Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
yellowfin.c
Go to the documentation of this file.
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3  Written 1997-2001 by Donald Becker.
4 
5  This software may be used and distributed according to the terms of
6  the GNU General Public License (GPL), incorporated herein by reference.
7  Drivers based on or derived from this code fall under the GPL and must
8  retain the authorship, copyright and license notice. This file is not
9  a complete program and may only be used when the entire operating
10  system is licensed under the GPL.
11 
12  This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13  It also supports the Symbios Logic version of the same chip core.
14 
15  The author may be reached as [email protected], or C/O
16  Scyld Computing Corporation
17  410 Severn Ave., Suite 210
18  Annapolis MD 21403
19 
20  Support and updates available at
21  http://www.scyld.com/network/yellowfin.html
22  [link no longer provides useful info -jgarzik]
23 
24 */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #define DRV_NAME "yellowfin"
29 #define DRV_VERSION "2.1"
30 #define DRV_RELDATE "Sep 11, 2006"
31 
32 /* The user-configurable values.
33  These may be modified when a driver module is loaded.*/
34 
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
51 
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53  Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
55 
56 /* Used to pass the media type, etc.
57  No media types are currently defined. These exist for driver
58  interoperability.
59 */
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63 
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
66 
67 /* Operational parameters that are set at compile time. */
68 
69 /* Keep the ring sizes a power of two for efficiency.
70  Making the Tx ring too long decreases the effectiveness of channel
71  bonding and packet priority.
72  There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
79 
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84 
85 #define yellowfin_debug debug
86 
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/init.h>
96 #include <linux/mii.h>
97 #include <linux/netdevice.h>
98 #include <linux/etherdevice.h>
99 #include <linux/skbuff.h>
100 #include <linux/ethtool.h>
101 #include <linux/crc32.h>
102 #include <linux/bitops.h>
103 #include <asm/uaccess.h>
104 #include <asm/processor.h> /* Processor type for cache alignment. */
105 #include <asm/unaligned.h>
106 #include <asm/io.h>
107 
108 /* These identify the driver base version and may not be removed. */
109 static const char version[] __devinitconst =
110  KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <[email protected]>\n"
111  " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
112 
113 MODULE_AUTHOR("Donald Becker <[email protected]>");
114 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
115 MODULE_LICENSE("GPL");
116 
117 module_param(max_interrupt_work, int, 0);
118 module_param(mtu, int, 0);
119 module_param(debug, int, 0);
120 module_param(rx_copybreak, int, 0);
122 module_param_array(full_duplex, int, NULL, 0);
123 module_param(gx_fix, int, 0);
124 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
125 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
126 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
127 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
128 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
129 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
130 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
131 
132 /*
133  Theory of Operation
134 
135 I. Board Compatibility
136 
137 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
138 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
139 Symbios 53C885E dual function chip.
140 
141 II. Board-specific settings
142 
143 PCI bus devices are configured by the system at boot time, so no jumpers
144 need to be set on the board. The system BIOS preferably should assign the
145 PCI INTA signal to an otherwise unused system IRQ line.
146 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
147 interrupt lines.
148 
149 III. Driver operation
150 
151 IIIa. Ring buffers
152 
153 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
154 This is a descriptor list scheme similar to that used by the EEPro100 and
155 Tulip. This driver uses two statically allocated fixed-size descriptor lists
156 formed into rings by a branch from the final descriptor to the beginning of
157 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
158 
159 The driver allocates full frame size skbuffs for the Rx ring buffers at
160 open() time and passes the skb->data field to the Yellowfin as receive data
161 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
162 a fresh skbuff is allocated and the frame is copied to the new skbuff.
163 When the incoming frame is larger, the skbuff is passed directly up the
164 protocol stack and replaced by a newly allocated skbuff.
165 
166 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
167 using a full-sized skbuff for small frames vs. the copying costs of larger
168 frames. For small frames the copying cost is negligible (esp. considering
169 that we are pre-loading the cache with immediately useful header
170 information). For large frames the copying cost is non-trivial, and the
171 larger copy might flush the cache of useful data.
172 
173 IIIC. Synchronization
174 
175 The driver runs as two independent, single-threaded flows of control. One
176 is the send-packet routine, which enforces single-threaded use by the
177 dev->tbusy flag. The other thread is the interrupt handler, which is single
178 threaded by the hardware and other software.
179 
180 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
181 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
182 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
183 the 'yp->tx_full' flag.
184 
185 The interrupt handler has exclusive control over the Rx ring and records stats
186 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
187 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
188 clears both the tx_full and tbusy flags.
189 
190 IV. Notes
191 
192 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
193 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
194 and an AlphaStation to verifty the Alpha port!
