LLVM API Documentation
00001 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains the declaration of the MachineInstr class, which is the 00011 // basic representation for all target dependent machine instructions used by 00012 // the back end. 00013 // 00014 //===----------------------------------------------------------------------===// 00015 00016 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 00017 #define LLVM_CODEGEN_MACHINEINSTR_H 00018 00019 #include "llvm/ADT/ArrayRef.h" 00020 #include "llvm/ADT/DenseMapInfo.h" 00021 #include "llvm/ADT/STLExtras.h" 00022 #include "llvm/ADT/StringRef.h" 00023 #include "llvm/ADT/ilist.h" 00024 #include "llvm/ADT/ilist_node.h" 00025 #include "llvm/ADT/iterator_range.h" 00026 #include "llvm/CodeGen/MachineOperand.h" 00027 #include "llvm/IR/DebugInfo.h" 00028 #include "llvm/IR/DebugLoc.h" 00029 #include "llvm/IR/InlineAsm.h" 00030 #include "llvm/MC/MCInstrDesc.h" 00031 #include "llvm/Support/ArrayRecycler.h" 00032 #include "llvm/Target/TargetOpcodes.h" 00033 00034 namespace llvm { 00035 00036 template <typename T> class SmallVectorImpl; 00037 class AliasAnalysis; 00038 class TargetInstrInfo; 00039 class TargetRegisterClass; 00040 class TargetRegisterInfo; 00041 class MachineFunction; 00042 class MachineMemOperand; 00043 00044 //===----------------------------------------------------------------------===// 00045 /// MachineInstr - Representation of each machine instruction. 00046 /// 00047 /// This class isn't a POD type, but it must have a trivial destructor. When a 00048 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 00049 /// without having their destructor called. 00050 /// 00051 class MachineInstr : public ilist_node<MachineInstr> { 00052 public: 00053 typedef MachineMemOperand **mmo_iterator; 00054 00055 /// Flags to specify different kinds of comments to output in 00056 /// assembly code. These flags carry semantic information not 00057 /// otherwise easily derivable from the IR text. 00058 /// 00059 enum CommentFlag { 00060 ReloadReuse = 0x1 00061 }; 00062 00063 enum MIFlag { 00064 NoFlags = 0, 00065 FrameSetup = 1 << 0, // Instruction is used as a part of 00066 // function frame setup code. 00067 BundledPred = 1 << 1, // Instruction has bundled predecessors. 00068 BundledSucc = 1 << 2 // Instruction has bundled successors. 00069 }; 00070 private: 00071 const MCInstrDesc *MCID; // Instruction descriptor. 00072 MachineBasicBlock *Parent; // Pointer to the owning basic block. 00073 00074 // Operands are allocated by an ArrayRecycler. 00075 MachineOperand *Operands; // Pointer to the first operand. 00076 unsigned NumOperands; // Number of operands on instruction. 00077 typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity; 00078 OperandCapacity CapOperands; // Capacity of the Operands array. 00079 00080 uint8_t Flags; // Various bits of additional 00081 // information about machine 00082 // instruction. 00083 00084 uint8_t AsmPrinterFlags; // Various bits of information used by 00085 // the AsmPrinter to emit helpful 00086 // comments. This is *not* semantic 00087 // information. Do not use this for 00088 // anything other than to convey comment 00089 // information to AsmPrinter. 00090 00091 uint8_t NumMemRefs; // Information on memory references. 00092 mmo_iterator MemRefs; 00093 00094 DebugLoc debugLoc; // Source line information. 00095 00096 MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION; 00097 void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION; 00098 // Use MachineFunction::DeleteMachineInstr() instead. 00099 ~MachineInstr() LLVM_DELETED_FUNCTION; 00100 00101 // Intrusive list support 00102 friend struct ilist_traits<MachineInstr>; 00103 friend struct ilist_traits<MachineBasicBlock>; 00104 void setParent(MachineBasicBlock *P) { Parent = P; } 00105 00106 /// MachineInstr ctor - This constructor creates a copy of the given 00107 /// MachineInstr in the given MachineFunction. 00108 MachineInstr(MachineFunction &, const MachineInstr &); 00109 00110 /// MachineInstr ctor - This constructor create a MachineInstr and add the 00111 /// implicit operands. It reserves space for number of operands specified by 00112 /// MCInstrDesc. An explicit DebugLoc is supplied. 00113 MachineInstr(MachineFunction&, const MCInstrDesc &MCID, 00114 const DebugLoc dl, bool NoImp = false); 00115 00116 // MachineInstrs are pool-allocated and owned by MachineFunction. 00117 friend class MachineFunction; 00118 00119 public: 00120 const MachineBasicBlock* getParent() const { return Parent; } 00121 MachineBasicBlock* getParent() { return Parent; } 00122 00123 /// getAsmPrinterFlags - Return the asm printer flags bitvector. 00124 /// 00125 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 00126 00127 /// clearAsmPrinterFlags - clear the AsmPrinter bitvector 00128 /// 00129 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 00130 00131 /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set. 00132 /// 00133 bool getAsmPrinterFlag(CommentFlag Flag) const { 00134 return AsmPrinterFlags & Flag; 00135 } 00136 00137 /// setAsmPrinterFlag - Set a flag for the AsmPrinter. 00138 /// 00139 void setAsmPrinterFlag(CommentFlag Flag) { 00140 AsmPrinterFlags |= (uint8_t)Flag; 00141 } 00142 00143 /// clearAsmPrinterFlag - clear specific AsmPrinter flags 00144 /// 00145 void clearAsmPrinterFlag(CommentFlag Flag) { 00146 AsmPrinterFlags &= ~Flag; 00147 } 00148 00149 /// getFlags - Return the MI flags bitvector. 00150 uint8_t getFlags() const { 00151 return Flags; 00152 } 00153 00154 /// getFlag - Return whether an MI flag is set. 00155 bool getFlag(MIFlag Flag) const { 00156 return Flags & Flag; 00157 } 00158 00159 /// setFlag - Set a MI flag. 00160 void setFlag(MIFlag Flag) { 00161 Flags |= (uint8_t)Flag; 00162 } 00163 00164 void setFlags(unsigned flags) { 00165 // Filter out the automatically maintained flags. 00166 unsigned Mask = BundledPred | BundledSucc; 00167 Flags = (Flags & Mask) | (flags & ~Mask); 00168 } 00169 00170 /// clearFlag - Clear a MI flag. 00171 void clearFlag(MIFlag Flag) { 00172 Flags &= ~((uint8_t)Flag); 00173 } 00174 00175 /// isInsideBundle - Return true if MI is in a bundle (but not the first MI 00176 /// in a bundle). 00177 /// 00178 /// A bundle looks like this before it's finalized: 00179 /// ---------------- 00180 /// | MI | 00181 /// ---------------- 00182 /// | 00183 /// ---------------- 00184 /// | MI * | 00185 /// ---------------- 00186 /// | 00187 /// ---------------- 00188 /// | MI * | 00189 /// ---------------- 00190 /// In this case, the first MI starts a bundle but is not inside a bundle, the 00191 /// next 2 MIs are considered "inside" the bundle. 