LLVM API Documentation

TargetLoweringBase.cpp
Go to the documentation of this file.
00001 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This implements the TargetLoweringBase class.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "llvm/Target/TargetLowering.h"
00015 #include "llvm/ADT/BitVector.h"
00016 #include "llvm/ADT/STLExtras.h"
00017 #include "llvm/ADT/Triple.h"
00018 #include "llvm/CodeGen/Analysis.h"
00019 #include "llvm/CodeGen/MachineFrameInfo.h"
00020 #include "llvm/CodeGen/MachineFunction.h"
00021 #include "llvm/CodeGen/MachineInstrBuilder.h"
00022 #include "llvm/CodeGen/MachineJumpTableInfo.h"
00023 #include "llvm/CodeGen/StackMaps.h"
00024 #include "llvm/IR/DataLayout.h"
00025 #include "llvm/IR/DerivedTypes.h"
00026 #include "llvm/IR/GlobalVariable.h"
00027 #include "llvm/IR/Mangler.h"
00028 #include "llvm/MC/MCAsmInfo.h"
00029 #include "llvm/MC/MCContext.h"
00030 #include "llvm/MC/MCExpr.h"
00031 #include "llvm/Support/CommandLine.h"
00032 #include "llvm/Support/ErrorHandling.h"
00033 #include "llvm/Support/MathExtras.h"
00034 #include "llvm/Target/TargetLoweringObjectFile.h"
00035 #include "llvm/Target/TargetMachine.h"
00036 #include "llvm/Target/TargetRegisterInfo.h"
00037 #include "llvm/Target/TargetSubtargetInfo.h"
00038 #include <cctype>
00039 using namespace llvm;
00040 
00041 /// InitLibcallNames - Set default libcall names.
00042 ///
00043 static void InitLibcallNames(const char **Names, const Triple &TT) {
00044   Names[RTLIB::SHL_I16] = "__ashlhi3";
00045   Names[RTLIB::SHL_I32] = "__ashlsi3";
00046   Names[RTLIB::SHL_I64] = "__ashldi3";
00047   Names[RTLIB::SHL_I128] = "__ashlti3";
00048   Names[RTLIB::SRL_I16] = "__lshrhi3";
00049   Names[RTLIB::SRL_I32] = "__lshrsi3";
00050   Names[RTLIB::SRL_I64] = "__lshrdi3";
00051   Names[RTLIB::SRL_I128] = "__lshrti3";
00052   Names[RTLIB::SRA_I16] = "__ashrhi3";
00053   Names[RTLIB::SRA_I32] = "__ashrsi3";
00054   Names[RTLIB::SRA_I64] = "__ashrdi3";
00055   Names[RTLIB::SRA_I128] = "__ashrti3";
00056   Names[RTLIB::MUL_I8] = "__mulqi3";
00057   Names[RTLIB::MUL_I16] = "__mulhi3";
00058   Names[RTLIB::MUL_I32] = "__mulsi3";
00059   Names[RTLIB::MUL_I64] = "__muldi3";
00060   Names[RTLIB::MUL_I128] = "__multi3";
00061   Names[RTLIB::MULO_I32] = "__mulosi4";
00062   Names[RTLIB::MULO_I64] = "__mulodi4";
00063   Names[RTLIB::MULO_I128] = "__muloti4";
00064   Names[RTLIB::SDIV_I8] = "__divqi3";
00065   Names[RTLIB::SDIV_I16] = "__divhi3";
00066   Names[RTLIB::SDIV_I32] = "__divsi3";
00067   Names[RTLIB::SDIV_I64] = "__divdi3";
00068   Names[RTLIB::SDIV_I128] = "__divti3";
00069   Names[RTLIB::UDIV_I8] = "__udivqi3";
00070   Names[RTLIB::UDIV_I16] = "__udivhi3";
00071   Names[RTLIB::UDIV_I32] = "__udivsi3";
00072   Names[RTLIB::UDIV_I64] = "__udivdi3";
00073   Names[RTLIB::UDIV_I128] = "__udivti3";
00074   Names[RTLIB::SREM_I8] = "__modqi3";
00075   Names[RTLIB::SREM_I16] = "__modhi3";
00076   Names[RTLIB::SREM_I32] = "__modsi3";
00077   Names[RTLIB::SREM_I64] = "__moddi3";
00078   Names[RTLIB::SREM_I128] = "__modti3";
00079   Names[RTLIB::UREM_I8] = "__umodqi3";
00080   Names[RTLIB::UREM_I16] = "__umodhi3";
00081   Names[RTLIB::UREM_I32] = "__umodsi3";
00082   Names[RTLIB::UREM_I64] = "__umoddi3";
00083   Names[RTLIB::UREM_I128] = "__umodti3";
00084 
00085   // These are generally not available.
