LLVM API Documentation

MachineRegisterInfo.cpp
Go to the documentation of this file.
00001 //===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // Implementation of the MachineRegisterInfo class.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "llvm/CodeGen/MachineRegisterInfo.h"
00015 #include "llvm/CodeGen/MachineInstrBuilder.h"
00016 #include "llvm/Support/raw_os_ostream.h"
00017 #include "llvm/Target/TargetInstrInfo.h"
00018 #include "llvm/Target/TargetMachine.h"
00019 #include "llvm/Target/TargetSubtargetInfo.h"
00020 
00021 using namespace llvm;
00022 
00023 // Pin the vtable to this file.
00024 void MachineRegisterInfo::Delegate::anchor() {}
00025 
00026 MachineRegisterInfo::MachineRegisterInfo(const MachineFunction *MF)
00027   : MF(MF), TheDelegate(nullptr), IsSSA(true), TracksLiveness(true) {
00028   VRegInfo.reserve(256);
00029   RegAllocHints.reserve(256);
00030   UsedRegUnits.resize(getTargetRegisterInfo()->getNumRegUnits());
00031   UsedPhysRegMask.resize(getTargetRegisterInfo()->getNumRegs());
00032 
00033   // Create the physreg use/def lists.
00034   PhysRegUseDefLists.resize(getTargetRegisterInfo()->getNumRegs(), nullptr);
00035 }
00036 
00037 /// setRegClass - Set the register class of the specified virtual register.
00038 ///
00039 void
00040 MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) {
00041   assert(RC && RC->isAllocatable() && "Invalid RC for virtual register");
00042   VRegInfo[Reg].first = RC;
00043 }
00044 
00045 const TargetRegisterClass *
00046 MachineRegisterInfo::constrainRegClass(unsigned Reg,
00047                                        const TargetRegisterClass *RC,
00048                                        unsigned MinNumRegs) {
00049   const TargetRegisterClass *OldRC = getRegClass(Reg);
00050   if (OldRC == RC)
00051     return RC;
00052   const TargetRegisterClass *NewRC =
00053     getTargetRegisterInfo()->getCommonSubClass(OldRC, RC);
00054   if (!NewRC || NewRC == OldRC)
00055     return NewRC;
00056   if (NewRC->getNumRegs() < MinNumRegs)
00057     return nullptr;
00058   setRegClass(Reg, NewRC);
00059   return NewRC;
00060 }
00061 
00062 bool
00063 MachineRegisterInfo::recomputeRegClass(unsigned Reg, const TargetMachine &TM) {
00064   const TargetInstrInfo *TII = TM.getSubtargetImpl()->getInstrInfo();
00065   const TargetRegisterClass *OldRC = getRegClass(Reg);
00066   const TargetRegisterClass *NewRC =
00067     getTargetRegisterInfo()->getLargestLegalSuperClass(OldRC);
00068 
00069   // Stop early if there is no room to grow.
00070   if (NewRC == OldRC)
00071     return false;
00072 
00073   // Accumulate constraints from all uses.
00074   for (MachineOperand &MO : reg_nodbg_operands(Reg)) {
00075     // Apply the effect of the given operand to NewRC.
00076     MachineInstr *MI = MO.getParent();
00077     unsigned OpNo = &MO - &MI->getOperand(0);
00078     NewRC = MI->getRegClassConstraintEffect(OpNo, NewRC, TII,
00079                                             getTargetRegisterInfo());
00080     if (!NewRC || NewRC == OldRC)
00081       return false;
00082   }
00083   setRegClass(Reg, NewRC);
00084   return true;
00085 }
00086 
00087 /// createVirtualRegister - Create and return a new virtual register in the
00088 /// function with the specified register class.
00089 ///
00090 unsigned
00091 MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
00092   assert(RegClass && "Cannot create register without RegClass!");
00093   assert(RegClass->isAllocatable() &&
00094          "Virtual register RegClass must be allocatable.");
00095 
00096   // New virtual register number.