00192 /// 00193 /// After a bundle is finalized, it looks like this: 00194 /// ---------------- 00195 /// | Bundle | 00196 /// ---------------- 00197 /// | 00198 /// ---------------- 00199 /// | MI * | 00200 /// ---------------- 00201 /// | 00202 /// ---------------- 00203 /// | MI * | 00204 /// ---------------- 00205 /// | 00206 /// ---------------- 00207 /// | MI * | 00208 /// ---------------- 00209 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 00210 /// a bundle, but the next three MIs are. 00211 bool isInsideBundle() const { 00212 return getFlag(BundledPred); 00213 } 00214 00215 /// isBundled - Return true if this instruction part of a bundle. This is true 00216 /// if either itself or its following instruction is marked "InsideBundle". 00217 bool isBundled() const { 00218 return isBundledWithPred() || isBundledWithSucc(); 00219 } 00220 00221 /// Return true if this instruction is part of a bundle, and it is not the 00222 /// first instruction in the bundle. 00223 bool isBundledWithPred() const { return getFlag(BundledPred); } 00224 00225 /// Return true if this instruction is part of a bundle, and it is not the 00226 /// last instruction in the bundle. 00227 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 00228 00229 /// Bundle this instruction with its predecessor. This can be an unbundled 00230 /// instruction, or it can be the first instruction in a bundle. 00231 void bundleWithPred(); 00232 00233 /// Bundle this instruction with its successor. This can be an unbundled 00234 /// instruction, or it can be the last instruction in a bundle. 00235 void bundleWithSucc(); 00236 00237 /// Break bundle above this instruction. 00238 void unbundleFromPred(); 00239 00240 /// Break bundle below this instruction. 00241 void unbundleFromSucc(); 00242 00243 /// getDebugLoc - Returns the debug location id of this MachineInstr. 00244 /// 00245 DebugLoc getDebugLoc() const { return debugLoc; } 00246 00247 /// getDebugVariable() - Return the debug variable referenced by 00248 /// this DBG_VALUE instruction. 00249 DIVariable getDebugVariable() const { 00250 assert(isDebugValue() && "not a DBG_VALUE"); 00251 const MDNode *Var = getOperand(getNumOperands() - 1).getMetadata(); 00252 return DIVariable(Var); 00253 } 00254 00255 /// emitError - Emit an error referring to the source location of this 00256 /// instruction. This should only be used for inline assembly that is somehow 00257 /// impossible to compile. Other errors should have been handled much 00258 /// earlier. 00259 /// 00260 /// If this method returns, the caller should try to recover from the error. 00261 /// 00262 void emitError(StringRef Msg) const; 00263 00264 /// getDesc - Returns the target instruction descriptor of this 00265 /// MachineInstr. 00266 const MCInstrDesc &getDesc() const { return *MCID; } 00267 00268 /// getOpcode - Returns the opcode of this MachineInstr. 00269 /// 00270 int getOpcode() const { return MCID->Opcode; } 00271 00272 /// Access to explicit operands of the instruction. 00273 /// 00274 unsigned getNumOperands() const { return NumOperands; } 00275 00276 const MachineOperand& getOperand(unsigned i) const { 00277 assert(i < getNumOperands() && "getOperand() out of range!"); 00278 return Operands[i]; 00279 } 00280 MachineOperand& getOperand(unsigned i) { 00281 assert(i < getNumOperands() && "getOperand() out of range!"); 00282 return Operands[i]; 00283 } 00284 00285 /// getNumExplicitOperands - Returns the number of non-implicit operands. 00286 /// 00287 unsigned getNumExplicitOperands() const; 00288 00289 /// iterator/begin/end - Iterate over all operands of a machine instruction. 00290 typedef MachineOperand *mop_iterator; 00291 typedef const MachineOperand *const_mop_iterator; 00292 00293 mop_iterator operands_begin() { return Operands; } 00294 mop_iterator operands_end() { return Operands + NumOperands; } 00295 00296 const_mop_iterator operands_begin() const { return Operands; } 00297 const_mop_iterator operands_end() const { return Operands + NumOperands; } 00298 00299 iterator_range<mop_iterator> operands() { 00300 return iterator_range<mop_iterator>(operands_begin(), operands_end()); 00301 } 00302 iterator_range<const_mop_iterator> operands() const { 00303 return iterator_range<const_mop_iterator>(operands_begin(), operands_end()); 00304 } 00305 iterator_range<mop_iterator> explicit_operands() { 00306 return iterator_range<mop_iterator>( 00307 operands_begin(), operands_begin() + getNumExplicitOperands()); 00308 } 00309 iterator_range<const_mop_iterator> explicit_operands() const { 00310 return iterator_range<const_mop_iterator>( 00311 operands_begin(), operands_begin() + getNumExplicitOperands()); 00312 } 00313 iterator_range<mop_iterator> implicit_operands() { 00314 return iterator_range<mop_iterator>(explicit_operands().end(), 00315 operands_end()); 00316 } 00317 iterator_range<const_mop_iterator> implicit_operands() const { 00318 return iterator_range<const_mop_iterator>(explicit_operands().end(), 00319 operands_end()); 00320 } 00321 iterator_range<mop_iterator> defs() { 00322 return iterator_range<mop_iterator>( 00323 operands_begin(), operands_begin() + getDesc().getNumDefs()); 00324 } 00325 iterator_range<const_mop_iterator> defs() const { 00326 return iterator_range<const_mop_iterator>( 00327 operands_begin(), operands_begin() + getDesc().getNumDefs()); 00328 } 00329 iterator_range<mop_iterator> uses() { 00330 return iterator_range<mop_iterator>( 00331 operands_begin() + getDesc().getNumDefs(), operands_end()); 00332 } 00333 iterator_range<const_mop_iterator> uses() const { 00334 return iterator_range<const_mop_iterator>( 00335 operands_begin() + getDesc().getNumDefs(), operands_end()); 00336 } 00337 00338 /// Access to memory operands of the instruction 00339 mmo_iterator memoperands_begin() const { return MemRefs; } 00340 mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; } 00341 bool memoperands_empty() const { return NumMemRefs == 0; } 00342 00343 iterator_range<mmo_iterator> memoperands() { 00344 return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end()); 00345 } 00346 iterator_range<mmo_iterator> memoperands() const { 00347 return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end()); 00348 } 00349 00350 /// hasOneMemOperand - Return true if this instruction has exactly one 00351 /// MachineMemOperand. 00352 bool hasOneMemOperand() const { 00353 return NumMemRefs == 1; 00354 } 00355 00356 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 00357 /// queries but they are bundle aware. 