LLVM API Documentation

SIShrinkInstructions.cpp
Go to the documentation of this file.
00001 //===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 /// The pass tries to use the 32-bit encoding for instructions when possible.
00009 //===----------------------------------------------------------------------===//
00010 //
00011 
00012 #include "AMDGPU.h"
00013 #include "AMDGPUSubtarget.h"
00014 #include "SIInstrInfo.h"
00015 #include "llvm/ADT/Statistic.h"
00016 #include "llvm/CodeGen/MachineFunctionPass.h"
00017 #include "llvm/CodeGen/MachineInstrBuilder.h"
00018 #include "llvm/CodeGen/MachineRegisterInfo.h"
00019 #include "llvm/IR/Constants.h"
00020 #include "llvm/IR/LLVMContext.h"
00021 #include "llvm/IR/Function.h"
00022 #include "llvm/Support/Debug.h"
00023 #include "llvm/Target/TargetMachine.h"
00024 
00025 #define DEBUG_TYPE "si-shrink-instructions"
00026 
00027 STATISTIC(NumInstructionsShrunk,
00028           "Number of 64-bit instruction reduced to 32-bit.");
00029 STATISTIC(NumLiteralConstantsFolded,
00030           "Number of literal constants folded into 32-bit instructions.");
00031 
00032 namespace llvm {
00033   void initializeSIShrinkInstructionsPass(PassRegistry&);
00034 }
00035 
00036 using namespace llvm;
00037 
00038 namespace {
00039 
00040 class SIShrinkInstructions : public MachineFunctionPass {
00041 public:
00042   static char ID;
00043 
00044 public:
00045   SIShrinkInstructions() : MachineFunctionPass(ID) {
00046   }
00047 
00048   bool runOnMachineFunction(MachineFunction &MF) override;
00049 
00050   const char *getPassName() const override {
00051     return "SI Shrink Instructions";
00052   }
00053 
00054   void getAnalysisUsage(AnalysisUsage &AU) const override {
00055     AU.setPreservesCFG();
00056     MachineFunctionPass::getAnalysisUsage(AU);
00057   }
00058 };
00059 
00060 } // End anonymous namespace.
00061 
00062 INITIALIZE_PASS_BEGIN(SIShrinkInstructions, DEBUG_TYPE,
00063                       "SI Lower il Copies", false, false)
00064 INITIALIZE_PASS_END(SIShrinkInstructions, DEBUG_TYPE,
00065                     "SI Lower il Copies", false, false)
00066 
00067 char SIShrinkInstructions::ID = 0;
00068 
00069 FunctionPass *llvm::createSIShrinkInstructionsPass() {
00070   return new SIShrinkInstructions();
00071 }
00072 
00073 static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI,
00074                    const MachineRegisterInfo &MRI) {
00075   if (!MO->isReg())
00076     return false;
00077 
00078   if (TargetRegisterInfo::isVirtualRegister(MO->getReg()))
00079     return TRI.hasVGPRs(MRI.getRegClass(MO->getReg()));
00080 
00081   return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg()));
00082 }
00083 
00084 static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
00085                       const SIRegisterInfo &TRI,
00086                       const MachineRegisterInfo &MRI) {
00087 
00088   const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
00089   // Can't shrink instruction with three operands.
00090   if (Src2)
00091     return false;
00092 
00093   const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
00094   const MachineOperand *Src1Mod =
00095       TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
00096 
00097   if (Src1 && (!isVGPR(Src1, TRI, MRI) || (Src1Mod && Src1Mod->getImm() != 0)))
00098     return false;
00099 
00100   // We don't need to check src0, all input types are legal, so just make
00101   // sure src0 isn't using any modifiers.
00102   const MachineOperand *Src0Mod =
00103       TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
00104   if (Src0Mod && Src0Mod->getImm() != 0)
00105     return false;
00106 
00107   // Check output modifiers
00108   const MachineOperand *Omod = TII->getNamedOperand(MI, AMDGPU::OpName::omod);
00109   if (Omod && Omod->getImm() != 0)
00110     return false;
00111 
00112   const MachineOperand *Clamp = TII->getNamedOperand(MI, AMDGPU::OpName::clamp);
00113   return !Clamp || Clamp->getImm() == 0;
00114 }
00115 
00116 /// \brief This function checks \p MI for operands defined by a move immediate
00117 /// instruction and then folds the literal constant into the instruction if it
00118 /// can.  This function assumes that \p MI is a VOP1, VOP2, or VOPC instruction
00119 /// and will only fold literal constants if we are still in SSA.
00120 static void foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
00121                            MachineRegisterInfo &MRI, bool TryToCommute = true) {
00122 
00123   if (!MRI.isSSA())
00124     return;
00125 
00126   assert(TII->isVOP1(MI.getOpcode()) || TII->isVOP2(MI.getOpcode()) ||
00127          TII->isVOPC(MI.getOpcode()));
00128 
00129   const SIRegisterInfo &TRI = TII->getRegisterInfo();
00130   MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
00131 
00132   // Only one literal constant is allowed per instruction, so if src0 is a
00133   // literal constant then we can't do any folding.
