LLVM API Documentation
00001 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // Collect the sequence of machine instructions for a basic block. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/CodeGen/MachineBasicBlock.h" 00015 #include "llvm/ADT/SmallPtrSet.h" 00016 #include "llvm/ADT/SmallString.h" 00017 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00018 #include "llvm/CodeGen/LiveVariables.h" 00019 #include "llvm/CodeGen/MachineDominators.h" 00020 #include "llvm/CodeGen/MachineFunction.h" 00021 #include "llvm/CodeGen/MachineInstrBuilder.h" 00022 #include "llvm/CodeGen/MachineLoopInfo.h" 00023 #include "llvm/CodeGen/MachineRegisterInfo.h" 00024 #include "llvm/CodeGen/SlotIndexes.h" 00025 #include "llvm/IR/BasicBlock.h" 00026 #include "llvm/IR/DataLayout.h" 00027 #include "llvm/IR/LeakDetector.h" 00028 #include "llvm/MC/MCAsmInfo.h" 00029 #include "llvm/MC/MCContext.h" 00030 #include "llvm/Support/Debug.h" 00031 #include "llvm/Support/raw_ostream.h" 00032 #include "llvm/Target/TargetInstrInfo.h" 00033 #include "llvm/Target/TargetMachine.h" 00034 #include "llvm/Target/TargetRegisterInfo.h" 00035 #include "llvm/Target/TargetSubtargetInfo.h" 00036 #include <algorithm> 00037 using namespace llvm; 00038 00039 #define DEBUG_TYPE "codegen" 00040 00041 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 00042 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), 00043 AddressTaken(false), CachedMCSymbol(nullptr) { 00044 Insts.Parent = this; 00045 } 00046 00047 MachineBasicBlock::~MachineBasicBlock() { 00048 LeakDetector::removeGarbageObject(this); 00049 } 00050 00051 /// getSymbol - Return the MCSymbol for this basic block. 00052 /// 00053 MCSymbol *MachineBasicBlock::getSymbol() const { 00054 if (!CachedMCSymbol) { 00055 const MachineFunction *MF = getParent(); 00056 MCContext &Ctx = MF->getContext(); 00057 const TargetMachine &TM = MF->getTarget(); 00058 const char *Prefix = 00059 TM.getSubtargetImpl()->getDataLayout()->getPrivateGlobalPrefix(); 00060 CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" + 00061 Twine(MF->getFunctionNumber()) + 00062 "_" + Twine(getNumber())); 00063 } 00064 00065 return CachedMCSymbol; 00066 } 00067 00068 00069 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 00070 MBB.print(OS); 00071 return OS; 00072 } 00073 00074 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the 00075 /// parent pointer of the MBB, the MBB numbering, and any instructions in the 00076 /// MBB to be on the right operand list for registers. 00077 /// 00078 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 00079 /// gets the next available unique MBB number. If it is removed from a 00080 /// MachineFunction, it goes back to being #-1. 00081 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 00082 MachineFunction &MF = *N->getParent(); 00083 N->Number = MF.addToMBBNumbering(N); 00084 00085 // Make sure the instructions have their operands in the reginfo lists. 00086 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 00087 for (MachineBasicBlock::instr_iterator 00088 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 00089 I->AddRegOperandsToUseLists(RegInfo); 00090 00091 LeakDetector::removeGarbageObject(N); 00092 } 00093 00094 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 00095 N->getParent()->removeFromMBBNumbering(N->Number); 00096 N->Number = -1; 00097 LeakDetector::addGarbageObject(N); 00098 } 00099 00100 00101 /// addNodeToList (MI) - When we add an instruction to a basic block 00102 /// list, we update its parent pointer and add its operands from reg use/def 00103 /// lists if appropriate. 00104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 00105 assert(!N->getParent() && "machine instruction already in a basic block"); 00106 N->setParent(Parent); 00107 00108 // Add the instruction's register operands to their corresponding 00109 // use/def lists. 00110 MachineFunction *MF = Parent->getParent(); 00111 N->AddRegOperandsToUseLists(MF->getRegInfo()); 00112 00113 LeakDetector::removeGarbageObject(N); 00114 } 00115 00116 /// removeNodeFromList (MI) - When we remove an instruction from a basic block 00117 /// list, we update its parent pointer and remove its operands from reg use/def 00118 /// lists if appropriate. 00119 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 00120 assert(N->getParent() && "machine instruction not in a basic block"); 00121 00122 // Remove from the use/def lists. 00123 if (MachineFunction *MF = N->getParent()->getParent()) 00124 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 00125 00126 N->setParent(nullptr); 00127 00128 LeakDetector::addGarbageObject(N); 00129 } 00130 00131 /// transferNodesFromList (MI) - When moving a range of instructions from one 00132 /// MBB list to another, we need to update the parent pointers and the use/def 00133 /// lists. 00134 void ilist_traits<MachineInstr>:: 00135 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 00136 ilist_iterator<MachineInstr> first, 00137 ilist_iterator<MachineInstr> last) { 00138 assert(Parent->getParent() == fromList.Parent->getParent() && 00139 "MachineInstr parent mismatch!"); 00140 00141 // Splice within the same MBB -> no change. 00142 if (Parent == fromList.Parent) return; 00143 00144 // If splicing between two blocks within the same function, just update the 00145 // parent pointers. 