00086   Names[RTLIB::SDIVREM_I8] = nullptr;
00087   Names[RTLIB::SDIVREM_I16] = nullptr;
00088   Names[RTLIB::SDIVREM_I32] = nullptr;
00089   Names[RTLIB::SDIVREM_I64] = nullptr;
00090   Names[RTLIB::SDIVREM_I128] = nullptr;
00091   Names[RTLIB::UDIVREM_I8] = nullptr;
00092   Names[RTLIB::UDIVREM_I16] = nullptr;
00093   Names[RTLIB::UDIVREM_I32] = nullptr;
00094   Names[RTLIB::UDIVREM_I64] = nullptr;
00095   Names[RTLIB::UDIVREM_I128] = nullptr;
00096 
00097   Names[RTLIB::NEG_I32] = "__negsi2";
00098   Names[RTLIB::NEG_I64] = "__negdi2";
00099   Names[RTLIB::ADD_F32] = "__addsf3";
00100   Names[RTLIB::ADD_F64] = "__adddf3";
00101   Names[RTLIB::ADD_F80] = "__addxf3";
00102   Names[RTLIB::ADD_F128] = "__addtf3";
00103   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
00104   Names[RTLIB::SUB_F32] = "__subsf3";
00105   Names[RTLIB::SUB_F64] = "__subdf3";
00106   Names[RTLIB::SUB_F80] = "__subxf3";
00107   Names[RTLIB::SUB_F128] = "__subtf3";
00108   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
00109   Names[RTLIB::MUL_F32] = "__mulsf3";
00110   Names[RTLIB::MUL_F64] = "__muldf3";
00111   Names[RTLIB::MUL_F80] = "__mulxf3";
00112   Names[RTLIB::MUL_F128] = "__multf3";
00113   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
00114   Names[RTLIB::DIV_F32] = "__divsf3";
00115   Names[RTLIB::DIV_F64] = "__divdf3";
00116   Names[RTLIB::DIV_F80] = "__divxf3";
00117   Names[RTLIB::DIV_F128] = "__divtf3";
00118   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
00119   Names[RTLIB::REM_F32] = "fmodf";
00120   Names[RTLIB::REM_F64] = "fmod";
00121   Names[RTLIB::REM_F80] = "fmodl";
00122   Names[RTLIB::REM_F128] = "fmodl";
00123   Names[RTLIB::REM_PPCF128] = "fmodl";
00124   Names[RTLIB::FMA_F32] = "fmaf";
00125   Names[RTLIB::FMA_F64] = "fma";
00126   Names[RTLIB::FMA_F80] = "fmal";
00127   Names[RTLIB::FMA_F128] = "fmal";
00128   Names[RTLIB::FMA_PPCF128] = "fmal";
00129   Names[RTLIB::POWI_F32] = "__powisf2";
00130   Names[RTLIB::POWI_F64] = "__powidf2";
00131   Names[RTLIB::POWI_F80] = "__powixf2";
00132   Names[RTLIB::POWI_F128] = "__powitf2";
00133   Names[RTLIB::POWI_PPCF128] = "__powitf2";
00134   Names[RTLIB::SQRT_F32] = "sqrtf";
00135   Names[RTLIB::SQRT_F64] = "sqrt";
00136   Names[RTLIB::SQRT_F80] = "sqrtl";
00137   Names[RTLIB::SQRT_F128] = "sqrtl";
00138   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
00139   Names[RTLIB::LOG_F32] = "logf";
00140   Names[RTLIB::LOG_F64] = "log";
00141   Names[RTLIB::LOG_F80] = "logl";
00142   Names[RTLIB::LOG_F128] = "logl";
00143   Names[RTLIB::LOG_PPCF128] = "logl";
00144   Names[RTLIB::LOG2_F32] = "log2f";
00145   Names[RTLIB::LOG2_F64] = "log2";
00146   Names[RTLIB::LOG2_F80] = "log2l";
00147   Names[RTLIB::LOG2_F128] = "log2l";
00148   Names[RTLIB::LOG2_PPCF128] = "log2l";
00149   Names[RTLIB::LOG10_F32] = "log10f";
00150   Names[RTLIB::LOG10_F64] = "log10";
00151   Names[RTLIB::LOG10_F80] = "log10l";
00152   Names[RTLIB::LOG10_F128] = "log10l";
00153   Names[RTLIB::LOG10_PPCF128] = "log10l";
00154   Names[RTLIB::EXP_F32] = "expf";
00155   Names[RTLIB::EXP_F64] = "exp";
00156   Names[RTLIB::EXP_F80] = "expl";
00157   Names[RTLIB::EXP_F128] = "expl";
00158   Names[RTLIB::EXP_PPCF128] = "expl";
00159   Names[RTLIB::EXP2_F32] = "exp2f";
00160   Names[RTLIB::EXP2_F64] = "exp2";
00161   Names[RTLIB::EXP2_F80] = "exp2l";
00162   Names[RTLIB::EXP2_F128] = "exp2l";
00163   Names[RTLIB::EXP2_PPCF128] = "exp2l";
00164   Names[RTLIB::SIN_F32] = "sinf";
00165   Names[RTLIB::SIN_F64] = "sin";
00166   Names[RTLIB::SIN_F80] = "sinl";
00167   Names[RTLIB::SIN_F128] = "sinl";
00168   Names[RTLIB::SIN_PPCF128] = "sinl";
00169   Names[RTLIB::COS_F32] = "cosf";
00170   Names[RTLIB::COS_F64] = "cos";
00171   Names[RTLIB::COS_F80] = "cosl";
00172   Names[RTLIB::COS_F128] = "cosl";
00173   Names[RTLIB::COS_PPCF128] = "cosl";
00174   Names[RTLIB::POW_F32] = "powf";
00175   Names[RTLIB::POW_F64] = "pow";
00176   Names[RTLIB::POW_F80] = "powl";
00177   Names[RTLIB::POW_F128] = "powl";
00178   Names[RTLIB::POW_PPCF128] = "powl";
00179   Names[RTLIB::CEIL_F32] = "ceilf";
00180   Names[RTLIB::CEIL_F64] = "ceil";
00181   Names[RTLIB::CEIL_F80] = "ceill";
00182   Names[RTLIB::CEIL_F128] = "ceill";
00183   Names[RTLIB::CEIL_PPCF128] = "ceill";
00184   Names[RTLIB::TRUNC_F32] = "truncf";
00185   Names[RTLIB::TRUNC_F64] = "trunc";
00186   Names[RTLIB::TRUNC_F80] = "truncl";
00187   Names[RTLIB::TRUNC_F128] = "truncl";
00188   Names[RTLIB::TRUNC_PPCF128] = "truncl";
00189   Names[RTLIB::RINT_F32] = "rintf";
00190   Names[RTLIB::RINT_F64] = "rint";
00191   Names[RTLIB::RINT_F80] = "rintl";
00192   Names[RTLIB::RINT_F128] = "rintl";
00193   Names[RTLIB::RINT_PPCF128] = "rintl";
00194   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
00195   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
00196   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
00197   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
00198   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
00199   Names[RTLIB::ROUND_F32] = "roundf";
00200   Names[RTLIB::ROUND_F64] = "round";
00201   Names[RTLIB::ROUND_F80] = "roundl";
00202   Names[RTLIB::ROUND_F128] = "roundl";
00203   Names[RTLIB::ROUND_PPCF128] = "roundl";
00204   Names[RTLIB::FLOOR_F32] = "floorf";
00205   Names[RTLIB::FLOOR_F64] = "floor";
00206   Names[RTLIB::FLOOR_F80] = "floorl";
00207   Names[RTLIB::FLOOR_F128] = "floorl";
00208   Names[RTLIB::FLOOR_PPCF128] = "floorl";
00209   Names[RTLIB::ROUND_F32] = "roundf";
00210   Names[RTLIB::ROUND_F64] = "round";
00211   Names[RTLIB::ROUND_F80] = "roundl";
00212   Names[RTLIB::ROUND_F128] = "roundl";
00213   Names[RTLIB::ROUND_PPCF128] = "roundl";
00214   Names[RTLIB::COPYSIGN_F32] = "copysignf";
00215   Names[RTLIB::COPYSIGN_F64] = "copysign";
00216   Names[RTLIB::COPYSIGN_F80] = "copysignl";
00217   Names[RTLIB::COPYSIGN_F128] = "copysignl";
00218   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
00219   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
00220   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
00221   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
00222   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
00223   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
00224   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
00225   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
00226   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
00227   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
00228   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
00229   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
00230   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
00231   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
00232   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
00233   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
00234   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
00235   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
00236   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
00237   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
00238   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
00239   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
00240   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
00241   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
00242   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
00243   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
00244   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
00245   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
00246   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
00247   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
00248   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
00249   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
00250   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
00251   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
00252   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
00253   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
00254   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
00255   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