00358 00359 enum QueryType { 00360 IgnoreBundle, // Ignore bundles 00361 AnyInBundle, // Return true if any instruction in bundle has property 00362 AllInBundle // Return true if all instructions in bundle have property 00363 }; 00364 00365 /// hasProperty - Return true if the instruction (or in the case of a bundle, 00366 /// the instructions inside the bundle) has the specified property. 00367 /// The first argument is the property being queried. 00368 /// The second argument indicates whether the query should look inside 00369 /// instruction bundles. 00370 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 00371 // Inline the fast path for unbundled or bundle-internal instructions. 00372 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 00373 return getDesc().getFlags() & (1 << MCFlag); 00374 00375 // If this is the first instruction in a bundle, take the slow path. 00376 return hasPropertyInBundle(1 << MCFlag, Type); 00377 } 00378 00379 /// isVariadic - Return true if this instruction can have a variable number of 00380 /// operands. In this case, the variable operands will be after the normal 00381 /// operands but before the implicit definitions and uses (if any are 00382 /// present). 00383 bool isVariadic(QueryType Type = IgnoreBundle) const { 00384 return hasProperty(MCID::Variadic, Type); 00385 } 00386 00387 /// hasOptionalDef - Set if this instruction has an optional definition, e.g. 00388 /// ARM instructions which can set condition code if 's' bit is set. 00389 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 00390 return hasProperty(MCID::HasOptionalDef, Type); 00391 } 00392 00393 /// isPseudo - Return true if this is a pseudo instruction that doesn't 00394 /// correspond to a real machine instruction. 00395 /// 00396 bool isPseudo(QueryType Type = IgnoreBundle) const { 00397 return hasProperty(MCID::Pseudo, Type); 00398 } 00399 00400 bool isReturn(QueryType Type = AnyInBundle) const { 00401 return hasProperty(MCID::Return, Type); 00402 } 00403 00404 bool isCall(QueryType Type = AnyInBundle) const { 00405 return hasProperty(MCID::Call, Type); 00406 } 00407 00408 /// isBarrier - Returns true if the specified instruction stops control flow 00409 /// from executing the instruction immediately following it. Examples include 00410 /// unconditional branches and return instructions. 00411 bool isBarrier(QueryType Type = AnyInBundle) const { 00412 return hasProperty(MCID::Barrier, Type); 00413 } 00414 00415 /// isTerminator - Returns true if this instruction part of the terminator for 00416 /// a basic block. Typically this is things like return and branch 00417 /// instructions. 00418 /// 00419 /// Various passes use this to insert code into the bottom of a basic block, 00420 /// but before control flow occurs. 00421 bool isTerminator(QueryType Type = AnyInBundle) const { 00422 return hasProperty(MCID::Terminator, Type); 00423 } 00424 00425 /// isBranch - Returns true if this is a conditional, unconditional, or 00426 /// indirect branch. Predicates below can be used to discriminate between 00427 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 00428 /// get more information. 00429 bool isBranch(QueryType Type = AnyInBundle) const { 00430 return hasProperty(MCID::Branch, Type); 00431 } 00432 00433 /// isIndirectBranch - Return true if this is an indirect branch, such as a 00434 /// branch through a register. 00435 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 00436 return hasProperty(MCID::IndirectBranch, Type); 00437 } 00438 00439 /// isConditionalBranch - Return true if this is a branch which may fall 00440 /// through to the next instruction or may transfer control flow to some other 00441 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 00442 /// information about this branch. 00443 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 00444 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); 00445 } 00446 00447 /// isUnconditionalBranch - Return true if this is a branch which always 00448 /// transfers control flow to some other block. The 00449 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 00450 /// about this branch. 00451 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 00452 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); 00453 } 00454 00455 /// Return true if this instruction has a predicate operand that 00456 /// controls execution. It may be set to 'always', or may be set to other 00457 /// values. There are various methods in TargetInstrInfo that can be used to 00458 /// control and modify the predicate in this instruction. 00459 bool isPredicable(QueryType Type = AllInBundle) const { 00460 // If it's a bundle than all bundled instructions must be predicable for this 00461 // to return true. 00462 return hasProperty(MCID::Predicable, Type); 00463 } 00464 00465 /// isCompare - Return true if this instruction is a comparison. 00466 bool isCompare(QueryType Type = IgnoreBundle) const { 00467 return hasProperty(MCID::Compare, Type); 00468 } 00469 00470 /// isMoveImmediate - Return true if this instruction is a move immediate 00471 /// (including conditional moves) instruction. 00472 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 00473 return hasProperty(MCID::MoveImm, Type); 00474 } 00475 00476 /// isBitcast - Return true if this instruction is a bitcast instruction. 00477 /// 00478 bool isBitcast(QueryType Type = IgnoreBundle) const { 00479 return hasProperty(MCID::Bitcast, Type); 00480 } 00481 00482 /// isSelect - Return true if this instruction is a select instruction. 00483 /// 00484 bool isSelect(QueryType Type = IgnoreBundle) const { 00485 return hasProperty(MCID::Select, Type); 00486 } 00487 00488 /// isNotDuplicable - Return true if this instruction cannot be safely 00489 /// duplicated. For example, if the instruction has a unique labels attached 00490 /// to it, duplicating it would cause multiple definition errors. 00491 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 00492 return hasProperty(MCID::NotDuplicable, Type); 00493 } 00494 00495 /// hasDelaySlot - Returns true if the specified instruction has a delay slot 00496 /// which must be filled by the code generator. 00497 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 00498 return hasProperty(MCID::DelaySlot, Type); 00499 } 00500 00501 /// canFoldAsLoad - Return true for instructions that can be folded as 00502 /// memory operands in other instructions. The most common use for this 00503 /// is instructions that are simple loads from memory that don't modify 00504 /// the loaded value in any way, but it can also be used for instructions 00505 /// that can be expressed as constant-pool loads, such as V_SETALLONES 00506 /// on x86, to allow them to be folded when it is beneficial. 