195 
196 IVb. References
197 
198 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
199 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
200  Data Manual v3.0
201 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
202 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
203 
204 IVc. Errata
205 
206 See Packet Engines confidential appendix (prototype chips only).
207 */
208 
209 
210 
213  HasMACAddrBug=32, /* Only on early revs. */
214  DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
215 };
216 
217 /* The PCI I/O space extent. */
218 enum {
219  YELLOWFIN_SIZE = 0x100,
220 };
221 
222 struct pci_id_info {
223  const char *name;
224  struct match_info {
226  int revision, revision_mask; /* Only 8 bits. */
227  } id;
228  int drv_flags; /* Driver use, intended as capability flags. */
229 };
230 
231 static const struct pci_id_info pci_id_tbl[] = {
232  {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234  {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
235  HasMII | DontUseEeprom },
236  { }
237 };
238 
239 static DEFINE_PCI_DEVICE_TABLE(yellowfin_pci_tbl) = {
240  { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
241  { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
242  { }
243 };
244 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
245 
246 
247 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249  TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
250  TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
251  RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
252  RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
253  EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
254  ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
255  Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
256  MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258  RxDepth=0xB8, FlowCtrl=0xBC,
259  AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
260  EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
261  EEFeature=0xF5,
262 };
263 
264 /* The Yellowfin Rx and Tx buffer descriptors.
265  Elements are written as 32 bit for endian portability. */
271 };
272 
274 #ifdef __BIG_ENDIAN
275  u16 tx_errs;
276  u16 tx_cnt;
277  u16 paused;
279 #else /* Little endian chips. */
284 #endif /* __BIG_ENDIAN */
285 };
286 
287 /* Bits in yellowfin_desc.cmd */
289  CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
290  CMD_NOP=0x60000000, CMD_STOP=0x70000000,
291  BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
292  BRANCH_IFTRUE=0x040000,
293 };
294 
295 /* Bits in yellowfin_desc.status */
296 enum desc_status_bits { RX_EOP=0x0040, };
297 
298 /* Bits in the interrupt status/mask registers. */
302  IntrEarlyRx=0x100, IntrWakeup=0x200, };
303 
304 #define PRIV_ALIGN 31 /* Required alignment mask */
305 #define MII_CNT 4
307  /* Descriptor rings first for alignment.
308  Tx requires a second descriptor for status. */
315 
318 
319  struct timer_list timer; /* Media selection timer. */
320  /* Frequently used and paired value: keep adjacent for cache effect. */
322  struct pci_dev *pci_dev;
323  unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
324  unsigned int rx_buf_sz; /* Based on MTU+slack. */
326  unsigned int cur_tx, dirty_tx;
328  unsigned int tx_full:1; /* The Tx queue is full. */
329  unsigned int full_duplex:1; /* Full-duplex operation requested. */
330  unsigned int duplex_lock:1;
331  unsigned int medialock:1; /* Do not sense media. */
332  unsigned int default_port:4; /* Last dev->if_port value. */
333  /* MII transceiver section. */
334  int mii_cnt; /* MII device addresses. */
335  u16 advertising; /* NWay media advertisement */
336  unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
338  void __iomem *base;
339 };
340 
341 static int read_eeprom(void __iomem *ioaddr, int location);
342 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
343 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
344 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345 static int yellowfin_open(struct net_device *dev);
346 static void yellowfin_timer(unsigned long data);
347 static void yellowfin_tx_timeout(struct net_device *dev);
348 static int yellowfin_init_ring(struct net_device *dev);
349 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
350  struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
357 
358 static const struct net_device_ops netdev_ops = {
359  .ndo_open = yellowfin_open,
360  .ndo_stop = yellowfin_close,
361  .ndo_start_xmit = yellowfin_start_xmit,
362  .ndo_set_rx_mode = set_rx_mode,
363  .ndo_change_mtu = eth_change_mtu,
364  .ndo_validate_addr = eth_validate_addr,
365  .ndo_set_mac_address = eth_mac_addr,
366  .ndo_do_ioctl = netdev_ioctl,
367  .ndo_tx_timeout = yellowfin_tx_timeout,
368 };
369 
370 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
371  const struct pci_device_id *ent)
372 {
373  struct net_device *dev;
374  struct yellowfin_private *np;
375  int irq;
376  int chip_idx = ent->driver_data;
377  static int find_cnt;
378  void __iomem *ioaddr;
379  int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
380  int drv_flags = pci_id_tbl[chip_idx].drv_flags;
381  void *ring_space;
382  dma_addr_t ring_dma;
383 #ifdef USE_IO_OPS
384  int bar = 0;
385 #else
386  int bar = 1;
387 #endif
388 