00256   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
00257   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
00258   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
00259   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
00260   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
00261   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
00262   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
00263   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
00264   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
00265   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
00266   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
00267   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
00268   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
00269   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
00270   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
00271   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
00272   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
00273   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
00274   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
00275   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
00276   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
00277   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
00278   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
00279   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
00280   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
00281   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
00282   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
00283   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
00284   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
00285   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
00286   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
00287   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
00288   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
00289   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
00290   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
00291   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
00292   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
00293   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
00294   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
00295   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
00296   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
00297   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
00298   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
00299   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
00300   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
00301   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
00302   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
00303   Names[RTLIB::OEQ_F32] = "__eqsf2";
00304   Names[RTLIB::OEQ_F64] = "__eqdf2";
00305   Names[RTLIB::OEQ_F128] = "__eqtf2";
00306   Names[RTLIB::UNE_F32] = "__nesf2";
00307   Names[RTLIB::UNE_F64] = "__nedf2";
00308   Names[RTLIB::UNE_F128] = "__netf2";
00309   Names[RTLIB::OGE_F32] = "__gesf2";
00310   Names[RTLIB::OGE_F64] = "__gedf2";
00311   Names[RTLIB::OGE_F128] = "__getf2";
00312   Names[RTLIB::OLT_F32] = "__ltsf2";
00313   Names[RTLIB::OLT_F64] = "__ltdf2";
00314   Names[RTLIB::OLT_F128] = "__lttf2";
00315   Names[RTLIB::OLE_F32] = "__lesf2";
00316   Names[RTLIB::OLE_F64] = "__ledf2";
00317   Names[RTLIB::OLE_F128] = "__letf2";
00318   Names[RTLIB::OGT_F32] = "__gtsf2";
00319   Names[RTLIB::OGT_F64] = "__gtdf2";
00320   Names[RTLIB::OGT_F128] = "__gttf2";
00321   Names[RTLIB::UO_F32] = "__unordsf2";
00322   Names[RTLIB::UO_F64] = "__unorddf2";
00323   Names[RTLIB::UO_F128] = "__unordtf2";
00324   Names[RTLIB::O_F32] = "__unordsf2";
00325   Names[RTLIB::O_F64] = "__unorddf2";
00326   Names[RTLIB::O_F128] = "__unordtf2";
00327   Names[RTLIB::MEMCPY] = "memcpy";
00328   Names[RTLIB::MEMMOVE] = "memmove";
00329   Names[RTLIB::MEMSET] = "memset";
00330   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
00331   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
00332   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
00333   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
00334   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
00335   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
00336   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
00337   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
00338   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
00339   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
00340   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
00341   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
00342   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
00343   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
00344   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
00345   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
00346   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
00347   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
00348   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
00349   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
00350   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
00351   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
00352   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
00353   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
00354   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
00355   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
00356   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
00357   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
00358   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
00359   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
00360   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
00361   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
00362   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
00363   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
00364   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
00365   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
00366   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
00367   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
00368   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
00369   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
00370   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
00371   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
00372   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
00373   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
00374   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
00375   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
00376   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
00377   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
00378   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
00379   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
00380   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
00381   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
00382   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
00383   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
00384   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
00385   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
00386   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
00387   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
00388   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
00389   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
00390   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
00391   
00392   if (TT.getEnvironment() == Triple::GNU) {
00393     Names[RTLIB::SINCOS_F32] = "sincosf";
00394     Names[RTLIB::SINCOS_F64] = "sincos";
00395     Names[RTLIB::SINCOS_F80] = "sincosl";
00396     Names[RTLIB::SINCOS_F128] = "sincosl";
00397     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
00398   } else {
00399     // These are generally not available.