00507 /// This should only be set on instructions that return a value in their 00508 /// only virtual register definition. 00509 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 00510 return hasProperty(MCID::FoldableAsLoad, Type); 00511 } 00512 00513 /// \brief Return true if this instruction behaves 00514 /// the same way as the generic REG_SEQUENCE instructions. 00515 /// E.g., on ARM, 00516 /// dX VMOVDRR rY, rZ 00517 /// is equivalent to 00518 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 00519 /// 00520 /// Note that for the optimizers to be able to take advantage of 00521 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 00522 /// override accordingly. 00523 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 00524 return hasProperty(MCID::RegSequence, Type); 00525 } 00526 00527 /// \brief Return true if this instruction behaves 00528 /// the same way as the generic EXTRACT_SUBREG instructions. 00529 /// E.g., on ARM, 00530 /// rX, rY VMOVRRD dZ 00531 /// is equivalent to two EXTRACT_SUBREG: 00532 /// rX = EXTRACT_SUBREG dZ, ssub_0 00533 /// rY = EXTRACT_SUBREG dZ, ssub_1 00534 /// 00535 /// Note that for the optimizers to be able to take advantage of 00536 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 00537 /// override accordingly. 00538 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 00539 return hasProperty(MCID::ExtractSubreg, Type); 00540 } 00541 00542 /// \brief Return true if this instruction behaves 00543 /// the same way as the generic INSERT_SUBREG instructions. 00544 /// E.g., on ARM, 00545 /// dX = VSETLNi32 dY, rZ, Imm 00546 /// is equivalent to a INSERT_SUBREG: 00547 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 00548 /// 00549 /// Note that for the optimizers to be able to take advantage of 00550 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 00551 /// override accordingly. 00552 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 00553 return hasProperty(MCID::InsertSubreg, Type); 00554 } 00555 00556 //===--------------------------------------------------------------------===// 00557 // Side Effect Analysis 00558 //===--------------------------------------------------------------------===// 00559 00560 /// mayLoad - Return true if this instruction could possibly read memory. 00561 /// Instructions with this flag set are not necessarily simple load 00562 /// instructions, they may load a value and modify it, for example. 00563 bool mayLoad(QueryType Type = AnyInBundle) const { 00564 if (isInlineAsm()) { 00565 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 00566 if (ExtraInfo & InlineAsm::Extra_MayLoad) 00567 return true; 00568 } 00569 return hasProperty(MCID::MayLoad, Type); 00570 } 00571 00572 00573 /// mayStore - Return true if this instruction could possibly modify memory. 00574 /// Instructions with this flag set are not necessarily simple store 00575 /// instructions, they may store a modified value based on their operands, or 00576 /// may not actually modify anything, for example. 00577 bool mayStore(QueryType Type = AnyInBundle) const { 00578 if (isInlineAsm()) { 00579 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 00580 if (ExtraInfo & InlineAsm::Extra_MayStore) 00581 return true; 00582 } 00583 return hasProperty(MCID::MayStore, Type); 00584 } 00585 00586 //===--------------------------------------------------------------------===// 00587 // Flags that indicate whether an instruction can be modified by a method. 00588 //===--------------------------------------------------------------------===// 00589 00590 /// isCommutable - Return true if this may be a 2- or 3-address 00591 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 00592 /// result if Y and Z are exchanged. If this flag is set, then the 00593 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 00594 /// instruction. 00595 /// 00596 /// Note that this flag may be set on instructions that are only commutable 00597 /// sometimes. In these cases, the call to commuteInstruction will fail. 00598 /// Also note that some instructions require non-trivial modification to 00599 /// commute them. 00600 bool isCommutable(QueryType Type = IgnoreBundle) const { 00601 return hasProperty(MCID::Commutable, Type); 00602 } 00603 00604 /// isConvertibleTo3Addr - Return true if this is a 2-address instruction 00605 /// which can be changed into a 3-address instruction if needed. Doing this 00606 /// transformation can be profitable in the register allocator, because it 00607 /// means that the instruction can use a 2-address form if possible, but 00608 /// degrade into a less efficient form if the source and dest register cannot 00609 /// be assigned to the same register. For example, this allows the x86 00610 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 00611 /// is the same speed as the shift but has bigger code size. 00612 /// 00613 /// If this returns true, then the target must implement the 00614 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 00615 /// is allowed to fail if the transformation isn't valid for this specific 00616 /// instruction (e.g. shl reg, 4 on x86). 00617 /// 00618 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 00619 return hasProperty(MCID::ConvertibleTo3Addr, Type); 00620 } 00621 00622 /// usesCustomInsertionHook - Return true if this instruction requires 00623 /// custom insertion support when the DAG scheduler is inserting it into a 00624 /// machine basic block. If this is true for the instruction, it basically 00625 /// means that it is a pseudo instruction used at SelectionDAG time that is 00626 /// expanded out into magic code by the target when MachineInstrs are formed. 00627 /// 00628 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 00629 /// is used to insert this into the MachineBasicBlock. 00630 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 00631 return hasProperty(MCID::UsesCustomInserter, Type); 00632 } 00633 00634 /// hasPostISelHook - Return true if this instruction requires *adjustment* 00635 /// after instruction selection by calling a target hook. For example, this 00636 /// can be used to fill in ARM 's' optional operand depending on whether 00637 /// the conditional flag register is used. 00638 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 00639 return hasProperty(MCID::HasPostISelHook, Type); 00640 } 00641 00642 /// isRematerializable - Returns true if this instruction is a candidate for 00643 /// remat. This flag is deprecated, please don't use it anymore. If this 00644 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 00645 /// verify the instruction is really rematable. 