00134   if (Src0->isImm() && TII->isLiteralConstant(*Src0))
00135     return;
00136 
00137 
00138   // Literal constants and SGPRs can only be used in Src0, so if Src0 is an
00139   // SGPR, we cannot commute the instruction, so we can't fold any literal
00140   // constants.
00141   if (Src0->isReg() && !isVGPR(Src0, TRI, MRI))
00142     return;
00143 
00144   // Try to fold Src0
00145   if (Src0->isReg()) {
00146     unsigned Reg = Src0->getReg();
00147     MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
00148     if (Def && Def->isMoveImmediate()) {
00149       MachineOperand &MovSrc = Def->getOperand(1);
00150       bool ConstantFolded = false;
00151 
00152       if (MovSrc.isImm() && isUInt<32>(MovSrc.getImm())) {
00153         Src0->ChangeToImmediate(MovSrc.getImm());
00154         ConstantFolded = true;
00155       } else if (MovSrc.isFPImm()) {
00156         const APFloat &APF = MovSrc.getFPImm()->getValueAPF();
00157         if (&APF.getSemantics() == &APFloat::IEEEsingle) {
00158           MRI.removeRegOperandFromUseList(Src0);
00159           Src0->ChangeToImmediate(APF.bitcastToAPInt().getZExtValue());
00160           ConstantFolded = true;
00161         }
00162       }
00163       if (ConstantFolded) {
00164         if (MRI.use_empty(Reg))
00165           Def->eraseFromParent();
00166         ++NumLiteralConstantsFolded;
00167         return;
00168       }
00169     }
00170   }
00171 
00172   // We have failed to fold src0, so commute the instruction and try again.
00173   if (TryToCommute && MI.isCommutable() && TII->commuteInstruction(&MI))
00174     foldImmediates(MI, TII, MRI, false);
00175 
00176 }
00177 
00178 bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
00179   MachineRegisterInfo &MRI = MF.getRegInfo();
00180   const SIInstrInfo *TII =
00181       static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
00182   const SIRegisterInfo &TRI = TII->getRegisterInfo();
00183   std::vector<unsigned> I1Defs;
00184 
00185   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
00186                                                   BI != BE; ++BI) {
00187 
00188     MachineBasicBlock &MBB = *BI;
00189     MachineBasicBlock::iterator I, Next;
00190     for (I = MBB.begin(); I != MBB.end(); I = Next) {
00191       Next = std::next(I);
00192       MachineInstr &MI = *I;
00193 
00194       if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
00195         continue;
00196 
00197       if (!canShrink(MI, TII, TRI, MRI)) {
00198         // Try commuting the instruction and see if that enables us to shrink
00199         // it.
00200         if (!MI.isCommutable() || !TII->commuteInstruction(&MI) ||
00201             !canShrink(MI, TII, TRI, MRI))
00202           continue;
00203       }
00204 
00205       int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
00206 
00207       // Op32 could be -1 here if we started with an instruction that had a
00208       // a 32-bit encoding and then commuted it to an instruction that did not.
00209       if (Op32 == -1)
00210         continue;
00211 
00212       if (TII->isVOPC(Op32)) {
00213         unsigned DstReg = MI.getOperand(0).getReg();
00214         if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
00215           // VOPC instructions can only write to the VCC register.  We can't
00216           // force them to use VCC here, because the register allocator has
00217           // trouble with sequences like this, which cause the allocator to run
00218           // out of registers if vreg0 and vreg1 belong to the VCCReg register
00219           // class:
00220           // vreg0 = VOPC;
00221           // vreg1 = VOPC;
00222           // S_AND_B64 vreg0, vreg1
00223           //
00224           // So, instead of forcing the instruction to write to VCC, we provide a
00225           // hint to the register allocator to use VCC and then we
00226           // we will run this pass again after RA and shrink it if it outpus to
00227           // VCC.
00228           MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
00229           continue;
00230         }
00231         if (DstReg != AMDGPU::VCC)
00232           continue;
00233       }
00234 
00235       // We can shrink this instruction
00236       DEBUG(dbgs() << "Shrinking "; MI.dump(); dbgs() << '\n';);
00237 
00238       MachineInstrBuilder Inst32 =
00239           BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));
00240 
00241       // dst
00242       Inst32.addOperand(MI.getOperand(0));
00243 
00244       Inst32.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
00245 
00246       const MachineOperand *Src1 =
00247           TII->getNamedOperand(MI, AMDGPU::OpName::src1);
00248       if (Src1)
00249         Inst32.addOperand(*Src1);
00250 
00251       ++NumInstructionsShrunk;
00252       MI.eraseFromParent();
00253 
00254       foldImmediates(*Inst32, TII, MRI);
00255       DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
00256 
00257 
00258     }
00259   }
00260   return false;
00261 }