00146 for (; first != last; ++first) 00147 first->setParent(Parent); 00148 } 00149 00150 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 00151 assert(!MI->getParent() && "MI is still in a block!"); 00152 Parent->getParent()->DeleteMachineInstr(MI); 00153 } 00154 00155 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 00156 instr_iterator I = instr_begin(), E = instr_end(); 00157 while (I != E && I->isPHI()) 00158 ++I; 00159 assert((I == E || !I->isInsideBundle()) && 00160 "First non-phi MI cannot be inside a bundle!"); 00161 return I; 00162 } 00163 00164 MachineBasicBlock::iterator 00165 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 00166 iterator E = end(); 00167 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 00168 ++I; 00169 // FIXME: This needs to change if we wish to bundle labels / dbg_values 00170 // inside the bundle. 00171 assert((I == E || !I->isInsideBundle()) && 00172 "First non-phi / non-label instruction is inside a bundle!"); 00173 return I; 00174 } 00175 00176 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 00177 iterator B = begin(), E = end(), I = E; 00178 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 00179 ; /*noop */ 00180 while (I != E && !I->isTerminator()) 00181 ++I; 00182 return I; 00183 } 00184 00185 MachineBasicBlock::const_iterator 00186 MachineBasicBlock::getFirstTerminator() const { 00187 const_iterator B = begin(), E = end(), I = E; 00188 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 00189 ; /*noop */ 00190 while (I != E && !I->isTerminator()) 00191 ++I; 00192 return I; 00193 } 00194 00195 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 00196 instr_iterator B = instr_begin(), E = instr_end(), I = E; 00197 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 00198 ; /*noop */ 00199 while (I != E && !I->isTerminator()) 00200 ++I; 00201 return I; 00202 } 00203 00204 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 00205 // Skip over end-of-block dbg_value instructions. 00206 instr_iterator B = instr_begin(), I = instr_end(); 00207 while (I != B) { 00208 --I; 00209 // Return instruction that starts a bundle. 00210 if (I->isDebugValue() || I->isInsideBundle()) 00211 continue; 00212 return I; 00213 } 00214 // The block is all debug values. 00215 return end(); 00216 } 00217 00218 MachineBasicBlock::const_iterator 00219 MachineBasicBlock::getLastNonDebugInstr() const { 00220 // Skip over end-of-block dbg_value instructions. 00221 const_instr_iterator B = instr_begin(), I = instr_end(); 00222 while (I != B) { 00223 --I; 00224 // Return instruction that starts a bundle. 00225 if (I->isDebugValue() || I->isInsideBundle()) 00226 continue; 00227 return I; 00228 } 00229 // The block is all debug values. 00230 return end(); 00231 } 00232 00233 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 00234 // A block with a landing pad successor only has one other successor. 00235 if (succ_size() > 2) 00236 return nullptr; 00237 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 00238 if ((*I)->isLandingPad()) 00239 return *I; 00240 return nullptr; 00241 } 00242 00243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 00244 void MachineBasicBlock::dump() const { 00245 print(dbgs()); 00246 } 00247 #endif 00248 00249 StringRef MachineBasicBlock::getName() const { 00250 if (const BasicBlock *LBB = getBasicBlock()) 00251 return LBB->getName(); 00252 else 00253 return "(null)"; 00254 } 00255 00256 /// Return a hopefully unique identifier for this block. 00257 std::string MachineBasicBlock::getFullName() const { 00258 std::string Name; 00259 if (getParent()) 00260 Name = (getParent()->getName() + ":").str(); 00261 if (getBasicBlock()) 00262 Name += getBasicBlock()->getName(); 00263 else 00264 Name += (Twine("BB") + Twine(getNumber())).str(); 00265 return Name; 00266 } 00267 00268 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 00269 const MachineFunction *MF = getParent(); 00270 if (!MF) { 00271 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 00272 << " is null\n"; 00273 return; 00274 } 00275 00276 if (Indexes) 00277 OS << Indexes->getMBBStartIdx(this) << '\t'; 00278 00279 OS << "BB#" << getNumber() << ": "; 00280 00281 const char *Comma = ""; 00282 if (const BasicBlock *LBB = getBasicBlock()) { 00283 OS << Comma << "derived from LLVM BB "; 00284 LBB->printAsOperand(OS, /*PrintType=*/false); 00285 Comma = ", "; 00286 } 00287 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 00288 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 00289 if (Alignment) 00290 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 00291 << " bytes)"; 00292 00293 OS << '\n'; 00294 00295 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 00296 if (!livein_empty()) { 00297 if (Indexes) OS << '\t'; 00298 OS << " Live Ins:"; 00299 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I) 00300 OS << ' ' << PrintReg(*I, TRI); 00301 OS << '\n'; 00302 } 00303 // Print the preds of this block according to the CFG. 00304 if (!pred_empty()) { 00305 if (Indexes) OS << '\t'; 00306 OS << " Predecessors according to CFG:"; 00307 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 00308 OS << " BB#" << (*PI)->getNumber(); 00309 OS << '\n'; 00310 } 00311 00312 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 00313 if (Indexes) { 00314 if (Indexes->hasIndex(I)) 00315 OS << Indexes->getInstructionIndex(I); 00316 OS << '\t'; 00317 } 00318 OS << '\t'; 00319 if (I->isInsideBundle()) 00320 OS << " * "; 00321 I->print(OS, &getParent()->getTarget()); 00322 } 00323 00324 // Print the successors of this block