00097   unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
00098   VRegInfo.grow(Reg);
00099   VRegInfo[Reg].first = RegClass;
00100   RegAllocHints.grow(Reg);
00101   if (TheDelegate)
00102     TheDelegate->MRI_NoteNewVirtualRegister(Reg);
00103   return Reg;
00104 }
00105 
00106 /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
00107 void MachineRegisterInfo::clearVirtRegs() {
00108 #ifndef NDEBUG
00109   for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) {
00110     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
00111     if (!VRegInfo[Reg].second)
00112       continue;
00113     verifyUseList(Reg);
00114     llvm_unreachable("Remaining virtual register operands");
00115   }
00116 #endif
00117   VRegInfo.clear();
00118 }
00119 
00120 void MachineRegisterInfo::verifyUseList(unsigned Reg) const {
00121 #ifndef NDEBUG
00122   bool Valid = true;
00123   for (MachineOperand &M : reg_operands(Reg)) {
00124     MachineOperand *MO = &M;
00125     MachineInstr *MI = MO->getParent();
00126     if (!MI) {
00127       errs() << PrintReg(Reg, getTargetRegisterInfo())
00128              << " use list MachineOperand " << MO
00129              << " has no parent instruction.\n";
00130       Valid = false;
00131     }
00132     MachineOperand *MO0 = &MI->getOperand(0);
00133     unsigned NumOps = MI->getNumOperands();
00134     if (!(MO >= MO0 && MO < MO0+NumOps)) {
00135       errs() << PrintReg(Reg, getTargetRegisterInfo())
00136              << " use list MachineOperand " << MO
00137              << " doesn't belong to parent MI: " << *MI;
00138       Valid = false;
00139     }
00140     if (!MO->isReg()) {
00141       errs() << PrintReg(Reg, getTargetRegisterInfo())
00142              << " MachineOperand " << MO << ": " << *MO
00143              << " is not a register\n";
00144       Valid = false;
00145     }
00146     if (MO->getReg() != Reg) {
00147       errs() << PrintReg(Reg, getTargetRegisterInfo())
00148              << " use-list MachineOperand " << MO << ": "
00149              << *MO << " is the wrong register\n";
00150       Valid = false;
00151     }
00152   }
00153   assert(Valid && "Invalid use list");
00154 #endif
00155 }
00156 
00157 void MachineRegisterInfo::verifyUseLists() const {
00158 #ifndef NDEBUG
00159   for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i)
00160     verifyUseList(TargetRegisterInfo::index2VirtReg(i));
00161   for (unsigned i = 1, e = getTargetRegisterInfo()->getNumRegs(); i != e; ++i)
00162     verifyUseList(i);
00163 #endif
00164 }
00165 
00166 /// Add MO to the linked list of operands for its register.
00167 void MachineRegisterInfo::addRegOperandToUseList(MachineOperand *MO) {
00168   assert(!MO->isOnRegUseList() && "Already on list");
00169   MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
00170   MachineOperand *const Head = HeadRef;
00171 
00172   // Head points to the first list element.
00173   // Next is NULL on the last list element.
00174   // Prev pointers are circular, so Head->Prev == Last.
00175 
00176   // Head is NULL for an empty list.
00177   if (!Head) {
00178     MO->Contents.Reg.Prev = MO;
00179     MO->Contents.Reg.Next = nullptr;
00180     HeadRef = MO;
00181     return;
00182   }
00183   assert(MO->getReg() == Head->getReg() && "Different regs on the same list!");
00184 
00185   // Insert MO between Last and Head in the circular Prev chain.
00186   MachineOperand *Last = Head->Contents.Reg.Prev;
00187   assert(Last && "Inconsistent use list");
00188   assert(MO->getReg() == Last->getReg() && "Different regs on the same list!");
00189   Head->Contents.Reg.Prev = MO;
00190   MO->Contents.Reg.Prev = Last;
00191 
00192   // Def operands always precede uses. This allows def_iterator to stop early.
00193   // Insert def operands at the front, and use operands at the back.
00194   if (MO->isDef()) {
00195     // Insert def at the front.
00196     MO->Contents.Reg.Next = Head;
00197     HeadRef = MO;
00198   } else {
00199     // Insert use at the end.
00200     MO->Contents.Reg.Next = nullptr;
00201     Last->Contents.Reg.Next = MO;
00202   }
00203 }
00204 
00205 /// Remove MO from its use-def list.
00206 void MachineRegisterInfo::removeRegOperandFromUseList(MachineOperand *MO) {
00207   assert(MO->isOnRegUseList() && "Operand not on use list");
00208   MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
00209   MachineOperand *const Head = HeadRef;
00210   assert(Head && "List already empty");
00211 
00212   // Unlink this from the doubly linked list of operands.