389 /* when built into the kernel, we only print version if device is found */
390 #ifndef MODULE
391  static int printed_version;
392  if (!printed_version++)
393  printk(version);
394 #endif
395 
396  i = pci_enable_device(pdev);
397  if (i) return i;
398 
399  dev = alloc_etherdev(sizeof(*np));
400  if (!dev)
401  return -ENOMEM;
402 
403  SET_NETDEV_DEV(dev, &pdev->dev);
404 
405  np = netdev_priv(dev);
406 
407  if (pci_request_regions(pdev, DRV_NAME))
408  goto err_out_free_netdev;
409 
410  pci_set_master (pdev);
411 
412  ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
413  if (!ioaddr)
414  goto err_out_free_res;
415 
416  irq = pdev->irq;
417 
418  if (drv_flags & DontUseEeprom)
419  for (i = 0; i < 6; i++)
420  dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
421  else {
422  int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
423  for (i = 0; i < 6; i++)
424  dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
425  }
426 
427  /* Reset the chip. */
428  iowrite32(0x80000000, ioaddr + DMACtrl);
429 
430  pci_set_drvdata(pdev, dev);
431  spin_lock_init(&np->lock);
432 
433  np->pci_dev = pdev;
434  np->chip_id = chip_idx;
435  np->drv_flags = drv_flags;
436  np->base = ioaddr;
437 
438  ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
439  if (!ring_space)
440  goto err_out_cleardev;
441  np->tx_ring = ring_space;
442  np->tx_ring_dma = ring_dma;
443 
444  ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
445  if (!ring_space)
446  goto err_out_unmap_tx;
447  np->rx_ring = ring_space;
448  np->rx_ring_dma = ring_dma;
449 
450  ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
451  if (!ring_space)
452  goto err_out_unmap_rx;
453  np->tx_status = ring_space;
454  np->tx_status_dma = ring_dma;
455 
456  if (dev->mem_start)
457  option = dev->mem_start;
458 
459  /* The lower four bits are the media type. */
460  if (option > 0) {
461  if (option & 0x200)
462  np->full_duplex = 1;
463  np->default_port = option & 15;
464  if (np->default_port)
465  np->medialock = 1;
466  }
467  if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
468  np->full_duplex = 1;
469 
470  if (np->full_duplex)
471  np->duplex_lock = 1;
472 
473  /* The Yellowfin-specific entries in the device structure. */
474  dev->netdev_ops = &netdev_ops;
476  dev->watchdog_timeo = TX_TIMEOUT;
477 
478  if (mtu)
479  dev->mtu = mtu;
480 
481  i = register_netdev(dev);
482  if (i)
483  goto err_out_unmap_status;
484 
485  netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
486  pci_id_tbl[chip_idx].name,
487  ioread32(ioaddr + ChipRev), ioaddr,
488  dev->dev_addr, irq);
489 
490  if (np->drv_flags & HasMII) {
491  int phy, phy_idx = 0;
492  for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
493  int mii_status = mdio_read(ioaddr, phy, 1);
494  if (mii_status != 0xffff && mii_status != 0x0000) {
495  np->phys[phy_idx++] = phy;
496  np->advertising = mdio_read(ioaddr, phy, 4);
497  netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
498  phy, mii_status, np->advertising);
499  }
500  }
501  np->mii_cnt = phy_idx;
502  }
503 
504  find_cnt++;
505 
506  return 0;
507 
508 err_out_unmap_status:
510  np->tx_status_dma);
511 err_out_unmap_rx:
513 err_out_unmap_tx:
515 err_out_cleardev:
516  pci_set_drvdata(pdev, NULL);
517  pci_iounmap(pdev, ioaddr);
518 err_out_free_res:
519  pci_release_regions(pdev);
520 err_out_free_netdev:
521  free_netdev (dev);
522  return -ENODEV;
523 }
524 
525 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
526 {
527  int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
528 
529  iowrite8(location, ioaddr + EEAddr);
530  iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
531  while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
532  ;
533  return ioread8(ioaddr + EERead);
534 }
535 
536 /* MII Managemen Data I/O accesses.
537  These routines assume the MDIO controller is idle, and do not exit until
538  the command is finished. */
539 
540 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
541 {
542  int i;
543 
544  iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
545  iowrite16(1, ioaddr + MII_Cmd);
546  for (i = 10000; i >= 0; i--)
547  if ((ioread16(ioaddr + MII_Status) & 1) == 0)
548  break;
549  return ioread16(ioaddr + MII_Rd_Data);
550 }
551 
552 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
553 {
554  int i;
555 
556  iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
557  iowrite16(value, ioaddr + MII_Wr_Data);
558 
559  /* Wait for the command to finish. */
560  for (i = 10000; i >= 0; i--)
561  if ((ioread16(ioaddr + MII_Status) & 1) == 0)
562  break;
563 }
564 
565 
566 static int yellowfin_open(struct net_device *dev)
567 {
568  struct yellowfin_private *yp = netdev_priv(dev);
569  const int irq = yp->pci_dev->irq;
570  void __iomem *ioaddr = yp->base;
571  int i, rc;
572 
573  /* Reset the chip. */
574  iowrite32(0x80000000, ioaddr + DMACtrl);
575 
576  rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
577  if (rc)
578  return rc;
579 
580  rc = yellowfin_init_ring(dev);
581  if (rc < 0)
582  goto err_free_irq;
583 
584  iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
585  iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
586 
587  for (i = 0; i < 6; i++)
588  iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
589 
590  /* Set up various condition 'select' registers.