according to the CFG. 00325 if (!succ_empty()) { 00326 if (Indexes) OS << '\t'; 00327 OS << " Successors according to CFG:"; 00328 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 00329 OS << " BB#" << (*SI)->getNumber(); 00330 if (!Weights.empty()) 00331 OS << '(' << *getWeightIterator(SI) << ')'; 00332 } 00333 OS << '\n'; 00334 } 00335 } 00336 00337 void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) const { 00338 OS << "BB#" << getNumber(); 00339 } 00340 00341 void MachineBasicBlock::removeLiveIn(unsigned Reg) { 00342 std::vector<unsigned>::iterator I = 00343 std::find(LiveIns.begin(), LiveIns.end(), Reg); 00344 if (I != LiveIns.end()) 00345 LiveIns.erase(I); 00346 } 00347 00348 bool MachineBasicBlock::isLiveIn(unsigned Reg) const { 00349 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 00350 return I != livein_end(); 00351 } 00352 00353 unsigned 00354 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) { 00355 assert(getParent() && "MBB must be inserted in function"); 00356 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 00357 assert(RC && "Register class is required"); 00358 assert((isLandingPad() || this == &getParent()->front()) && 00359 "Only the entry block and landing pads can have physreg live ins"); 00360 00361 bool LiveIn = isLiveIn(PhysReg); 00362 iterator I = SkipPHIsAndLabels(begin()), E = end(); 00363 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 00364 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 00365 00366 // Look for an existing copy. 00367 if (LiveIn) 00368 for (;I != E && I->isCopy(); ++I) 00369 if (I->getOperand(1).getReg() == PhysReg) { 00370 unsigned VirtReg = I->getOperand(0).getReg(); 00371 if (!MRI.constrainRegClass(VirtReg, RC)) 00372 llvm_unreachable("Incompatible live-in register class."); 00373 return VirtReg; 00374 } 00375 00376 // No luck, create a virtual register. 00377 unsigned VirtReg = MRI.createVirtualRegister(RC); 00378 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 00379 .addReg(PhysReg, RegState::Kill); 00380 if (!LiveIn) 00381 addLiveIn(PhysReg); 00382 return VirtReg; 00383 } 00384 00385 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 00386 getParent()->splice(NewAfter, this); 00387 } 00388 00389 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 00390 MachineFunction::iterator BBI = NewBefore; 00391 getParent()->splice(++BBI, this); 00392 } 00393 00394 void MachineBasicBlock::updateTerminator() { 00395 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 00396 // A block with no successors has no concerns with fall-through edges. 00397 if (this->succ_empty()) return; 00398 00399 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 00400 SmallVector<MachineOperand, 4> Cond; 00401 DebugLoc dl; // FIXME: this is nowhere 00402 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 00403 (void) B; 00404 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 00405 if (Cond.empty()) { 00406 if (TBB) { 00407 // The block has an unconditional branch. If its successor is now 00408 // its layout successor, delete the branch. 00409 if (isLayoutSuccessor(TBB)) 00410 TII->RemoveBranch(*this); 00411 } else { 00412 // The block has an unconditional fallthrough. If its successor is not 00413 // its layout successor, insert a branch. First we have to locate the 00414 // only non-landing-pad successor, as that is the fallthrough block. 00415 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 00416 if ((*SI)->isLandingPad()) 00417 continue; 00418 assert(!TBB && "Found more than one non-landing-pad successor!"); 00419 TBB = *SI; 00420 } 00421 00422 // If there is no non-landing-pad successor, the block has no 00423 // fall-through edges to be concerned with. 00424 if (!TBB) 00425 return; 00426 00427 // Finally update the unconditional successor to be reached via a branch 00428 // if it would not be reached by fallthrough. 00429 if (!isLayoutSuccessor(TBB)) 00430 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 00431 } 00432 } else { 00433 if (FBB) { 00434 // The block has a non-fallthrough conditional branch. If one of its 00435 // successors is its layout successor, rewrite it to a fallthrough 00436 // conditional branch. 00437 if (isLayoutSuccessor(TBB)) { 00438 if (TII->ReverseBranchCondition(Cond)) 00439 return; 00440 TII->RemoveBranch(*this); 00441 TII->InsertBranch(*this, FBB, nullptr, Cond, dl); 00442 } else if (isLayoutSuccessor(FBB)) { 00443 TII->RemoveBranch(*this); 00444 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 00445 } 00446 } else { 00447 // Walk through the successors and find the successor which is not 00448 // a landing pad and is not the conditional branch destination (in TBB) 00449 // as the fallthrough successor. 00450 MachineBasicBlock *FallthroughBB = nullptr; 00451 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 00452 if ((*SI)->isLandingPad() || *SI == TBB) 00453 continue; 00454 assert(!FallthroughBB && "Found more than one fallthrough successor."); 00455 FallthroughBB = *SI; 00456 } 00457 if (!FallthroughBB && canFallThrough()) { 00458 // We fallthrough to the same basic block as the conditional jump 00459 // targets. Remove the conditional jump, leaving unconditional 00460 // fallthrough. 00461 // FIXME: This does not seem like a reasonable pattern to support, but it 00462 // has been seen in the wild coming out of degenerate ARM test cases. 