00400     Names[RTLIB::SINCOS_F32] = nullptr;
00401     Names[RTLIB::SINCOS_F64] = nullptr;
00402     Names[RTLIB::SINCOS_F80] = nullptr;
00403     Names[RTLIB::SINCOS_F128] = nullptr;
00404     Names[RTLIB::SINCOS_PPCF128] = nullptr;
00405   }
00406 
00407   if (TT.getOS() != Triple::OpenBSD) {
00408     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
00409   } else {
00410     // These are generally not available.
00411     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
00412   }
00413 }
00414 
00415 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
00416 ///
00417 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
00418   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
00419     CCs[i] = CallingConv::C;
00420   }
00421 }
00422 
00423 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
00424 /// UNKNOWN_LIBCALL if there is none.
00425 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
00426   if (OpVT == MVT::f16) {
00427     if (RetVT == MVT::f32)
00428       return FPEXT_F16_F32;
00429   } else if (OpVT == MVT::f32) {
00430     if (RetVT == MVT::f64)
00431       return FPEXT_F32_F64;
00432     if (RetVT == MVT::f128)
00433       return FPEXT_F32_F128;
00434   } else if (OpVT == MVT::f64) {
00435     if (RetVT == MVT::f128)
00436       return FPEXT_F64_F128;
00437   }
00438 
00439   return UNKNOWN_LIBCALL;
00440 }
00441 
00442 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
00443 /// UNKNOWN_LIBCALL if there is none.
00444 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
00445   if (RetVT == MVT::f16) {
00446     if (OpVT == MVT::f32)
00447       return FPROUND_F32_F16;
00448     if (OpVT == MVT::f64)
00449       return FPROUND_F64_F16;
00450     if (OpVT == MVT::f80)
00451       return FPROUND_F80_F16;
00452     if (OpVT == MVT::f128)
00453       return FPROUND_F128_F16;
00454     if (OpVT == MVT::ppcf128)
00455       return FPROUND_PPCF128_F16;
00456   } else if (RetVT == MVT::f32) {
00457     if (OpVT == MVT::f64)
00458       return FPROUND_F64_F32;
00459     if (OpVT == MVT::f80)
00460       return FPROUND_F80_F32;
00461     if (OpVT == MVT::f128)
00462       return FPROUND_F128_F32;
00463     if (OpVT == MVT::ppcf128)
00464       return FPROUND_PPCF128_F32;
00465   } else if (RetVT == MVT::f64) {
00466     if (OpVT == MVT::f80)
00467       return FPROUND_F80_F64;
00468     if (OpVT == MVT::f128)
00469       return FPROUND_F128_F64;
00470     if (OpVT == MVT::ppcf128)
00471       return FPROUND_PPCF128_F64;
00472   }
00473 
00474   return UNKNOWN_LIBCALL;
00475 }
00476 
00477 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
00478 /// UNKNOWN_LIBCALL if there is none.
00479 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
00480   if (OpVT == MVT::f32) {
00481     if (RetVT == MVT::i8)
00482       return FPTOSINT_F32_I8;
00483     if (RetVT == MVT::i16)
00484       return FPTOSINT_F32_I16;
00485     if (RetVT == MVT::i32)
00486       return FPTOSINT_F32_I32;
00487     if (RetVT == MVT::i64)
00488       return FPTOSINT_F32_I64;
00489     if (RetVT == MVT::i128)
00490       return FPTOSINT_F32_I128;
00491   } else if (OpVT == MVT::f64) {
00492     if (RetVT == MVT::i8)
00493       return FPTOSINT_F64_I8;
00494     if (RetVT == MVT::i16)
00495       return FPTOSINT_F64_I16;
00496     if (RetVT == MVT::i32)
00497       return FPTOSINT_F64_I32;
00498     if (RetVT == MVT::i64)
00499       return FPTOSINT_F64_I64;
00500     if (RetVT == MVT::i128)
00501       return FPTOSINT_F64_I128;
00502   } else if (OpVT == MVT::f80) {
00503     if (RetVT == MVT::i32)
00504       return FPTOSINT_F80_I32;
00505     if (RetVT == MVT::i64)
00506       return FPTOSINT_F80_I64;
00507     if (RetVT == MVT::i128)
00508       return FPTOSINT_F80_I128;
00509   } else if (OpVT == MVT::f128) {
00510     if (RetVT == MVT::i32)
00511       return FPTOSINT_F128_I32;
00512     if (RetVT == MVT::i64)
00513       return FPTOSINT_F128_I64;
00514     if (RetVT == MVT::i128)
00515       return FPTOSINT_F128_I128;
00516   } else if (OpVT == MVT::ppcf128) {
00517     if (RetVT == MVT::i32)
00518       return FPTOSINT_PPCF128_I32;
00519     if (RetVT == MVT::i64)
00520       return FPTOSINT_PPCF128_I64;
00521     if (RetVT == MVT::i128)
00522       return FPTOSINT_PPCF128_I128;
00523   }
00524   return UNKNOWN_LIBCALL;
00525 }
00526 
00527 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
00528 /// UNKNOWN_LIBCALL if there is none.