00646 bool isRematerializable(QueryType Type = AllInBundle) const { 00647 // It's only possible to re-mat a bundle if all bundled instructions are 00648 // re-materializable. 00649 return hasProperty(MCID::Rematerializable, Type); 00650 } 00651 00652 /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or 00653 /// less) than a move instruction. This is useful during certain types of 00654 /// optimizations (e.g., remat during two-address conversion or machine licm) 00655 /// where we would like to remat or hoist the instruction, but not if it costs 00656 /// more than moving the instruction into the appropriate register. Note, we 00657 /// are not marking copies from and to the same register class with this flag. 00658 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 00659 // Only returns true for a bundle if all bundled instructions are cheap. 00660 return hasProperty(MCID::CheapAsAMove, Type); 00661 } 00662 00663 /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands 00664 /// have special register allocation requirements that are not captured by the 00665 /// operand register classes. e.g. ARM::STRD's two source registers must be an 00666 /// even / odd pair, ARM::STM registers have to be in ascending order. 00667 /// Post-register allocation passes should not attempt to change allocations 00668 /// for sources of instructions with this flag. 00669 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 00670 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 00671 } 00672 00673 /// hasExtraDefRegAllocReq - Returns true if this instruction def operands 00674 /// have special register allocation requirements that are not captured by the 00675 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 00676 /// even / odd pair, ARM::LDM registers have to be in ascending order. 00677 /// Post-register allocation passes should not attempt to change allocations 00678 /// for definitions of instructions with this flag. 00679 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 00680 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 00681 } 00682 00683 00684 enum MICheckType { 00685 CheckDefs, // Check all operands for equality 00686 CheckKillDead, // Check all operands including kill / dead markers 00687 IgnoreDefs, // Ignore all definitions 00688 IgnoreVRegDefs // Ignore virtual register definitions 00689 }; 00690 00691 /// isIdenticalTo - Return true if this instruction is identical to (same 00692 /// opcode and same operands as) the specified instruction. 00693 bool isIdenticalTo(const MachineInstr *Other, 00694 MICheckType Check = CheckDefs) const; 00695 00696 /// Unlink 'this' from the containing basic block, and return it without 00697 /// deleting it. 00698 /// 00699 /// This function can not be used on bundled instructions, use 00700 /// removeFromBundle() to remove individual instructions from a bundle. 00701 MachineInstr *removeFromParent(); 00702 00703 /// Unlink this instruction from its basic block and return it without 00704 /// deleting it. 00705 /// 00706 /// If the instruction is part of a bundle, the other instructions in the 00707 /// bundle remain bundled. 00708 MachineInstr *removeFromBundle(); 00709 00710 /// Unlink 'this' from the containing basic block and delete it. 00711 /// 00712 /// If this instruction is the header of a bundle, the whole bundle is erased. 00713 /// This function can not be used for instructions inside a bundle, use 00714 /// eraseFromBundle() to erase individual bundled instructions. 00715 void eraseFromParent(); 00716 00717 /// Unlink 'this' from the containing basic block and delete it. 00718 /// 00719 /// For all definitions mark their uses in DBG_VALUE nodes 00720 /// as undefined. Otherwise like eraseFromParent(). 00721 void eraseFromParentAndMarkDBGValuesForRemoval(); 00722 00723 /// Unlink 'this' form its basic block and delete it. 00724 /// 00725 /// If the instruction is part of a bundle, the other instructions in the 00726 /// bundle remain bundled. 00727 void eraseFromBundle(); 00728 00729 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 00730 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 00731 00732 /// isLabel - Returns true if the MachineInstr represents a label. 00733 /// 00734 bool isLabel() const { return isEHLabel() || isGCLabel(); } 00735 bool isCFIInstruction() const { 00736 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 00737 } 00738 00739 // True if the instruction represents a position in the function. 00740 bool isPosition() const { return isLabel() || isCFIInstruction(); } 00741 00742 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } 00743 /// A DBG_VALUE is indirect iff the first operand is a register and 00744 /// the second operand is an immediate. 00745 bool isIndirectDebugValue() const { 00746 return isDebugValue() 00747 && getOperand(0).isReg() 00748 && getOperand(1).isImm(); 00749 } 00750 00751 bool isPHI() const { return getOpcode() == TargetOpcode::PHI; } 00752 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 00753 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 00754 bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; } 00755 bool isMSInlineAsm() const { 00756 return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect(); 00757 } 00758 bool isStackAligningInlineAsm() const; 00759 InlineAsm::AsmDialect getInlineAsmDialect() const; 00760 bool isInsertSubreg() const { 00761 return getOpcode() == TargetOpcode::INSERT_SUBREG; 00762 } 00763 bool isSubregToReg() const { 00764 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 00765 } 00766 bool isRegSequence() const { 00767 return getOpcode() == TargetOpcode::REG_SEQUENCE; 00768 } 00769 bool isBundle() const { 00770 return getOpcode() == TargetOpcode::BUNDLE; 00771 } 00772 bool isCopy() const { 00773 return getOpcode() == TargetOpcode::COPY; 00774 } 00775 bool isFullCopy() const { 00776 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 00777 } 00778 bool isExtractSubreg() const { 00779 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 00780 } 00781 00782 /// isCopyLike - Return true if the instruction behaves like a copy. 00783 /// This does not include native copy instructions. 