00463 TII->RemoveBranch(*this); 00464 00465 // Finally update the unconditional successor to be reached via a branch 00466 // if it would not be reached by fallthrough. 00467 if (!isLayoutSuccessor(TBB)) 00468 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 00469 return; 00470 } 00471 00472 // The block has a fallthrough conditional branch. 00473 if (isLayoutSuccessor(TBB)) { 00474 if (TII->ReverseBranchCondition(Cond)) { 00475 // We can't reverse the condition, add an unconditional branch. 00476 Cond.clear(); 00477 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 00478 return; 00479 } 00480 TII->RemoveBranch(*this); 00481 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 00482 } else if (!isLayoutSuccessor(FallthroughBB)) { 00483 TII->RemoveBranch(*this); 00484 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 00485 } 00486 } 00487 } 00488 } 00489 00490 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 00491 00492 // If we see non-zero value for the first time it means we actually use Weight 00493 // list, so we fill all Weights with 0's. 00494 if (weight != 0 && Weights.empty()) 00495 Weights.resize(Successors.size()); 00496 00497 if (weight != 0 || !Weights.empty()) 00498 Weights.push_back(weight); 00499 00500 Successors.push_back(succ); 00501 succ->addPredecessor(this); 00502 } 00503 00504 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 00505 succ->removePredecessor(this); 00506 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 00507 assert(I != Successors.end() && "Not a current successor!"); 00508 00509 // If Weight list is empty it means we don't use it (disabled optimization). 00510 if (!Weights.empty()) { 00511 weight_iterator WI = getWeightIterator(I); 00512 Weights.erase(WI); 00513 } 00514 00515 Successors.erase(I); 00516 } 00517 00518 MachineBasicBlock::succ_iterator 00519 MachineBasicBlock::removeSuccessor(succ_iterator I) { 00520 assert(I != Successors.end() && "Not a current successor!"); 00521 00522 // If Weight list is empty it means we don't use it (disabled optimization). 00523 if (!Weights.empty()) { 00524 weight_iterator WI = getWeightIterator(I); 00525 Weights.erase(WI); 00526 } 00527 00528 (*I)->removePredecessor(this); 00529 return Successors.erase(I); 00530 } 00531 00532 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 00533 MachineBasicBlock *New) { 00534 if (Old == New) 00535 return; 00536 00537 succ_iterator E = succ_end(); 00538 succ_iterator NewI = E; 00539 succ_iterator OldI = E; 00540 for (succ_iterator I = succ_begin(); I != E; ++I) { 00541 if (*I == Old) { 00542 OldI = I; 00543 if (NewI != E) 00544 break; 00545 } 00546 if (*I == New) { 00547 NewI = I; 00548 if (OldI != E) 00549 break; 00550 } 00551 } 00552 assert(OldI != E && "Old is not a successor of this block"); 00553 Old->removePredecessor(this); 00554 00555 // If New isn't already a successor, let it take Old's place. 00556 if (NewI == E) { 00557 New->addPredecessor(this); 00558 *OldI = New; 00559 return; 00560 } 00561 00562 // New is already a successor. 00563 // Update its weight instead of adding a duplicate edge. 00564 if (!Weights.empty()) { 00565 weight_iterator OldWI = getWeightIterator(OldI); 00566 *getWeightIterator(NewI) += *OldWI; 00567 Weights.erase(OldWI); 00568 } 00569 Successors.erase(OldI); 00570 } 00571 00572 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 00573 Predecessors.push_back(pred); 00574 } 00575 00576 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 00577 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 00578 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 00579 Predecessors.erase(I); 00580 } 00581 00582 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 00583 if (this == fromMBB) 00584 return; 00585 00586 while (!fromMBB->succ_empty()) { 00587 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 00588 uint32_t Weight = 0; 00589 00590 // If Weight list is empty it means we don't use it (disabled optimization). 00591 if (!fromMBB->Weights.empty()) 00592 Weight = *fromMBB->Weights.begin(); 00593 00594 addSuccessor(Succ, Weight); 00595 fromMBB->removeSuccessor(Succ); 00596 } 00597 } 00598 00599 void 00600 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 00601 if (this == fromMBB) 00602 return; 00603 00604 while (!fromMBB->succ_empty()) { 00605 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 00606 uint32_t Weight = 0; 00607 if (!fromMBB->Weights.empty()) 00608 Weight = *fromMBB->Weights.begin(); 00609 addSuccessor(Succ, Weight); 00610 fromMBB->removeSuccessor(Succ); 00611 00612 // Fix up any PHI nodes in the successor. 00613 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 00614 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 00615 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 00616 MachineOperand &MO = MI->getOperand(i); 00617 if (MO.getMBB() == fromMBB) 00618 MO.setMBB(this); 00619 } 00620 } 00621 } 00622 00623 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 00624 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 00625 } 00626 00627 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 00628 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 00629 } 00630 00631 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 00632 MachineFunction::const_iterator I(this); 00633 return std::next(I) == MachineFunction::const_iterator(MBB); 00634 } 00635 00636 bool MachineBasicBlock::canFallThrough() { 00637 MachineFunction::iterator Fallthrough = this; 00638 ++Fallthrough; 00639 // If FallthroughBlock is off the end of the function, it can't fall through. 