00529 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
00530   if (OpVT == MVT::f32) {
00531     if (RetVT == MVT::i8)
00532       return FPTOUINT_F32_I8;
00533     if (RetVT == MVT::i16)
00534       return FPTOUINT_F32_I16;
00535     if (RetVT == MVT::i32)
00536       return FPTOUINT_F32_I32;
00537     if (RetVT == MVT::i64)
00538       return FPTOUINT_F32_I64;
00539     if (RetVT == MVT::i128)
00540       return FPTOUINT_F32_I128;
00541   } else if (OpVT == MVT::f64) {
00542     if (RetVT == MVT::i8)
00543       return FPTOUINT_F64_I8;
00544     if (RetVT == MVT::i16)
00545       return FPTOUINT_F64_I16;
00546     if (RetVT == MVT::i32)
00547       return FPTOUINT_F64_I32;
00548     if (RetVT == MVT::i64)
00549       return FPTOUINT_F64_I64;
00550     if (RetVT == MVT::i128)
00551       return FPTOUINT_F64_I128;
00552   } else if (OpVT == MVT::f80) {
00553     if (RetVT == MVT::i32)
00554       return FPTOUINT_F80_I32;
00555     if (RetVT == MVT::i64)
00556       return FPTOUINT_F80_I64;
00557     if (RetVT == MVT::i128)
00558       return FPTOUINT_F80_I128;
00559   } else if (OpVT == MVT::f128) {
00560     if (RetVT == MVT::i32)
00561       return FPTOUINT_F128_I32;
00562     if (RetVT == MVT::i64)
00563       return FPTOUINT_F128_I64;
00564     if (RetVT == MVT::i128)
00565       return FPTOUINT_F128_I128;
00566   } else if (OpVT == MVT::ppcf128) {
00567     if (RetVT == MVT::i32)
00568       return FPTOUINT_PPCF128_I32;
00569     if (RetVT == MVT::i64)
00570       return FPTOUINT_PPCF128_I64;
00571     if (RetVT == MVT::i128)
00572       return FPTOUINT_PPCF128_I128;
00573   }
00574   return UNKNOWN_LIBCALL;
00575 }
00576 
00577 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
00578 /// UNKNOWN_LIBCALL if there is none.
00579 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
00580   if (OpVT == MVT::i32) {
00581     if (RetVT == MVT::f32)
00582       return SINTTOFP_I32_F32;
00583     if (RetVT == MVT::f64)
00584       return SINTTOFP_I32_F64;
00585     if (RetVT == MVT::f80)
00586       return SINTTOFP_I32_F80;
00587     if (RetVT == MVT::f128)
00588       return SINTTOFP_I32_F128;
00589     if (RetVT == MVT::ppcf128)
00590       return SINTTOFP_I32_PPCF128;
00591   } else if (OpVT == MVT::i64) {
00592     if (RetVT == MVT::f32)
00593       return SINTTOFP_I64_F32;
00594     if (RetVT == MVT::f64)
00595       return SINTTOFP_I64_F64;
00596     if (RetVT == MVT::f80)
00597       return SINTTOFP_I64_F80;
00598     if (RetVT == MVT::f128)
00599       return SINTTOFP_I64_F128;
00600     if (RetVT == MVT::ppcf128)
00601       return SINTTOFP_I64_PPCF128;
00602   } else if (OpVT == MVT::i128) {
00603     if (RetVT == MVT::f32)
00604       return SINTTOFP_I128_F32;
00605     if (RetVT == MVT::f64)
00606       return SINTTOFP_I128_F64;
00607     if (RetVT == MVT::f80)
00608       return SINTTOFP_I128_F80;
00609     if (RetVT == MVT::f128)
00610       return SINTTOFP_I128_F128;
00611     if (RetVT == MVT::ppcf128)
00612       return SINTTOFP_I128_PPCF128;
00613   }
00614   return UNKNOWN_LIBCALL;
00615 }
00616 
00617 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
00618 /// UNKNOWN_LIBCALL if there is none.
00619 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
00620   if (OpVT == MVT::i32) {
00621     if (RetVT == MVT::f32)
00622       return UINTTOFP_I32_F32;
00623     if (RetVT == MVT::f64)
00624       return UINTTOFP_I32_F64;
00625     if (RetVT == MVT::f80)
00626       return UINTTOFP_I32_F80;
00627     if (RetVT == MVT::f128)
00628       return UINTTOFP_I32_F128;
00629     if (RetVT == MVT::ppcf128)
00630       return UINTTOFP_I32_PPCF128;
00631   } else if (OpVT == MVT::i64) {
00632     if (RetVT == MVT::f32)
00633       return UINTTOFP_I64_F32;
00634     if (RetVT == MVT::f64)
00635       return UINTTOFP_I64_F64;
00636     if (RetVT == MVT::f80)
00637       return UINTTOFP_I64_F80;
00638     if (RetVT == MVT::f128)
00639       return UINTTOFP_I64_F128;
00640     if (RetVT == MVT::ppcf128)
00641       return UINTTOFP_I64_PPCF128;
00642   } else if (OpVT == MVT::i128) {
00643     if (RetVT == MVT::f32)
00644       return UINTTOFP_I128_F32;
00645     if (RetVT == MVT::f64)
00646       return UINTTOFP_I128_F64;
00647     if (RetVT == MVT::f80)
00648       return UINTTOFP_I128_F80;
00649     if (RetVT == MVT::f128)
00650       return UINTTOFP_I128_F128;
00651     if (RetVT == MVT::ppcf128)
00652       return UINTTOFP_I128_PPCF128;
00653   }
00654   return UNKNOWN_LIBCALL;
00655 }
00656 
00657 /// InitCmpLibcallCCs - Set default comparison libcall CC.
00658 ///
00659 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
00660   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
00661   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
00662   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
00663   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
00664   CCs[RTLIB::UNE_F32] = ISD::SETNE;
00665   CCs[RTLIB::UNE_F64] = ISD::SETNE;
00666   CCs[RTLIB::UNE_F128] = ISD::SETNE;
00667   CCs[RTLIB::OGE_F32] = ISD::SETGE;
00668   CCs[RTLIB::OGE_F64] = ISD::SETGE;
00669   CCs[RTLIB::OGE_F128] = ISD::SETGE;
00670   CCs[RTLIB::OLT_F32] = ISD::SETLT;
00671   CCs[RTLIB::OLT_F64] = ISD::SETLT;
00672   CCs[RTLIB::OLT_F128] = ISD::SETLT;
00673   CCs[RTLIB::OLE_F32] = ISD::SETLE;
00674   CCs[RTLIB::OLE_F64] = ISD::SETLE;
00675   CCs[RTLIB::OLE_F128] = ISD::SETLE;
00676   CCs[RTLIB::OGT_F32] = ISD::SETGT;
00677   CCs[RTLIB::OGT_F64] = ISD::SETGT;
00678   CCs[RTLIB::OGT_F128] = ISD::SETGT;
00679   CCs[RTLIB::UO_F32] = ISD::SETNE;
00680   CCs[RTLIB::UO_F64] = ISD::SETNE;
00681   CCs[RTLIB::UO_F128] = ISD::SETNE;
00682   CCs[RTLIB::O_F32] = ISD::SETEQ;
00683   CCs[RTLIB::O_F64] = ISD::SETEQ;
00684   CCs[RTLIB::O_F128] = ISD::SETEQ;
00685 }
00686 
00687 /// NOTE: The constructor takes ownership of TLOF.