00784 bool isCopyLike() const { 00785 return isCopy() || isSubregToReg(); 00786 } 00787 00788 /// isIdentityCopy - Return true is the instruction is an identity copy. 00789 bool isIdentityCopy() const { 00790 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 00791 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 00792 } 00793 00794 /// isTransient - Return true if this is a transient instruction that is 00795 /// either very likely to be eliminated during register allocation (such as 00796 /// copy-like instructions), or if this instruction doesn't have an 00797 /// execution-time cost. 00798 bool isTransient() const { 00799 switch(getOpcode()) { 00800 default: return false; 00801 // Copy-like instructions are usually eliminated during register allocation. 00802 case TargetOpcode::PHI: 00803 case TargetOpcode::COPY: 00804 case TargetOpcode::INSERT_SUBREG: 00805 case TargetOpcode::SUBREG_TO_REG: 00806 case TargetOpcode::REG_SEQUENCE: 00807 // Pseudo-instructions that don't produce any real output. 00808 case TargetOpcode::IMPLICIT_DEF: 00809 case TargetOpcode::KILL: 00810 case TargetOpcode::CFI_INSTRUCTION: 00811 case TargetOpcode::EH_LABEL: 00812 case TargetOpcode::GC_LABEL: 00813 case TargetOpcode::DBG_VALUE: 00814 return true; 00815 } 00816 } 00817 00818 /// Return the number of instructions inside the MI bundle, excluding the 00819 /// bundle header. 00820 /// 00821 /// This is the number of instructions that MachineBasicBlock::iterator 00822 /// skips, 0 for unbundled instructions. 00823 unsigned getBundleSize() const; 00824 00825 /// readsRegister - Return true if the MachineInstr reads the specified 00826 /// register. If TargetRegisterInfo is passed, then it also checks if there 00827 /// is a read of a super-register. 00828 /// This does not count partial redefines of virtual registers as reads: 00829 /// %reg1024:6 = OP. 00830 bool readsRegister(unsigned Reg, 00831 const TargetRegisterInfo *TRI = nullptr) const { 00832 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 00833 } 00834 00835 /// readsVirtualRegister - Return true if the MachineInstr reads the specified 00836 /// virtual register. Take into account that a partial define is a 00837 /// read-modify-write operation. 00838 bool readsVirtualRegister(unsigned Reg) const { 00839 return readsWritesVirtualRegister(Reg).first; 00840 } 00841 00842 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 00843 /// indicating if this instruction reads or writes Reg. This also considers 00844 /// partial defines. 00845 /// If Ops is not null, all operand indices for Reg are added. 00846 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg, 00847 SmallVectorImpl<unsigned> *Ops = nullptr) const; 00848 00849 /// killsRegister - Return true if the MachineInstr kills the specified 00850 /// register. If TargetRegisterInfo is passed, then it also checks if there is 00851 /// a kill of a super-register. 00852 bool killsRegister(unsigned Reg, 00853 const TargetRegisterInfo *TRI = nullptr) const { 00854 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 00855 } 00856 00857 /// definesRegister - Return true if the MachineInstr fully defines the 00858 /// specified register. If TargetRegisterInfo is passed, then it also checks 00859 /// if there is a def of a super-register. 00860 /// NOTE: It's ignoring subreg indices on virtual registers. 00861 bool definesRegister(unsigned Reg, 00862 const TargetRegisterInfo *TRI = nullptr) const { 00863 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 00864 } 00865 00866 /// modifiesRegister - Return true if the MachineInstr modifies (fully define 00867 /// or partially define) the specified register. 00868 /// NOTE: It's ignoring subreg indices on virtual registers. 00869 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { 00870 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 00871 } 00872 00873 /// registerDefIsDead - Returns true if the register is dead in this machine 00874 /// instruction. If TargetRegisterInfo is passed, then it also checks 00875 /// if there is a dead def of a super-register. 00876 bool registerDefIsDead(unsigned Reg, 00877 const TargetRegisterInfo *TRI = nullptr) const { 00878 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 00879 } 00880 00881 /// findRegisterUseOperandIdx() - Returns the operand index that is a use of 00882 /// the specific register or -1 if it is not found. It further tightens 00883 /// the search criteria to a use that kills the register if isKill is true. 00884 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, 00885 const TargetRegisterInfo *TRI = nullptr) const; 00886 00887 /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns 00888 /// a pointer to the MachineOperand rather than an index. 00889 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, 00890 const TargetRegisterInfo *TRI = nullptr) { 00891 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 00892 return (Idx == -1) ? nullptr : &getOperand(Idx); 00893 } 00894 00895 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 00896 /// the specified register or -1 if it is not found. If isDead is true, defs 00897 /// that are not dead are skipped. If Overlap is true, then it also looks for 00898 /// defs that merely overlap the specified register. If TargetRegisterInfo is 00899 /// non-null, then it also checks if there is a def of a super-register. 00900 /// This may also return a register mask operand when Overlap is true. 00901 int findRegisterDefOperandIdx(unsigned Reg, 00902 bool isDead = false, bool Overlap = false, 00903 const TargetRegisterInfo *TRI = nullptr) const; 00904 00905 /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns 00906 /// a pointer to the MachineOperand rather than an index. 00907 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, 00908 const TargetRegisterInfo *TRI = nullptr) { 00909 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); 00910 return (Idx == -1) ? nullptr : &getOperand(Idx); 00911 } 00912 00913 /// findFirstPredOperandIdx() - Find the index of the first operand in the 00914 /// operand list that is used to represent the predicate. It returns -1 if 00915 /// none is found. 00916 int findFirstPredOperandIdx() const; 00917 00918 /// findInlineAsmFlagIdx() - Find the index of the flag word operand that 00919 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 00920 /// getOperand(OpIdx) does not belong to an inline asm operand group. 00921 /// 00922 /// If GroupNo is not NULL, it will receive the number of the operand group 00923 /// containing OpIdx. 00924 /// 00925 /// The flag operand is an immediate that can be decoded with methods like 00926 /// InlineAsm::hasRegClassConstraint(). 00927 /// 00928 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 00929 00930 /// getRegClassConstraint - Compute the static register class constraint for 00931 /// operand OpIdx. For normal instructions, this is derived from the 00932 /// MCInstrDesc. For inline assembly it is derived from the flag words. 