00640 if (Fallthrough == getParent()->end()) 00641 return false; 00642 00643 // If FallthroughBlock isn't a successor, no fallthrough is possible. 00644 if (!isSuccessor(Fallthrough)) 00645 return false; 00646 00647 // Analyze the branches, if any, at the end of the block. 00648 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 00649 SmallVector<MachineOperand, 4> Cond; 00650 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 00651 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 00652 // If we couldn't analyze the branch, examine the last instruction. 00653 // If the block doesn't end in a known control barrier, assume fallthrough 00654 // is possible. The isPredicated check is needed because this code can be 00655 // called during IfConversion, where an instruction which is normally a 00656 // Barrier is predicated and thus no longer an actual control barrier. 00657 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 00658 } 00659 00660 // If there is no branch, control always falls through. 00661 if (!TBB) return true; 00662 00663 // If there is some explicit branch to the fallthrough block, it can obviously 00664 // reach, even though the branch should get folded to fall through implicitly. 00665 if (MachineFunction::iterator(TBB) == Fallthrough || 00666 MachineFunction::iterator(FBB) == Fallthrough) 00667 return true; 00668 00669 // If it's an unconditional branch to some block not the fall through, it 00670 // doesn't fall through. 00671 if (Cond.empty()) return false; 00672 00673 // Otherwise, if it is conditional and has no explicit false block, it falls 00674 // through. 00675 return FBB == nullptr; 00676 } 00677 00678 MachineBasicBlock * 00679 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 00680 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 00681 // it in this generic function. 00682 if (Succ->isLandingPad()) 00683 return nullptr; 00684 00685 MachineFunction *MF = getParent(); 00686 DebugLoc dl; // FIXME: this is nowhere 00687 00688 // Performance might be harmed on HW that implements branching using exec mask 00689 // where both sides of the branches are always executed. 00690 if (MF->getTarget().requiresStructuredCFG()) 00691 return nullptr; 00692 00693 // We may need to update this's terminator, but we can't do that if 00694 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 00695 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 00696 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 00697 SmallVector<MachineOperand, 4> Cond; 00698 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 00699 return nullptr; 00700 00701 // Avoid bugpoint weirdness: A block may end with a conditional branch but 00702 // jumps to the same MBB is either case. We have duplicate CFG edges in that 00703 // case that we can't handle. Since this never happens in properly optimized 00704 // code, just skip those edges. 00705 if (TBB && TBB == FBB) { 00706 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 00707 << getNumber() << '\n'); 00708 return nullptr; 00709 } 00710 00711 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 00712 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 00713 DEBUG(dbgs() << "Splitting critical edge:" 00714 " BB#" << getNumber() 00715 << " -- BB#" << NMBB->getNumber() 00716 << " -- BB#" << Succ->getNumber() << '\n'); 00717 00718 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 00719 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 00720 if (LIS) 00721 LIS->insertMBBInMaps(NMBB); 00722 else if (Indexes) 00723 Indexes->insertMBBInMaps(NMBB); 00724 00725 // On some targets like Mips, branches may kill virtual registers. Make sure 00726 // that LiveVariables is properly updated after updateTerminator replaces the 00727 // terminators. 00728 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 00729 00730 // Collect a list of virtual registers killed by the terminators. 00731 SmallVector<unsigned, 4> KilledRegs; 00732 if (LV) 00733 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 00734 I != E; ++I) { 00735 MachineInstr *MI = I; 00736 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 00737 OE = MI->operands_end(); OI != OE; ++OI) { 00738 if (!OI->isReg() || OI->getReg() == 0 || 00739 !OI->isUse() || !OI->isKill() || OI->isUndef()) 00740 continue; 00741 unsigned Reg = OI->getReg(); 00742 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 00743 LV->getVarInfo(Reg).removeKill(MI)) { 00744 KilledRegs.push_back(Reg); 00745 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 00746 OI->setIsKill(false); 00747 } 00748 } 00749 } 00750 00751 SmallVector<unsigned, 4> UsedRegs; 00752 if (LIS) { 00753 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 00754 I != E; ++I) { 00755 MachineInstr *MI = I; 00756 00757 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 00758 OE = MI->operands_end(); OI != OE; ++OI) { 00759 if (!OI->isReg() || OI->getReg() == 0) 00760 continue; 00761 00762 unsigned Reg = OI->getReg(); 00763 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 00764 UsedRegs.push_back(Reg); 00765 } 00766 } 00767 } 00768 00769 ReplaceUsesOfBlockWith(Succ, NMBB); 00770 00771 // If updateTerminator() removes instructions, we need to remove them from 00772 // SlotIndexes. 