00688 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
00689                                        const TargetLoweringObjectFile *tlof)
00690     : TM(tm), DL(TM.getSubtargetImpl()->getDataLayout()), TLOF(*tlof) {
00691   initActions();
00692 
00693   // Perform these initializations only once.
00694   IsLittleEndian = DL->isLittleEndian();
00695   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
00696   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
00697     = MaxStoresPerMemmoveOptSize = 4;
00698   UseUnderscoreSetJmp = false;
00699   UseUnderscoreLongJmp = false;
00700   SelectIsExpensive = false;
00701   HasMultipleConditionRegisters = false;
00702   HasExtractBitsInsn = false;
00703   IntDivIsCheap = false;
00704   Pow2SDivIsCheap = false;
00705   JumpIsExpensive = false;
00706   PredictableSelectIsExpensive = false;
00707   MaskAndBranchFoldingIsLegal = false;
00708   HasFloatingPointExceptions = true;
00709   StackPointerRegisterToSaveRestore = 0;
00710   ExceptionPointerRegister = 0;
00711   ExceptionSelectorRegister = 0;
00712   BooleanContents = UndefinedBooleanContent;
00713   BooleanFloatContents = UndefinedBooleanContent;
00714   BooleanVectorContents = UndefinedBooleanContent;
00715   SchedPreferenceInfo = Sched::ILP;
00716   JumpBufSize = 0;
00717   JumpBufAlignment = 0;
00718   MinFunctionAlignment = 0;
00719   PrefFunctionAlignment = 0;
00720   PrefLoopAlignment = 0;
00721   MinStackArgumentAlignment = 1;
00722   InsertFencesForAtomic = false;
00723   MinimumJumpTableEntries = 4;
00724 
00725   InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple()));
00726   InitCmpLibcallCCs(CmpLibcallCCs);
00727   InitLibcallCallingConvs(LibcallCallingConvs);
00728 }
00729 
00730 TargetLoweringBase::~TargetLoweringBase() {
00731   delete &TLOF;
00732 }
00733 
00734 void TargetLoweringBase::initActions() {
00735   // All operations default to being supported.
00736   memset(OpActions, 0, sizeof(OpActions));
00737   memset(LoadExtActions, 0, sizeof(LoadExtActions));
00738   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
00739   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
00740   memset(CondCodeActions, 0, sizeof(CondCodeActions));
00741   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
00742   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
00743 
00744   // Set default actions for various operations.
00745   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
00746     // Default all indexed load / store to expand.
00747     for (unsigned IM = (unsigned)ISD::PRE_INC;
00748          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
00749       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
00750       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
00751     }
00752 
00753     // Most backends expect to see the node which just returns the value loaded.
00754     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
00755                        (MVT::SimpleValueType)VT, Expand);
00756 
00757     // These operations default to expand.
00758     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
00759     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
00760 
00761     // These library functions default to expand.
00762     setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
00763 
00764     // These operations default to expand for vector types.
00765     if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
00766         VT <= MVT::LAST_VECTOR_VALUETYPE) {
00767       setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
00768       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG,
00769                          (MVT::SimpleValueType)VT, Expand);
00770       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG,
00771                          (MVT::SimpleValueType)VT, Expand);
00772       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG,
00773                          (MVT::SimpleValueType)VT, Expand);
00774     }
00775   }
00776 
00777   // Most targets ignore the @llvm.prefetch intrinsic.
00778   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
00779 
00780   // ConstantFP nodes default to expand.  Targets can either change this to
00781   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
00782   // to optimize expansions for certain constants.
00783   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
00784   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
00785   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
00786   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
00787   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
00788 
00789   // These library functions default to expand.
00790   setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
00791   setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
00792   setOperationAction(ISD::FLOG10, MVT::f16, Expand);
00793   setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
00794   setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
00795   setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
00796   setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
00797   setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
00798   setOperationAction(ISD::FRINT,  MVT::f16, Expand);
00799   setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
00800   setOperationAction(ISD::FROUND, MVT::f16, Expand);
00801   setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
00802   setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
00803   setOperationAction(ISD::FLOG10, MVT::f32, Expand);
00804   setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
00805   setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
00806   setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
00807   setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
00808   setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
00809   setOperationAction(ISD::FRINT,  MVT::f32, Expand);
00810   setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
00811   setOperationAction(ISD::FROUND, MVT::f32, Expand);
00812   setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
00813   setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
00814   setOperationAction(ISD::FLOG10, MVT::f64, Expand);
00815   setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
00816   setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
00817   setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
00818   setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
00819   setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
00820   setOperationAction(ISD::FRINT,  MVT::f64, Expand);
00821   setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
00822   setOperationAction(ISD::FROUND, MVT::f64, Expand);
00823   setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
00824   setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
00825   setOperationAction(ISD::FLOG10, MVT::f128, Expand);
00826   setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
00827   setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
00828   setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
00829   setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
00830   setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
00831   setOperationAction(ISD::FRINT,  MVT::f128, Expand);
00832   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
00833   setOperationAction(ISD::FROUND, MVT::f128, Expand);
00834 
00835   // Default ISD::TRAP to expand (which turns it into abort).