591  There are no options here. */
592  iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
593  iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
594  iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
595  iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
596  iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
597  iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
598 
599  /* Initialize other registers: with so many this eventually this will
600  converted to an offset/value list. */
601  iowrite32(dma_ctrl, ioaddr + DMACtrl);
602  iowrite16(fifo_cfg, ioaddr + FIFOcfg);
603  /* Enable automatic generation of flow control frames, period 0xffff. */
604  iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
605 
606  yp->tx_threshold = 32;
607  iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
608 
609  if (dev->if_port == 0)
610  dev->if_port = yp->default_port;
611 
612  netif_start_queue(dev);
613 
614  /* Setting the Rx mode will start the Rx process. */
615  if (yp->drv_flags & IsGigabit) {
616  /* We are always in full-duplex mode with gigabit! */
617  yp->full_duplex = 1;
618  iowrite16(0x01CF, ioaddr + Cnfg);
619  } else {
620  iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
621  iowrite16(0x1018, ioaddr + FrameGap1);
622  iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
623  }
624  set_rx_mode(dev);
625 
626  /* Enable interrupts by setting the interrupt mask. */
627  iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
628  iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
629  iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
630  iowrite32(0x80008000, ioaddr + TxCtrl);
631 
632  if (yellowfin_debug > 2) {
633  netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
634  }
635 
636  /* Set the timer to check for link beat. */
637  init_timer(&yp->timer);
638  yp->timer.expires = jiffies + 3*HZ;
639  yp->timer.data = (unsigned long)dev;
640  yp->timer.function = yellowfin_timer; /* timer handler */
641  add_timer(&yp->timer);
642 out:
643  return rc;
644 
645 err_free_irq:
646  free_irq(irq, dev);
647  goto out;
648 }
649 
650 static void yellowfin_timer(unsigned long data)
651 {
652  struct net_device *dev = (struct net_device *)data;
653  struct yellowfin_private *yp = netdev_priv(dev);
654  void __iomem *ioaddr = yp->base;
655  int next_tick = 60*HZ;
656 
657  if (yellowfin_debug > 3) {
658  netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
659  ioread16(ioaddr + IntrStatus));
660  }
661 
662  if (yp->mii_cnt) {
663  int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
664  int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
665  int negotiated = lpa & yp->advertising;
666  if (yellowfin_debug > 1)
667  netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
668  yp->phys[0], bmsr, lpa);
669 
670  yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
671 
672  iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
673 
674  if (bmsr & BMSR_LSTATUS)
675  next_tick = 60*HZ;
676  else
677  next_tick = 3*HZ;
678  }
679 
680  yp->timer.expires = jiffies + next_tick;
681  add_timer(&yp->timer);
682 }
683 
684 static void yellowfin_tx_timeout(struct net_device *dev)
685 {
686  struct yellowfin_private *yp = netdev_priv(dev);
687  void __iomem *ioaddr = yp->base;
688 
689  netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
690  yp->cur_tx, yp->dirty_tx,
691  ioread32(ioaddr + TxStatus),
692  ioread32(ioaddr + RxStatus));
693 
694  /* Note: these should be KERN_DEBUG. */
695  if (yellowfin_debug) {
696  int i;
697  pr_warning(" Rx ring %p: ", yp->rx_ring);
698  for (i = 0; i < RX_RING_SIZE; i++)
699  pr_cont(" %08x", yp->rx_ring[i].result_status);
700  pr_cont("\n");
701  pr_warning(" Tx ring %p: ", yp->tx_ring);
702  for (i = 0; i < TX_RING_SIZE; i++)
703  pr_cont(" %04x /%08x",
704  yp->tx_status[i].tx_errs,
705  yp->tx_ring[i].result_status);
706  pr_cont("\n");
707  }
708 
709  /* If the hardware is found to hang regularly, we will update the code
710  to reinitialize the chip here. */
711  dev->if_port = 0;
712 
713  /* Wake the potentially-idle transmit channel. */
714  iowrite32(0x10001000, yp->base + TxCtrl);
715  if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
716  netif_wake_queue (dev); /* Typical path */
717 
718  dev->trans_start = jiffies; /* prevent tx timeout */
719  dev->stats.tx_errors++;
720 }
721 
722 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
723 static int yellowfin_init_ring(struct net_device *dev)
724 {
725  struct yellowfin_private *yp = netdev_priv(dev);
726  int i, j;
727 
728  yp->tx_full = 0;
729  yp->cur_rx = yp->cur_tx = 0;
730  yp->dirty_tx = 0;
731 
732  yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
733 
734  for (i = 0; i < RX_RING_SIZE; i++) {
735  yp->rx_ring[i].dbdma_cmd =
737  yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
738  ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
739  }
740 
741  for (i = 0; i < RX_RING_SIZE; i++) {
742  struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
743  yp->rx_skbuff[i] = skb;
744  if (skb == NULL)
745  break;
746  skb_reserve(skb, 2); /* 16 byte align the IP header. */
747  yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
748  skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
749  }
750  if (i != RX_RING_SIZE) {
751  for (j = 0; j < i; j++)
752  dev_kfree_skb(yp->rx_skbuff[j]);
753  return -ENOMEM;
754  }
755  yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