00773 SmallVector<MachineInstr*, 4> Terminators; 00774 if (Indexes) { 00775 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 00776 I != E; ++I) 00777 Terminators.push_back(I); 00778 } 00779 00780 updateTerminator(); 00781 00782 if (Indexes) { 00783 SmallVector<MachineInstr*, 4> NewTerminators; 00784 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 00785 I != E; ++I) 00786 NewTerminators.push_back(I); 00787 00788 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 00789 E = Terminators.end(); I != E; ++I) { 00790 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 00791 NewTerminators.end()) 00792 Indexes->removeMachineInstrFromMaps(*I); 00793 } 00794 } 00795 00796 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 00797 NMBB->addSuccessor(Succ); 00798 if (!NMBB->isLayoutSuccessor(Succ)) { 00799 Cond.clear(); 00800 MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond, 00801 dl); 00802 00803 if (Indexes) { 00804 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 00805 I != E; ++I) { 00806 // Some instructions may have been moved to NMBB by updateTerminator(), 00807 // so we first remove any instruction that already has an index. 00808 if (Indexes->hasIndex(I)) 00809 Indexes->removeMachineInstrFromMaps(I); 00810 Indexes->insertMachineInstrInMaps(I); 00811 } 00812 } 00813 } 00814 00815 // Fix PHI nodes in Succ so they refer to NMBB instead of this 00816 for (MachineBasicBlock::instr_iterator 00817 i = Succ->instr_begin(),e = Succ->instr_end(); 00818 i != e && i->isPHI(); ++i) 00819 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 00820 if (i->getOperand(ni+1).getMBB() == this) 00821 i->getOperand(ni+1).setMBB(NMBB); 00822 00823 // Inherit live-ins from the successor 00824 for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(), 00825 E = Succ->livein_end(); I != E; ++I) 00826 NMBB->addLiveIn(*I); 00827 00828 // Update LiveVariables. 00829 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 00830 if (LV) { 00831 // Restore kills of virtual registers that were killed by the terminators. 00832 while (!KilledRegs.empty()) { 00833 unsigned Reg = KilledRegs.pop_back_val(); 00834 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 00835 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 00836 continue; 00837 if (TargetRegisterInfo::isVirtualRegister(Reg)) 00838 LV->getVarInfo(Reg).Kills.push_back(I); 00839 DEBUG(dbgs() << "Restored terminator kill: " << *I); 00840 break; 00841 } 00842 } 00843 // Update relevant live-through information. 00844 LV->addNewBlock(NMBB, this, Succ); 00845 } 00846 00847 if (LIS) { 00848 // After splitting the edge and updating SlotIndexes, live intervals may be 00849 // in one of two situations, depending on whether this block was the last in 00850 // the function. If the original block was the last in the function, all live 00851 // intervals will end prior to the beginning of the new split block. If the 00852 // original block was not at the end of the function, all live intervals will 00853 // extend to the end of the new split block. 00854 00855 bool isLastMBB = 00856 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 00857 00858 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 00859 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 00860 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 00861 00862 // Find the registers used from NMBB in PHIs in Succ. 00863 SmallSet<unsigned, 8> PHISrcRegs; 00864 for (MachineBasicBlock::instr_iterator 00865 I = Succ->instr_begin(), E = Succ->instr_end(); 00866 I != E && I->isPHI(); ++I) { 00867 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 00868 if (I->getOperand(ni+1).getMBB() == NMBB) { 00869 MachineOperand &MO = I->getOperand(ni); 00870 unsigned Reg = MO.getReg(); 00871 PHISrcRegs.insert(Reg); 00872 if (MO.isUndef()) 00873 continue; 00874 00875 LiveInterval &LI = LIS->getInterval(Reg); 00876 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 00877 assert(VNI && "PHI sources should be live out of their predecessors."); 00878 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 00879 } 00880 } 00881 } 00882 00883 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 00884 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 00885 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 00886 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 00887 continue; 00888 00889 LiveInterval &LI = LIS->getInterval(Reg); 00890 if (!LI.liveAt(PrevIndex)) 00891 continue; 00892 00893 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 00894 if (isLiveOut && isLastMBB) { 00895 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 00896 assert(VNI && "LiveInterval should have VNInfo where it is live."); 00897 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 00898 } else if (!isLiveOut && !isLastMBB) { 00899 LI.removeSegment(StartIndex, EndIndex); 00900 } 00901 } 00902 00903 // Update all intervals for registers whose uses may have been modified by 00904 // updateTerminator(). 00905 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 00906 } 00907 00908 if (MachineDominatorTree *MDT = 00909 P->getAnalysisIfAvailable<MachineDominatorTree>()) 00910 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 00911 00912 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 00913 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 00914 // If one or the other blocks were not in a loop, the new block is not 00915 // either, and thus LI doesn't need to be updated. 