00836   setOperationAction(ISD::TRAP, MVT::Other, Expand);
00837 
00838   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
00839   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
00840   //
00841   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
00842 }
00843 
00844 MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
00845   return MVT::getIntegerVT(getPointerSizeInBits(AS));
00846 }
00847 
00848 unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
00849   return DL->getPointerSizeInBits(AS);
00850 }
00851 
00852 unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
00853   assert(Ty->isPointerTy());
00854   return getPointerSizeInBits(Ty->getPointerAddressSpace());
00855 }
00856 
00857 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
00858   return MVT::getIntegerVT(8*DL->getPointerSize(0));
00859 }
00860 
00861 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
00862   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
00863   if (LHSTy.isVector())
00864     return LHSTy;
00865   return getScalarShiftAmountTy(LHSTy);
00866 }
00867 
00868 /// canOpTrap - Returns true if the operation can trap for the value type.
00869 /// VT must be a legal type.
00870 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
00871   assert(isTypeLegal(VT));
00872   switch (Op) {
00873   default:
00874     return false;
00875   case ISD::FDIV:
00876   case ISD::FREM:
00877   case ISD::SDIV:
00878   case ISD::UDIV:
00879   case ISD::SREM:
00880   case ISD::UREM:
00881     return true;
00882   }
00883 }
00884 
00885 
00886 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
00887                                           unsigned &NumIntermediates,
00888                                           MVT &RegisterVT,
00889                                           TargetLoweringBase *TLI) {
00890   // Figure out the right, legal destination reg to copy into.
00891   unsigned NumElts = VT.getVectorNumElements();
00892   MVT EltTy = VT.getVectorElementType();
00893 
00894   unsigned NumVectorRegs = 1;
00895 
00896   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
00897   // could break down into LHS/RHS like LegalizeDAG does.
00898   if (!isPowerOf2_32(NumElts)) {
00899     NumVectorRegs = NumElts;
00900     NumElts = 1;
00901   }
00902 
00903   // Divide the input until we get to a supported size.  This will always
00904   // end with a scalar if the target doesn't support vectors.
00905   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
00906     NumElts >>= 1;
00907     NumVectorRegs <<= 1;
00908   }
00909 
00910   NumIntermediates = NumVectorRegs;
00911 
00912   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
00913   if (!TLI->isTypeLegal(NewVT))
00914     NewVT = EltTy;
00915   IntermediateVT = NewVT;
00916 
00917   unsigned NewVTSize = NewVT.getSizeInBits();
00918 
00919   // Convert sizes such as i33 to i64.
00920   if (!isPowerOf2_32(NewVTSize))
00921     NewVTSize = NextPowerOf2(NewVTSize);
00922 
00923   MVT DestVT = TLI->getRegisterType(NewVT);
00924   RegisterVT = DestVT;
00925   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
00926     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
00927 
00928   // Otherwise, promotion or legal types use the same number of registers as
00929   // the vector decimated to the appropriate level.
00930   return NumVectorRegs;
00931 }
00932 
00933 /// isLegalRC - Return true if the value types that can be represented by the
00934 /// specified register class are all legal.
00935 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
00936   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
00937        I != E; ++I) {
00938     if (isTypeLegal(*I))
00939       return true;
00940   }
00941   return false;
00942 }
00943 
00944 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
00945 /// sequence of memory operands that is recognized by PrologEpilogInserter.
00946 MachineBasicBlock*
00947 TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
00948                                    MachineBasicBlock *MBB) const {
00949   MachineFunction &MF = *MI->getParent()->getParent();
00950 
00951   // MI changes inside this loop as we grow operands.
00952   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
00953     MachineOperand &MO = MI->getOperand(OperIdx);
00954     if (!MO.isFI())
00955       continue;
00956 
00957     // foldMemoryOperand builds a new MI after replacing a single FI operand
00958     // with the canonical set of five x86 addressing-mode operands.
00959     int FI = MO.getIndex();
00960     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
00961 
00962     // Copy operands before the frame-index.
00963     for (unsigned i = 0; i < OperIdx; ++i)
00964       MIB.addOperand(MI->getOperand(i));
00965     // Add frame index operands: direct-mem-ref tag, #FI, offset.
00966     MIB.addImm(StackMaps::DirectMemRefOp);
00967     MIB.addOperand(MI->getOperand(OperIdx));
00968     MIB.addImm(0);
00969     // Copy the operands after the frame index.
00970     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
00971       MIB.addOperand(MI->getOperand(i));
00972 
00973     // Inherit previous memory operands.
00974     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
00975     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
00976 
00977     // Add a new memory operand for this FI.
00978     const MachineFrameInfo &MFI = *MF.getFrameInfo();
00979     assert(MFI.getObjectOffset(FI) != -1);
00980     MachineMemOperand *MMO = MF.getMachineMemOperand(
00981         MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOLoad,
00982         TM.getSubtargetImpl()->getDataLayout()->getPointerSize(),
00983         MFI.getObjectAlignment(FI));
00984     MIB->addMemOperand(MF, MMO);
00985 
00986     // Replace the instruction and update the operand index.
00987     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
00988     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
00989     MI->eraseFromParent();
00990     MI = MIB;
00991   }
00992   return MBB;
00993 }
00994 
00995 /// findRepresentativeClass - Return the largest legal super-reg register class
00996 /// of the register class for the specified type and its associated "cost".
00997 std::pair<const TargetRegisterClass*, uint8_t>
00998 TargetLoweringBase::findRepresentativeClass(MVT VT) const {
00999   const TargetRegisterInfo *TRI =
01000       getTargetMachine().getSubtargetImpl()->getRegisterInfo();
01001   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
01002   if (!RC)
01003     return std::make_pair(RC, 0);
01004 
01005   // Compute the set of all super-register classes.