00213   MachineOperand *Next = MO->Contents.Reg.Next;
00214   MachineOperand *Prev = MO->Contents.Reg.Prev;
00215 
00216   // Prev links are circular, next link is NULL instead of looping back to Head.
00217   if (MO == Head)
00218     HeadRef = Next;
00219   else
00220     Prev->Contents.Reg.Next = Next;
00221 
00222   (Next ? Next : Head)->Contents.Reg.Prev = Prev;
00223 
00224   MO->Contents.Reg.Prev = nullptr;
00225   MO->Contents.Reg.Next = nullptr;
00226 }
00227 
00228 /// Move NumOps operands from Src to Dst, updating use-def lists as needed.
00229 ///
00230 /// The Dst range is assumed to be uninitialized memory. (Or it may contain
00231 /// operands that won't be destroyed, which is OK because the MO destructor is
00232 /// trivial anyway).
00233 ///
00234 /// The Src and Dst ranges may overlap.
00235 void MachineRegisterInfo::moveOperands(MachineOperand *Dst,
00236                                        MachineOperand *Src,
00237                                        unsigned NumOps) {
00238   assert(Src != Dst && NumOps && "Noop moveOperands");
00239 
00240   // Copy backwards if Dst is within the Src range.
00241   int Stride = 1;
00242   if (Dst >= Src && Dst < Src + NumOps) {
00243     Stride = -1;
00244     Dst += NumOps - 1;
00245     Src += NumOps - 1;
00246   }
00247 
00248   // Copy one operand at a time.
00249   do {
00250     new (Dst) MachineOperand(*Src);
00251 
00252     // Dst takes Src's place in the use-def chain.
00253     if (Src->isReg()) {
00254       MachineOperand *&Head = getRegUseDefListHead(Src->getReg());
00255       MachineOperand *Prev = Src->Contents.Reg.Prev;
00256       MachineOperand *Next = Src->Contents.Reg.Next;
00257       assert(Head && "List empty, but operand is chained");
00258       assert(Prev && "Operand was not on use-def list");
00259 
00260       // Prev links are circular, next link is NULL instead of looping back to
00261       // Head.
00262       if (Src == Head)
00263         Head = Dst;
00264       else
00265         Prev->Contents.Reg.Next = Dst;
00266 
00267       // Update Prev pointer. This also works when Src was pointing to itself
00268       // in a 1-element list. In that case Head == Dst.
00269       (Next ? Next : Head)->Contents.Reg.Prev = Dst;
00270     }
00271 
00272     Dst += Stride;
00273     Src += Stride;
00274   } while (--NumOps);
00275 }
00276 
00277 /// replaceRegWith - Replace all instances of FromReg with ToReg in the
00278 /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
00279 /// except that it also changes any definitions of the register as well.
00280 /// If ToReg is a physical register we apply the sub register to obtain the
00281 /// final/proper physical register.
00282 void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) {
00283   assert(FromReg != ToReg && "Cannot replace a reg with itself");
00284 
00285   const TargetRegisterInfo *TRI = getTargetRegisterInfo();
00286   
00287   // TODO: This could be more efficient by bulk changing the operands.
00288   for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) {
00289     MachineOperand &O = *I;
00290     ++I;
00291     if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
00292       O.substPhysReg(ToReg, *TRI);
00293     } else {
00294       O.setReg(ToReg);
00295     }
00296   }
00297 }
00298 
00299 /// getVRegDef - Return the machine instr that defines the specified virtual
00300 /// register or null if none is found.  This assumes that the code is in SSA
00301 /// form, so there should only be one definition.
00302 MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const {
00303   // Since we are in SSA form, we can use the first definition.
00304   def_instr_iterator I = def_instr_begin(Reg);
00305   assert((I.atEnd() || std::next(I) == def_instr_end()) &&
00306          "getVRegDef assumes a single definition or no definition");
00307   return !I.atEnd() ? &*I : nullptr;
00308 }
00309 
00310 /// getUniqueVRegDef - Return the unique machine instr that defines the
00311 /// specified virtual register or null if none is found.  If there are
00312 /// multiple definitions or no definition, return null.