00933 /// 00934 /// Returns NULL if the static register classs constraint cannot be 00935 /// determined. 00936 /// 00937 const TargetRegisterClass* 00938 getRegClassConstraint(unsigned OpIdx, 00939 const TargetInstrInfo *TII, 00940 const TargetRegisterInfo *TRI) const; 00941 00942 /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to 00943 /// the given \p CurRC. 00944 /// If \p ExploreBundle is set and MI is part of a bundle, all the 00945 /// instructions inside the bundle will be taken into account. In other words, 00946 /// this method accumulates all the constrains of the operand of this MI and 00947 /// the related bundle if MI is a bundle or inside a bundle. 00948 /// 00949 /// Returns the register class that statisfies both \p CurRC and the 00950 /// constraints set by MI. Returns NULL if such a register class does not 00951 /// exist. 00952 /// 00953 /// \pre CurRC must not be NULL. 00954 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 00955 unsigned Reg, const TargetRegisterClass *CurRC, 00956 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 00957 bool ExploreBundle = false) const; 00958 00959 /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand 00960 /// to the given \p CurRC. 00961 /// 00962 /// Returns the register class that statisfies both \p CurRC and the 00963 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 00964 /// does not exist. 00965 /// 00966 /// \pre CurRC must not be NULL. 00967 /// \pre The operand at \p OpIdx must be a register. 00968 const TargetRegisterClass * 00969 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 00970 const TargetInstrInfo *TII, 00971 const TargetRegisterInfo *TRI) const; 00972 00973 /// tieOperands - Add a tie between the register operands at DefIdx and 00974 /// UseIdx. The tie will cause the register allocator to ensure that the two 00975 /// operands are assigned the same physical register. 00976 /// 00977 /// Tied operands are managed automatically for explicit operands in the 00978 /// MCInstrDesc. This method is for exceptional cases like inline asm. 00979 void tieOperands(unsigned DefIdx, unsigned UseIdx); 00980 00981 /// findTiedOperandIdx - Given the index of a tied register operand, find the 00982 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 00983 /// index of the tied operand which must exist. 00984 unsigned findTiedOperandIdx(unsigned OpIdx) const; 00985 00986 /// isRegTiedToUseOperand - Given the index of a register def operand, 00987 /// check if the register def is tied to a source operand, due to either 00988 /// two-address elimination or inline assembly constraints. Returns the 00989 /// first tied use operand index by reference if UseOpIdx is not null. 00990 bool isRegTiedToUseOperand(unsigned DefOpIdx, 00991 unsigned *UseOpIdx = nullptr) const { 00992 const MachineOperand &MO = getOperand(DefOpIdx); 00993 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 00994 return false; 00995 if (UseOpIdx) 00996 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 00997 return true; 00998 } 00999 01000 /// isRegTiedToDefOperand - Return true if the use operand of the specified 01001 /// index is tied to a def operand. It also returns the def operand index by 01002 /// reference if DefOpIdx is not null. 01003 bool isRegTiedToDefOperand(unsigned UseOpIdx, 01004 unsigned *DefOpIdx = nullptr) const { 01005 const MachineOperand &MO = getOperand(UseOpIdx); 01006 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 01007 return false; 01008 if (DefOpIdx) 01009 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 01010 return true; 01011 } 01012 01013 /// clearKillInfo - Clears kill flags on all operands. 01014 /// 01015 void clearKillInfo(); 01016 01017 /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx, 01018 /// properly composing subreg indices where necessary. 01019 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, 01020 const TargetRegisterInfo &RegInfo); 01021 01022 /// addRegisterKilled - We have determined MI kills a register. Look for the 01023 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 01024 /// add a implicit operand if it's not found. Returns true if the operand 01025 /// exists / is added. 01026 bool addRegisterKilled(unsigned IncomingReg, 01027 const TargetRegisterInfo *RegInfo, 01028 bool AddIfNotFound = false); 01029 01030 /// clearRegisterKills - Clear all kill flags affecting Reg. If RegInfo is 01031 /// provided, this includes super-register kills. 01032 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); 01033 01034 /// addRegisterDead - We have determined MI defined a register without a use. 01035 /// Look for the operand that defines it and mark it as IsDead. If 01036 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 01037 /// true if the operand exists / is added. 01038 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo, 01039 bool AddIfNotFound = false); 01040 01041 /// addRegisterDefined - We have determined MI defines a register. Make sure 01042 /// there is an operand defining Reg. 01043 void addRegisterDefined(unsigned Reg, 01044 const TargetRegisterInfo *RegInfo = nullptr); 01045 01046 /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as 01047 /// dead except those in the UsedRegs list. 01048 /// 01049 /// On instructions with register mask operands, also add implicit-def 01050 /// operands for all registers in UsedRegs. 01051 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 01052 const TargetRegisterInfo &TRI); 01053 01054 /// isSafeToMove - Return true if it is safe to move this instruction. If 01055 /// SawStore is set to true, it means that there is a store (or call) between 01056 /// the instruction's location and its intended destination. 01057 bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA, 01058 bool &SawStore) const; 01059 01060 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 01061 /// or volatile memory reference, or if the information describing the memory 01062 /// reference is not available. Return false if it is known to have no 01063 /// ordered or volatile memory references. 01064 bool hasOrderedMemoryRef() const; 01065 01066 /// isInvariantLoad - Return true if this instruction is loading from a 01067 /// location whose value is invariant across the function. For example, 01068 /// loading a value from the constant pool or from the argument area of 01069 /// a function if it does not change. This should only return true of *all* 01070 /// loads the instruction does are invariant (if it does multiple loads). 