756  yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
757 
758 #define NO_TXSTATS
759 #ifdef NO_TXSTATS
760  /* In this mode the Tx ring needs only a single descriptor. */
761  for (i = 0; i < TX_RING_SIZE; i++) {
762  yp->tx_skbuff[i] = NULL;
763  yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
764  yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
765  ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
766  }
767  /* Wrap ring */
768  yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
769 #else
770 {
771  /* Tx ring needs a pair of descriptors, the second for the status. */
772  for (i = 0; i < TX_RING_SIZE; i++) {
773  j = 2*i;
774  yp->tx_skbuff[i] = 0;
775  /* Branch on Tx error. */
776  yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
777  yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
778  (j+1)*sizeof(struct yellowfin_desc));
779  j++;
780  if (yp->flags & FullTxStatus) {
781  yp->tx_ring[j].dbdma_cmd =
782  cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
783  yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
784  yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
785  i*sizeof(struct tx_status_words));
786  } else {
787  /* Symbios chips write only tx_errs word. */
788  yp->tx_ring[j].dbdma_cmd =
790  yp->tx_ring[j].request_cnt = 2;
791  /* Om pade ummmmm... */
792  yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
793  i*sizeof(struct tx_status_words) +
794  &(yp->tx_status[0].tx_errs) -
795  &(yp->tx_status[0]));
796  }
797  yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
798  ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
799  }
800  /* Wrap ring */
801  yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
802 }
803 #endif
804  yp->tx_tail_desc = &yp->tx_status[0];
805  return 0;
806 }
807 
808 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
809  struct net_device *dev)
810 {
811  struct yellowfin_private *yp = netdev_priv(dev);
812  unsigned entry;
813  int len = skb->len;
814 
815  netif_stop_queue (dev);
816 
817  /* Note: Ordering is important here, set the field with the
818  "ownership" bit last, and only then increment cur_tx. */
819 
820  /* Calculate the next Tx descriptor entry. */
821  entry = yp->cur_tx % TX_RING_SIZE;
822 
823  if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
824  int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
825  /* Fix GX chipset errata. */
826  if (cacheline_end > 24 || cacheline_end == 0) {
827  len = skb->len + 32 - cacheline_end + 1;
828  if (skb_padto(skb, len)) {
829  yp->tx_skbuff[entry] = NULL;
830  netif_wake_queue(dev);
831  return NETDEV_TX_OK;
832  }
833  }
834  }
835  yp->tx_skbuff[entry] = skb;
836 
837 #ifdef NO_TXSTATS
838  yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
839  skb->data, len, PCI_DMA_TODEVICE));
840  yp->tx_ring[entry].result_status = 0;
841  if (entry >= TX_RING_SIZE-1) {
842  /* New stop command. */
843  yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
844  yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
846  } else {
847  yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
848  yp->tx_ring[entry].dbdma_cmd =
850  }
851  yp->cur_tx++;
852 #else
853  yp->tx_ring[entry<<1].request_cnt = len;
854  yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
855  skb->data, len, PCI_DMA_TODEVICE));
856  /* The input_last (status-write) command is constant, but we must
857  rewrite the subsequent 'stop' command. */
858 
859  yp->cur_tx++;
860  {
861  unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
862  yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
863  }
864  /* Final step -- overwrite the old 'stop' command. */
865 
866  yp->tx_ring[entry<<1].dbdma_cmd =
867  cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
868  CMD_TX_PKT | BRANCH_IFTRUE) | len);
869 #endif
870 
871  /* Non-x86 Todo: explicitly flush cache lines here. */
872 
873  /* Wake the potentially-idle transmit channel. */
874  iowrite32(0x10001000, yp->base + TxCtrl);
875 
876  if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
877  netif_start_queue (dev); /* Typical path */
878  else
879  yp->tx_full = 1;
880 
881  if (yellowfin_debug > 4) {
882  netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
883  yp->cur_tx, entry);
884  }
885  return NETDEV_TX_OK;
886 }
887 
888 /* The interrupt handler does all of the Rx thread work and cleans up
889  after the Tx thread. */
890 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
891 {
892  struct net_device *dev = dev_instance;
893  struct yellowfin_private *yp;
894  void __iomem *ioaddr;
895  int boguscnt = max_interrupt_work;
896  unsigned int handled = 0;
897 
898  yp = netdev_priv(dev);
899  ioaddr = yp->base;
900 
901  spin_lock (&yp->lock);
902 
903  do {
904  u16 intr_status = ioread16(ioaddr + IntrClear);
905 
906  if (yellowfin_debug > 4)
907  netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
908  intr_status);
909 
910  if (intr_status == 0)
911  break;
912  handled = 1;
913 
914  if (intr_status & (IntrRxDone | IntrEarlyRx)) {
915  yellowfin_rx(dev);
916  iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
917  }
918 
919 #ifdef NO_TXSTATS
920  for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
921  int entry = yp->dirty_tx % TX_RING_SIZE;
922  struct sk_buff *skb;
923 
924  if (yp->tx_ring[entry].result_status == 0)
925  break;
926  skb = yp->tx_skbuff[entry];
927  dev->stats.tx_packets++;