00916 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 00917 if (TIL == DestLoop) { 00918 // Both in the same loop, the NMBB joins loop. 00919 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 00920 } else if (TIL->contains(DestLoop)) { 00921 // Edge from an outer loop to an inner loop. Add to the outer loop. 00922 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 00923 } else if (DestLoop->contains(TIL)) { 00924 // Edge from an inner loop to an outer loop. Add to the outer loop. 00925 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 00926 } else { 00927 // Edge from two loops with no containment relation. Because these 00928 // are natural loops, we know that the destination block must be the 00929 // header of its loop (adding a branch into a loop elsewhere would 00930 // create an irreducible loop). 00931 assert(DestLoop->getHeader() == Succ && 00932 "Should not create irreducible loops!"); 00933 if (MachineLoop *P = DestLoop->getParentLoop()) 00934 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 00935 } 00936 } 00937 } 00938 00939 return NMBB; 00940 } 00941 00942 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 00943 /// neighboring instructions so the bundle won't be broken by removing MI. 00944 static void unbundleSingleMI(MachineInstr *MI) { 00945 // Removing the first instruction in a bundle. 00946 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 00947 MI->unbundleFromSucc(); 00948 // Removing the last instruction in a bundle. 00949 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 00950 MI->unbundleFromPred(); 00951 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 00952 // are already fine. 00953 } 00954 00955 MachineBasicBlock::instr_iterator 00956 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 00957 unbundleSingleMI(I); 00958 return Insts.erase(I); 00959 } 00960 00961 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 00962 unbundleSingleMI(MI); 00963 MI->clearFlag(MachineInstr::BundledPred); 00964 MI->clearFlag(MachineInstr::BundledSucc); 00965 return Insts.remove(MI); 00966 } 00967 00968 MachineBasicBlock::instr_iterator 00969 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 00970 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 00971 "Cannot insert instruction with bundle flags"); 00972 // Set the bundle flags when inserting inside a bundle. 00973 if (I != instr_end() && I->isBundledWithPred()) { 00974 MI->setFlag(MachineInstr::BundledPred); 00975 MI->setFlag(MachineInstr::BundledSucc); 00976 } 00977 return Insts.insert(I, MI); 00978 } 00979 00980 /// removeFromParent - This method unlinks 'this' from the containing function, 00981 /// and returns it, but does not delete it. 00982 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 00983 assert(getParent() && "Not embedded in a function!"); 00984 getParent()->remove(this); 00985 return this; 00986 } 00987 00988 00989 /// eraseFromParent - This method unlinks 'this' from the containing function, 00990 /// and deletes it. 00991 void MachineBasicBlock::eraseFromParent() { 00992 assert(getParent() && "Not embedded in a function!"); 00993 getParent()->erase(this); 00994 } 00995 00996 00997 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to 00998 /// 'Old', change the code and CFG so that it branches to 'New' instead. 00999 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 01000 MachineBasicBlock *New) { 01001 assert(Old != New && "Cannot replace self with self!"); 01002 01003 MachineBasicBlock::instr_iterator I = instr_end(); 01004 while (I != instr_begin()) { 01005 --I; 01006 if (!I->isTerminator()) break; 01007 01008 // Scan the operands of this machine instruction, replacing any uses of Old 01009 // with New. 01010 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 01011 if (I->getOperand(i).isMBB() && 01012 I->getOperand(i).getMBB() == Old) 01013 I->getOperand(i).setMBB(New); 01014 } 01015 01016 // Update the successor information. 01017 replaceSuccessor(Old, New); 01018 } 01019 01020 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the 01021 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and 01022 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be 01023 /// null. 01024 /// 01025 /// Besides DestA and DestB, retain other edges leading to LandingPads 01026 /// (currently there can be only one; we don't check or require that here). 01027 /// Note it is possible that DestA and/or DestB are LandingPads. 01028 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 01029 MachineBasicBlock *DestB, 01030 bool isCond) { 01031 // The values of DestA and DestB frequently come from a call to the 01032 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 01033 // values from there. 01034 // 01035 // 1. If both DestA and DestB are null, then the block ends with no branches 01036 // (it falls through to its successor). 01037 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 01038 // with only an unconditional branch. 01039 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 01040 // with a conditional branch that falls through to a successor (DestB). 01041 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 01042 // conditional branch followed by an unconditional branch. DestA is the 01043 // 'true' destination and DestB is the 'false' destination. 01044 01045 bool Changed = false; 01046 01047 MachineFunction::iterator FallThru = 01048 std::next(MachineFunction::iterator(this)); 01049 01050 if (!DestA && !DestB) { 01051 // Block falls through to successor. 01052 DestA = FallThru; 01053 DestB = FallThru; 01054 } else if (DestA && !DestB) { 01055 if (isCond) 01056 // Block ends in conditional jump that falls through to successor. 