
1010  mcbsp->irq = platform_get_irq(pdev, 0);
1011  mcbsp->tx_irq = 0;
1012  } else {
1013  mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
1014  mcbsp->irq = 0;
1015  }
1016  }
1017 
1018  res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1019  if (!res) {
1020  dev_err(&pdev->dev, "invalid rx DMA channel\n");
1021  return -ENODEV;
1022  }
1023  /* RX DMA request number, and port address configuration */
1024  mcbsp->dma_data[1].name = "Audio Capture";
1025  mcbsp->dma_data[1].dma_req = res->start;
1026  mcbsp->dma_data[1].port_addr = omap_mcbsp_dma_reg_params(mcbsp, 1);
1027 
1028  res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1029  if (!res) {
1030  dev_err(&pdev->dev, "invalid tx DMA channel\n");
1031  return -ENODEV;
1032  }
1033  /* TX DMA request number, and port address configuration */
1034  mcbsp->dma_data[0].name = "Audio Playback";
1035  mcbsp->dma_data[0].dma_req = res->start;
1036  mcbsp->dma_data[0].port_addr = omap_mcbsp_dma_reg_params(mcbsp, 0);
1037 
1038  mcbsp->fclk = clk_get(&pdev->dev, "fck");
1039  if (IS_ERR(mcbsp->fclk)) {
1040  ret = PTR_ERR(mcbsp->fclk);
1041  dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
1042  return ret;
1043  }
1044 
1046  if (mcbsp->pdata->buffer_size) {
1047  /*
1048  * Initially configure the maximum thresholds to a safe value.
1049  * The McBSP FIFO usage with these values should not go under
1050  * 16 locations.
1051  * If the whole FIFO without safety buffer is used, than there
1052  * is a possibility that the DMA will be not able to push the
1053  * new data on time, causing channel shifts in runtime.
1054  */
1055  mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
1056  mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
1057 
1058  ret = sysfs_create_group(&mcbsp->dev->kobj,
1059  &additional_attr_group);
1060  if (ret) {
1061  dev_err(mcbsp->dev,
1062  "Unable to create additional controls\n");
1063  goto err_thres;
1064  }
1065  } else {
1066  mcbsp->max_tx_thres = -EINVAL;
1067  mcbsp->max_rx_thres = -EINVAL;
1068  }
1069 
1070  res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sidetone");
1071  if (res) {
1072  ret = omap_st_add(mcbsp, res);
1073  if (ret) {
1074  dev_err(mcbsp->dev,
1075  "Unable to create sidetone controls\n");
1076  goto err_st;
1077  }
1078  }
1079 
1080  return 0;
1081 
1082 err_st:
1083  if (mcbsp->pdata->buffer_size)
1084  sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1085 err_thres:
1086  clk_put(mcbsp->fclk);
1087  return ret;
1088 }
1089 
1091 {
1092  if (mcbsp->pdata->buffer_size)
1093  sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1094 
1095  if (mcbsp->st_data)
1096  sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group);
1097 }