928  dev->stats.tx_bytes += skb->len;
929  /* Free the original skb. */
930  pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
931  skb->len, PCI_DMA_TODEVICE);
932  dev_kfree_skb_irq(skb);
933  yp->tx_skbuff[entry] = NULL;
934  }
935  if (yp->tx_full &&
936  yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
937  /* The ring is no longer full, clear tbusy. */
938  yp->tx_full = 0;
939  netif_wake_queue(dev);
940  }
941 #else
942  if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
943  unsigned dirty_tx = yp->dirty_tx;
944 
945  for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
946  dirty_tx++) {
947  /* Todo: optimize this. */
948  int entry = dirty_tx % TX_RING_SIZE;
949  u16 tx_errs = yp->tx_status[entry].tx_errs;
950  struct sk_buff *skb;
951 
952 #ifndef final_version
953  if (yellowfin_debug > 5)
954  netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
955  entry,
956  yp->tx_status[entry].tx_cnt,
957  yp->tx_status[entry].tx_errs,
958  yp->tx_status[entry].total_tx_cnt,
959  yp->tx_status[entry].paused);
960 #endif
961  if (tx_errs == 0)
962  break; /* It still hasn't been Txed */
963  skb = yp->tx_skbuff[entry];
964  if (tx_errs & 0xF810) {
965  /* There was an major error, log it. */
966 #ifndef final_version
967  if (yellowfin_debug > 1)
968  netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
969  tx_errs);
970 #endif
971  dev->stats.tx_errors++;
972  if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
973  if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
974  if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
975  if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
976  } else {
977 #ifndef final_version
978  if (yellowfin_debug > 4)
979  netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
980  tx_errs);
981 #endif
982  dev->stats.tx_bytes += skb->len;
983  dev->stats.collisions += tx_errs & 15;
984  dev->stats.tx_packets++;
985  }
986  /* Free the original skb. */
987  pci_unmap_single(yp->pci_dev,
988  yp->tx_ring[entry<<1].addr, skb->len,
990  dev_kfree_skb_irq(skb);
991  yp->tx_skbuff[entry] = 0;
992  /* Mark status as empty. */
993  yp->tx_status[entry].tx_errs = 0;
994  }
995 
996 #ifndef final_version
997  if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
998  netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
999  dirty_tx, yp->cur_tx, yp->tx_full);
1000  dirty_tx += TX_RING_SIZE;
1001  }
1002 #endif
1003 
1004  if (yp->tx_full &&
1005  yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1006  /* The ring is no longer full, clear tbusy. */
1007  yp->tx_full = 0;
1008  netif_wake_queue(dev);
1009  }
1010 
1011  yp->dirty_tx = dirty_tx;
1012  yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1013  }
1014 #endif
1015 
1016  /* Log errors and other uncommon events. */
1017  if (intr_status & 0x2ee) /* Abnormal error summary. */
1018  yellowfin_error(dev, intr_status);
1019 
1020  if (--boguscnt < 0) {
1021  netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
1022  intr_status);
1023  break;
1024  }
1025  } while (1);
1026 
1027  if (yellowfin_debug > 3)
1028  netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
1029  ioread16(ioaddr + IntrStatus));
1030 
1031  spin_unlock (&yp->lock);
1032  return IRQ_RETVAL(handled);
1033 }
1034 
1035 /* This routine is logically part of the interrupt handler, but separated
1036  for clarity and better register allocation. */
1037 static int yellowfin_rx(struct net_device *dev)
1038 {
1039  struct yellowfin_private *yp = netdev_priv(dev);
1040  int entry = yp->cur_rx % RX_RING_SIZE;
1041  int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1042 
1043  if (yellowfin_debug > 4) {
1044  printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
1045  entry, yp->rx_ring[entry].result_status);
1046  printk(KERN_DEBUG " #%d desc. %08x %08x %08x\n",
1047  entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1048  yp->rx_ring[entry].result_status);
1049  }
1050 
1051  /* If EOP is set on the next entry, it's a new packet. Send it up. */
1052  while (1) {
1053  struct yellowfin_desc *desc = &yp->rx_ring[entry];
1054  struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1055  s16 frame_status;
1056  u16 desc_status;
1057  int data_size;
1058  u8 *buf_addr;
1059 
1060  if(!desc->result_status)
1061  break;
1062  pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1064  desc_status = le32_to_cpu(desc->result_status) >> 16;
1065  buf_addr = rx_skb->data;
1066  data_size = (le32_to_cpu(desc->dbdma_cmd) -
1067  le32_to_cpu(desc->result_status)) & 0xffff;
1068  frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1069  if (yellowfin_debug > 4)
1070  printk(KERN_DEBUG " %s() status was %04x\n",
1071  __func__, frame_status);
1072  if (--boguscnt < 0)
1073  break;
1074  if ( ! (desc_status & RX_EOP)) {
1075  if (data_size != 0)
1076  netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
1077  desc_status, data_size);
1078  dev->stats.rx_length_errors++;
1079  } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1080  /* There was a error. */
1081  if (yellowfin_debug > 3)
1082  printk(KERN_DEBUG " %s() Rx error was %04x\n",
1083  __func__, frame_status);
1084  dev->stats.rx_errors++;
1085  if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1086  if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1087  if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1088  if (frame_status < 0) dev->stats.rx_dropped++;
1089  } else if ( !(yp->drv_flags & IsGigabit) &&