01071 bool isInvariantLoad(AliasAnalysis *AA) const; 01072 01073 /// isConstantValuePHI - If the specified instruction is a PHI that always 01074 /// merges together the same virtual register, return the register, otherwise 01075 /// return 0. 01076 unsigned isConstantValuePHI() const; 01077 01078 /// hasUnmodeledSideEffects - Return true if this instruction has side 01079 /// effects that are not modeled by mayLoad / mayStore, etc. 01080 /// For all instructions, the property is encoded in MCInstrDesc::Flags 01081 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 01082 /// INLINEASM instruction, in which case the side effect property is encoded 01083 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 01084 /// 01085 bool hasUnmodeledSideEffects() const; 01086 01087 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 01088 /// 01089 bool allDefsAreDead() const; 01090 01091 /// copyImplicitOps - Copy implicit register operands from specified 01092 /// instruction to this instruction. 01093 void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI); 01094 01095 // 01096 // Debugging support 01097 // 01098 void print(raw_ostream &OS, const TargetMachine *TM = nullptr, 01099 bool SkipOpers = false) const; 01100 void dump() const; 01101 01102 //===--------------------------------------------------------------------===// 01103 // Accessors used to build up machine instructions. 01104 01105 /// Add the specified operand to the instruction. If it is an implicit 01106 /// operand, it is added to the end of the operand list. If it is an 01107 /// explicit operand it is added at the end of the explicit operand list 01108 /// (before the first implicit operand). 01109 /// 01110 /// MF must be the machine function that was used to allocate this 01111 /// instruction. 01112 /// 01113 /// MachineInstrBuilder provides a more convenient interface for creating 01114 /// instructions and adding operands. 01115 void addOperand(MachineFunction &MF, const MachineOperand &Op); 01116 01117 /// Add an operand without providing an MF reference. This only works for 01118 /// instructions that are inserted in a basic block. 01119 /// 01120 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 01121 /// preferred. 01122 void addOperand(const MachineOperand &Op); 01123 01124 /// setDesc - Replace the instruction descriptor (thus opcode) of 01125 /// the current instruction with a new one. 01126 /// 01127 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 01128 01129 /// setDebugLoc - Replace current source information with new such. 01130 /// Avoid using this, the constructor argument is preferable. 01131 /// 01132 void setDebugLoc(const DebugLoc dl) { debugLoc = dl; } 01133 01134 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 01135 /// fewer operand than it started with. 01136 /// 01137 void RemoveOperand(unsigned i); 01138 01139 /// addMemOperand - Add a MachineMemOperand to the machine instruction. 01140 /// This function should be used only occasionally. The setMemRefs function 01141 /// is the primary method for setting up a MachineInstr's MemRefs list. 01142 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 01143 01144 /// setMemRefs - Assign this MachineInstr's memory reference descriptor 01145 /// list. This does not transfer ownership. 01146 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { 01147 MemRefs = NewMemRefs; 01148 NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs); 01149 assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs"); 01150 } 01151 01152 private: 01153 /// getRegInfo - If this instruction is embedded into a MachineFunction, 01154 /// return the MachineRegisterInfo object for the current function, otherwise 01155 /// return null. 01156 MachineRegisterInfo *getRegInfo(); 01157 01158 /// untieRegOperand - Break any tie involving OpIdx. 01159 void untieRegOperand(unsigned OpIdx) { 01160 MachineOperand &MO = getOperand(OpIdx); 01161 if (MO.isReg() && MO.isTied()) { 01162 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 01163 MO.TiedTo = 0; 01164 } 01165 } 01166 01167 /// addImplicitDefUseOperands - Add all implicit def and use operands to 01168 /// this instruction. 01169 void addImplicitDefUseOperands(MachineFunction &MF); 01170 01171 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 01172 /// this instruction from their respective use lists. This requires that the 01173 /// operands already be on their use lists. 01174 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 01175 01176 /// AddRegOperandsToUseLists - Add all of the register operands in 01177 /// this instruction from their respective use lists. This requires that the 01178 /// operands not be on their use lists yet. 01179 void AddRegOperandsToUseLists(MachineRegisterInfo&); 01180 01181 /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a 01182 /// bundle. 01183 bool hasPropertyInBundle(unsigned Mask, QueryType Type) const; 01184 01185 /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the 01186 /// this MI and the given operand index \p OpIdx. 01187 /// If the related operand does not constrained Reg, this returns CurRC. 01188 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 01189 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 01190 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 01191 }; 01192 01193 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare 01194 /// MachineInstr* by *value* of the instruction rather than by pointer value. 01195 /// The hashing and equality testing functions ignore definitions so this is 01196 /// useful for CSE, etc. 01197 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 01198 static inline MachineInstr *getEmptyKey() { 01199 return nullptr; 01200 } 01201 01202 static inline MachineInstr *getTombstoneKey() { 01203 return reinterpret_cast<MachineInstr*>(-1); 01204 } 01205 01206 static unsigned getHashValue(const MachineInstr* const &MI); 01207 01208 static bool isEqual(const MachineInstr* const &LHS, 01209 const MachineInstr* const &RHS) { 01210 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 01211 LHS == getEmptyKey() || LHS == getTombstoneKey()) 01212 return LHS == RHS; 01213 return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs); 01214 } 01215 }; 01216 01217 //===----------------------------------------------------------------------===// 01218 // Debugging Support 01219 01220 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 01221 MI.print(OS); 01222 return OS; 01223 } 01224 01225 } // End llvm namespace 01226 01227 #endif