01057 DestB = FallThru; 01058 } else { 01059 assert(DestA && DestB && isCond && 01060 "CFG in a bad state. Cannot correct CFG edges"); 01061 } 01062 01063 // Remove superfluous edges. I.e., those which aren't destinations of this 01064 // basic block, duplicate edges, or landing pads. 01065 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 01066 MachineBasicBlock::succ_iterator SI = succ_begin(); 01067 while (SI != succ_end()) { 01068 const MachineBasicBlock *MBB = *SI; 01069 if (!SeenMBBs.insert(MBB) || 01070 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { 01071 // This is a superfluous edge, remove it. 01072 SI = removeSuccessor(SI); 01073 Changed = true; 01074 } else { 01075 ++SI; 01076 } 01077 } 01078 01079 return Changed; 01080 } 01081 01082 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping 01083 /// any DBG_VALUE instructions. Return UnknownLoc if there is none. 01084 DebugLoc 01085 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 01086 DebugLoc DL; 01087 instr_iterator E = instr_end(); 01088 if (MBBI == E) 01089 return DL; 01090 01091 // Skip debug declarations, we don't want a DebugLoc from them. 01092 while (MBBI != E && MBBI->isDebugValue()) 01093 MBBI++; 01094 if (MBBI != E) 01095 DL = MBBI->getDebugLoc(); 01096 return DL; 01097 } 01098 01099 /// getSuccWeight - Return weight of the edge from this block to MBB. 01100 /// 01101 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 01102 if (Weights.empty()) 01103 return 0; 01104 01105 return *getWeightIterator(Succ); 01106 } 01107 01108 /// Set successor weight of a given iterator. 01109 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) { 01110 if (Weights.empty()) 01111 return; 01112 *getWeightIterator(I) = weight; 01113 } 01114 01115 /// getWeightIterator - Return wight iterator corresonding to the I successor 01116 /// iterator 01117 MachineBasicBlock::weight_iterator MachineBasicBlock:: 01118 getWeightIterator(MachineBasicBlock::succ_iterator I) { 01119 assert(Weights.size() == Successors.size() && "Async weight list!"); 01120 size_t index = std::distance(Successors.begin(), I); 01121 assert(index < Weights.size() && "Not a current successor!"); 01122 return Weights.begin() + index; 01123 } 01124 01125 /// getWeightIterator - Return wight iterator corresonding to the I successor 01126 /// iterator 01127 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 01128 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 01129 assert(Weights.size() == Successors.size() && "Async weight list!"); 01130 const size_t index = std::distance(Successors.begin(), I); 01131 assert(index < Weights.size() && "Not a current successor!"); 01132 return Weights.begin() + index; 01133 } 01134 01135 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 01136 /// as of just before "MI". 01137 /// 01138 /// Search is localised to a neighborhood of 01139 /// Neighborhood instructions before (searching for defs or kills) and N 01140 /// instructions after (searching just for defs) MI. 01141 MachineBasicBlock::LivenessQueryResult 01142 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 01143 unsigned Reg, MachineInstr *MI, 01144 unsigned Neighborhood) { 01145 unsigned N = Neighborhood; 01146 MachineBasicBlock *MBB = MI->getParent(); 01147 01148 // Start by searching backwards from MI, looking for kills, reads or defs. 01149 01150 MachineBasicBlock::iterator I(MI); 01151 // If this is the first insn in the block, don't search backwards. 01152 if (I != MBB->begin()) { 01153 do { 01154 --I; 01155 01156 MachineOperandIteratorBase::PhysRegInfo Analysis = 01157 MIOperands(I).analyzePhysReg(Reg, TRI); 01158 01159 if (Analysis.Defines) 01160 // Outputs happen after inputs so they take precedence if both are 01161 // present. 01162 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 01163 01164 if (Analysis.Kills || Analysis.Clobbers) 01165 // Register killed, so isn't live. 01166 return LQR_Dead; 01167 01168 else if (Analysis.ReadsOverlap) 01169 // Defined or read without a previous kill - live. 01170 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 01171 01172 } while (I != MBB->begin() && --N > 0); 01173 } 01174 01175 // Did we get to the start of the block? 01176 if (I == MBB->begin()) { 01177 // If so, the register's state is definitely defined by the live-in state. 01178 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 01179 RAI.isValid(); ++RAI) { 01180 if (MBB->isLiveIn(*RAI)) 01181 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 01182 } 01183 01184 return LQR_Dead; 01185 } 01186 01187 N = Neighborhood; 01188 01189 // Try searching forwards from MI, looking for reads or defs. 01190 I = MachineBasicBlock::iterator(MI); 01191 // If this is the last insn in the block, don't search forwards. 01192 if (I != MBB->end()) { 01193 for (++I; I != MBB->end() && N > 0; ++I, --N) { 01194 MachineOperandIteratorBase::PhysRegInfo Analysis = 01195 MIOperands(I).analyzePhysReg(Reg, TRI); 01196 01197 if (Analysis.ReadsOverlap) 01198 // Used, therefore must have been live. 01199 return (Analysis.Reads) ? 01200 LQR_Live : LQR_OverlappingLive; 01201 01202 else if (Analysis.Clobbers || Analysis.Defines) 01203 // Defined (but not read) therefore cannot have been live. 01204 return LQR_Dead; 01205 } 01206 } 01207 01208 // At this point we have no idea of the liveness of the register. 01209 return LQR_Unknown; 01210 }