1090  ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1091  u8 status1 = buf_addr[data_size-2];
1092  u8 status2 = buf_addr[data_size-1];
1093  dev->stats.rx_errors++;
1094  if (status1 & 0xC0) dev->stats.rx_length_errors++;
1095  if (status2 & 0x03) dev->stats.rx_frame_errors++;
1096  if (status2 & 0x04) dev->stats.rx_crc_errors++;
1097  if (status2 & 0x80) dev->stats.rx_dropped++;
1098 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1099  } else if ((yp->flags & HasMACAddrBug) &&
1101  entry*sizeof(struct yellowfin_desc)),
1102  dev->dev_addr, 6) != 0 &&
1104  entry*sizeof(struct yellowfin_desc)),
1105  "\377\377\377\377\377\377", 6) != 0) {
1106  if (bogus_rx++ == 0)
1107  netdev_warn(dev, "Bad frame to %pM\n",
1108  buf_addr);
1109 #endif
1110  } else {
1111  struct sk_buff *skb;
1112  int pkt_len = data_size -
1113  (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1114  /* To verify: Yellowfin Length should omit the CRC! */
1115 
1116 #ifndef final_version
1117  if (yellowfin_debug > 4)
1118  printk(KERN_DEBUG " %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
1119  __func__, pkt_len, data_size, boguscnt);
1120 #endif
1121  /* Check if the packet is long enough to just pass up the skbuff
1122  without copying to a properly sized skbuff. */
1123  if (pkt_len > rx_copybreak) {
1124  skb_put(skb = rx_skb, pkt_len);
1125  pci_unmap_single(yp->pci_dev,
1126  le32_to_cpu(yp->rx_ring[entry].addr),
1127  yp->rx_buf_sz,
1129  yp->rx_skbuff[entry] = NULL;
1130  } else {
1131  skb = netdev_alloc_skb(dev, pkt_len + 2);
1132  if (skb == NULL)
1133  break;
1134  skb_reserve(skb, 2); /* 16 byte align the IP header */
1135  skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1136  skb_put(skb, pkt_len);
1137  pci_dma_sync_single_for_device(yp->pci_dev,
1138  le32_to_cpu(desc->addr),
1139  yp->rx_buf_sz,
1141  }
1142  skb->protocol = eth_type_trans(skb, dev);
1143  netif_rx(skb);
1144  dev->stats.rx_packets++;
1145  dev->stats.rx_bytes += pkt_len;
1146  }
1147  entry = (++yp->cur_rx) % RX_RING_SIZE;
1148  }
1149 
1150  /* Refill the Rx ring buffers. */
1151  for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1152  entry = yp->dirty_rx % RX_RING_SIZE;
1153  if (yp->rx_skbuff[entry] == NULL) {
1154  struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
1155  if (skb == NULL)
1156  break; /* Better luck next round. */
1157  yp->rx_skbuff[entry] = skb;
1158  skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1159  yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1160  skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1161  }
1162  yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1163  yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1164  if (entry != 0)
1165  yp->rx_ring[entry - 1].dbdma_cmd =
1167  else
1168  yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1170  | yp->rx_buf_sz);
1171  }
1172 
1173  return 0;
1174 }
1175 
1176 static void yellowfin_error(struct net_device *dev, int intr_status)
1177 {
1178  netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
1179  /* Hmmmmm, it's not clear what to do here. */
1180  if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1181  dev->stats.tx_errors++;
1182  if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1183  dev->stats.rx_errors++;
1184 }
1185 
1186 static int yellowfin_close(struct net_device *dev)
1187 {
1188  struct yellowfin_private *yp = netdev_priv(dev);
1189  void __iomem *ioaddr = yp->base;
1190  int i;
1191 
1192  netif_stop_queue (dev);
1193 
1194  if (yellowfin_debug > 1) {
1195  netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
1196  ioread16(ioaddr + TxStatus),
1197  ioread16(ioaddr + RxStatus),
1198  ioread16(ioaddr + IntrStatus));
1199  netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n",
1200  yp->cur_tx, yp->dirty_tx,
1201  yp->cur_rx, yp->dirty_rx);
1202  }
1203 
1204  /* Disable interrupts by clearing the interrupt mask. */
1205  iowrite16(0x0000, ioaddr + IntrEnb);
1206 
1207  /* Stop the chip's Tx and Rx processes. */
1208  iowrite32(0x80000000, ioaddr + RxCtrl);
1209  iowrite32(0x80000000, ioaddr + TxCtrl);
1210 
1211  del_timer(&yp->timer);
1212 
1213 #if defined(__i386__)
1214  if (yellowfin_debug > 2) {
1215  printk(KERN_DEBUG " Tx ring at %08llx:\n",
1216  (unsigned long long)yp->tx_ring_dma);
1217  for (i = 0; i < TX_RING_SIZE*2; i++)
1218  printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
1219  ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1220  i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1221  yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1222  printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1223  for (i = 0; i < TX_RING_SIZE; i++)
1224  printk(KERN_DEBUG " #%d status %04x %04x %04x %04x\n",
1225  i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1226  yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1227 
1228  printk(KERN_DEBUG " Rx ring %08llx:\n",
1229  (unsigned long long)yp->rx_ring_dma);
1230  for (i = 0; i < RX_RING_SIZE; i++) {
1231  printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
1232  ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1233  i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1234  yp->rx_ring[i].result_status);
1235  if (yellowfin_debug > 6) {
1236  if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1237  int j;
1238 
1239  printk(KERN_DEBUG);
1240  for (j = 0; j < 0x50; j++)
1241  pr_cont(" %04x",