00313 MachineInstr *MachineRegisterInfo::getUniqueVRegDef(unsigned Reg) const {
00314   if (def_empty(Reg)) return nullptr;
00315   def_instr_iterator I = def_instr_begin(Reg);
00316   if (std::next(I) != def_instr_end())
00317     return nullptr;
00318   return &*I;
00319 }
00320 
00321 bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const {
00322   use_nodbg_iterator UI = use_nodbg_begin(RegNo);
00323   if (UI == use_nodbg_end())
00324     return false;
00325   return ++UI == use_nodbg_end();
00326 }
00327 
00328 /// clearKillFlags - Iterate over all the uses of the given register and
00329 /// clear the kill flag from the MachineOperand. This function is used by
00330 /// optimization passes which extend register lifetimes and need only
00331 /// preserve conservative kill flag information.
00332 void MachineRegisterInfo::clearKillFlags(unsigned Reg) const {
00333   for (MachineOperand &MO : use_operands(Reg))
00334     MO.setIsKill(false);
00335 }
00336 
00337 bool MachineRegisterInfo::isLiveIn(unsigned Reg) const {
00338   for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
00339     if (I->first == Reg || I->second == Reg)
00340       return true;
00341   return false;
00342 }
00343 
00344 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
00345 /// corresponding live-in physical register.
00346 unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const {
00347   for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
00348     if (I->second == VReg)
00349       return I->first;
00350   return 0;
00351 }
00352 
00353 /// getLiveInVirtReg - If PReg is a live-in physical register, return the
00354 /// corresponding live-in physical register.
00355 unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const {
00356   for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
00357     if (I->first == PReg)
00358       return I->second;
00359   return 0;
00360 }
00361 
00362 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
00363 /// into the given entry block.
00364 void
00365 MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB,
00366                                       const TargetRegisterInfo &TRI,
00367                                       const TargetInstrInfo &TII) {
00368   // Emit the copies into the top of the block.
00369   for (unsigned i = 0, e = LiveIns.size(); i != e; ++i)
00370     if (LiveIns[i].second) {
00371       if (use_empty(LiveIns[i].second)) {
00372         // The livein has no uses. Drop it.
00373         //
00374         // It would be preferable to have isel avoid creating live-in
00375         // records for unused arguments in the first place, but it's
00376         // complicated by the debug info code for arguments.
00377         LiveIns.erase(LiveIns.begin() + i);
00378         --i; --e;
00379       } else {
00380         // Emit a copy.
00381         BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(),
00382                 TII.get(TargetOpcode::COPY), LiveIns[i].second)
00383           .addReg(LiveIns[i].first);
00384 
00385         // Add the register to the entry block live-in set.
00386         EntryMBB->addLiveIn(LiveIns[i].first);
00387       }
00388     } else {
00389       // Add the register to the entry block live-in set.
00390       EntryMBB->addLiveIn(LiveIns[i].first);
00391     }
00392 }
00393 
00394 #ifndef NDEBUG
00395 void MachineRegisterInfo::dumpUses(unsigned Reg) const {
00396   for (MachineInstr &I : use_instructions(Reg))
00397     I.dump();
00398 }
00399 #endif
00400 
00401 void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) {
00402   ReservedRegs = getTargetRegisterInfo()->getReservedRegs(MF);
00403   assert(ReservedRegs.size() == getTargetRegisterInfo()->getNumRegs() &&
00404          "Invalid ReservedRegs vector from target");
00405 }
00406 
00407 bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg,
00408                                             const MachineFunction &MF) const {
00409   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg));
00410 
00411   // Check if any overlapping register is modified, or allocatable so it may be
00412   // used later.
00413   for (MCRegAliasIterator AI(PhysReg, getTargetRegisterInfo(), true);
00414        AI.isValid(); ++AI)
00415     if (!def_empty(*AI) || isAllocatable(*AI))
00416       return false;
00417   return true;
00418 }
00419 
00420 /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
00421 /// specified register as undefined which causes the DBG_VALUE to be
00422 /// deleted during LiveDebugVariables analysis.
00423 void MachineRegisterInfo::markUsesInDebugValueAsUndef(unsigned Reg) const {
00424   // Mark any DBG_VALUE that uses Reg as undef (but don't delete it.)
00425   MachineRegisterInfo::use_instr_iterator nextI;
00426   for (use_instr_iterator I = use_instr_begin(Reg), E = use_instr_end();
00427        I != E; I = nextI) {
00428     nextI = std::next(I);  // I is invalidated by the setReg
00429     MachineInstr *UseMI = &*I;
00430     if (UseMI->isDebugValue())
00431       UseMI->getOperand(0).setReg(0U);
00432   }
00433 }