1242  get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1243  pr_cont("\n");
1244  }
1245  }
1246  }
1247  }
1248 #endif /* __i386__ debugging only */
1249 
1250  free_irq(yp->pci_dev->irq, dev);
1251 
1252  /* Free all the skbuffs in the Rx queue. */
1253  for (i = 0; i < RX_RING_SIZE; i++) {
1254  yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1255  yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1256  if (yp->rx_skbuff[i]) {
1257  dev_kfree_skb(yp->rx_skbuff[i]);
1258  }
1259  yp->rx_skbuff[i] = NULL;
1260  }
1261  for (i = 0; i < TX_RING_SIZE; i++) {
1262  if (yp->tx_skbuff[i])
1263  dev_kfree_skb(yp->tx_skbuff[i]);
1264  yp->tx_skbuff[i] = NULL;
1265  }
1266 
1267 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1268  if (yellowfin_debug > 0) {
1269  netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
1270  bogus_rx);
1271  }
1272 #endif
1273 
1274  return 0;
1275 }
1276 
1277 /* Set or clear the multicast filter for this adaptor. */
1278 
1279 static void set_rx_mode(struct net_device *dev)
1280 {
1281  struct yellowfin_private *yp = netdev_priv(dev);
1282  void __iomem *ioaddr = yp->base;
1283  u16 cfg_value = ioread16(ioaddr + Cnfg);
1284 
1285  /* Stop the Rx process to change any value. */
1286  iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1287  if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1288  iowrite16(0x000F, ioaddr + AddrMode);
1289  } else if ((netdev_mc_count(dev) > 64) ||
1290  (dev->flags & IFF_ALLMULTI)) {
1291  /* Too many to filter well, or accept all multicasts. */
1292  iowrite16(0x000B, ioaddr + AddrMode);
1293  } else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */
1294  struct netdev_hw_addr *ha;
1295  u16 hash_table[4];
1296  int i;
1297 
1298  memset(hash_table, 0, sizeof(hash_table));
1299  netdev_for_each_mc_addr(ha, dev) {
1300  unsigned int bit;
1301 
1302  /* Due to a bug in the early chip versions, multiple filter
1303  slots must be set for each address. */
1304  if (yp->drv_flags & HasMulticastBug) {
1305  bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f;
1306  hash_table[bit >> 4] |= (1 << bit);
1307  bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f;
1308  hash_table[bit >> 4] |= (1 << bit);
1309  bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f;
1310  hash_table[bit >> 4] |= (1 << bit);
1311  }
1312  bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f;
1313  hash_table[bit >> 4] |= (1 << bit);
1314  }
1315  /* Copy the hash table to the chip. */
1316  for (i = 0; i < 4; i++)
1317  iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1318  iowrite16(0x0003, ioaddr + AddrMode);
1319  } else { /* Normal, unicast/broadcast-only mode. */
1320  iowrite16(0x0001, ioaddr + AddrMode);
1321  }
1322  /* Restart the Rx process. */
1323  iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1324 }
1325 
1326 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1327 {
1328  struct yellowfin_private *np = netdev_priv(dev);
1329  strcpy(info->driver, DRV_NAME);
1330  strcpy(info->version, DRV_VERSION);
1331  strcpy(info->bus_info, pci_name(np->pci_dev));
1332 }
1333 
1334 static const struct ethtool_ops ethtool_ops = {
1335  .get_drvinfo = yellowfin_get_drvinfo
1336 };
1337 
1338 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1339 {
1340  struct yellowfin_private *np = netdev_priv(dev);
1341  void __iomem *ioaddr = np->base;
1342  struct mii_ioctl_data *data = if_mii(rq);
1343 
1344  switch(cmd) {
1345  case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1346  data->phy_id = np->phys[0] & 0x1f;
1347  /* Fall Through */
1348 
1349  case SIOCGMIIREG: /* Read MII PHY register. */
1350  data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1351  return 0;
1352 
1353  case SIOCSMIIREG: /* Write MII PHY register. */
1354  if (data->phy_id == np->phys[0]) {
1355  u16 value = data->val_in;
1356  switch (data->reg_num) {
1357  case 0:
1358  /* Check for autonegotiation on or reset. */
1359  np->medialock = (value & 0x9000) ? 0 : 1;
1360  if (np->medialock)
1361  np->full_duplex = (value & 0x0100) ? 1 : 0;
1362  break;
1363  case 4: np->advertising = value; break;
1364  }
1365  /* Perhaps check_duplex(dev), depending on chip semantics. */
1366  }
1367  mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1368  return 0;
1369  default:
1370  return -EOPNOTSUPP;
1371  }
1372 }
1373 
1374 
1375 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1376 {
1377  struct net_device *dev = pci_get_drvdata(pdev);
1378  struct yellowfin_private *np;
1379 
1380  BUG_ON(!dev);
1381  np = netdev_priv(dev);
1382 
1384  np->tx_status_dma);
1387  unregister_netdev (dev);
1388 
1389  pci_iounmap(pdev, np->base);
1390 
1391  pci_release_regions (pdev);
1392 
1393  free_netdev (dev);
1394  pci_set_drvdata(pdev, NULL);
1395 }
1396 
1397 
1398 static struct pci_driver yellowfin_driver = {
1399  .name = DRV_NAME,
1400  .id_table = yellowfin_pci_tbl,
1401  .probe = yellowfin_init_one,
1402  .remove = __devexit_p(yellowfin_remove_one),
1403 };
1404 
1405 
1406 static int __init yellowfin_init (void)
1407 {
1408 /* when a module, this is printed whether or not devices are found in probe */
1409 #ifdef MODULE
1410  printk(version);
1411 #endif
1412  return pci_register_driver(&yellowfin_driver);
1413 }
1414 
1415 
1416 static void __exit yellowfin_cleanup (void)
1417 {
1418  pci_unregister_driver (&yellowfin_driver);
1419 }
1420 
1421 
1422 module_init(yellowfin_init);
1423 module_exit(yellowfin_cleanup);