01006   BitVector SuperRegRC(TRI->getNumRegClasses());
01007   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
01008     SuperRegRC.setBitsInMask(RCI.getMask());
01009 
01010   // Find the first legal register class with the largest spill size.
01011   const TargetRegisterClass *BestRC = RC;
01012   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
01013     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
01014     // We want the largest possible spill size.
01015     if (SuperRC->getSize() <= BestRC->getSize())
01016       continue;
01017     if (!isLegalRC(SuperRC))
01018       continue;
01019     BestRC = SuperRC;
01020   }
01021   return std::make_pair(BestRC, 1);
01022 }
01023 
01024 /// computeRegisterProperties - Once all of the register classes are added,
01025 /// this allows us to compute derived properties we expose.
01026 void TargetLoweringBase::computeRegisterProperties() {
01027   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
01028          "Too many value types for ValueTypeActions to hold!");
01029 
01030   // Everything defaults to needing one register.
01031   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
01032     NumRegistersForVT[i] = 1;
01033     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
01034   }
01035   // ...except isVoid, which doesn't need any registers.
01036   NumRegistersForVT[MVT::isVoid] = 0;
01037 
01038   // Find the largest integer register class.
01039   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
01040   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
01041     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
01042 
01043   // Every integer value type larger than this largest register takes twice as
01044   // many registers to represent as the previous ValueType.
01045   for (unsigned ExpandedReg = LargestIntReg + 1;
01046        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
01047     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
01048     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
01049     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
01050     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
01051                                    TypeExpandInteger);
01052   }
01053 
01054   // Inspect all of the ValueType's smaller than the largest integer
01055   // register to see which ones need promotion.
01056   unsigned LegalIntReg = LargestIntReg;
01057   for (unsigned IntReg = LargestIntReg - 1;
01058        IntReg >= (unsigned)MVT::i1; --IntReg) {
01059     MVT IVT = (MVT::SimpleValueType)IntReg;
01060     if (isTypeLegal(IVT)) {
01061       LegalIntReg = IntReg;
01062     } else {
01063       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
01064         (const MVT::SimpleValueType)LegalIntReg;
01065       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
01066     }
01067   }
01068 
01069   // ppcf128 type is really two f64's.
01070   if (!isTypeLegal(MVT::ppcf128)) {
01071     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
01072     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
01073     TransformToType[MVT::ppcf128] = MVT::f64;
01074     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
01075   }
01076 
01077   // Decide how to handle f128. If the target does not have native f128 support,
01078   // expand it to i128 and we will be generating soft float library calls.
01079   if (!isTypeLegal(MVT::f128)) {
01080     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
01081     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
01082     TransformToType[MVT::f128] = MVT::i128;
01083     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
01084   }
01085 
01086   // Decide how to handle f64. If the target does not have native f64 support,
01087   // expand it to i64 and we will be generating soft float library calls.
01088   if (!isTypeLegal(MVT::f64)) {
01089     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
01090     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
01091     TransformToType[MVT::f64] = MVT::i64;
01092     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
01093   }
01094 
01095   // Decide how to handle f32. If the target does not have native support for
01096   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
01097   if (!isTypeLegal(MVT::f32)) {
01098     if (isTypeLegal(MVT::f64)) {
01099       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
01100       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
01101       TransformToType[MVT::f32] = MVT::f64;
01102       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
01103     } else {
01104       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
01105       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
01106       TransformToType[MVT::f32] = MVT::i32;
01107       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
01108     }
01109   }
01110 
01111   if (!isTypeLegal(MVT::f16)) {
01112     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
01113     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
01114     TransformToType[MVT::f16] = MVT::i16;
01115     ValueTypeActions.setTypeAction(MVT::f16, TypeSoftenFloat);
01116   }
01117 
01118   // Loop over all of the vector value types to see which need transformations.
01119   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
01120        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
01121     MVT VT = (MVT::SimpleValueType) i;
01122     if (isTypeLegal(VT))
01123       continue;
01124 
01125     MVT EltVT = VT.getVectorElementType();
01126     unsigned NElts = VT.getVectorNumElements();
01127     bool IsLegalWiderType = false;
01128     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
01129     switch (PreferredAction) {
01130     case TypePromoteInteger: {
01131       // Try to promote the elements of integer vectors. If no legal
01132       // promotion was found, fall through to the widen-vector method.
01133       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
01134         MVT SVT = (MVT::SimpleValueType) nVT;
01135         // Promote vectors of integers to vectors with the same number
01136         // of elements, with a wider element type.
01137         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
01138             && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
01139             && SVT.getScalarType().isInteger()) {
01140           TransformToType[i] = SVT;
01141           RegisterTypeForVT[i] = SVT;
01142           NumRegistersForVT[i] = 1;
01143           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
01144           IsLegalWiderType = true;
01145           break;
01146         }
01147       }
01148       if (IsLegalWiderType)
01149         break;
01150     }
01151     case TypeWidenVector: {
01152       // Try to widen the vector.
01153       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
01154         MVT SVT = (MVT::SimpleValueType) nVT;
01155         if (SVT.getVectorElementType() == EltVT
01156             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
01157           TransformToType[i] = SVT;
01158           RegisterTypeForVT[i] = SVT;
01159           NumRegistersForVT[i] = 1;
01160           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
01161           IsLegalWiderType = true;
01162           break;
01163         }
01164       }
01165       if (IsLegalWiderType)
01166         break;
01167     }
01168     case TypeSplitVector:
01169     case TypeScalarizeVector: {
01170       MVT IntermediateVT;
01171       MVT RegisterVT;
01172       unsigned NumIntermediates;
01173       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
01174           NumIntermediates, RegisterVT, this);
01175       RegisterTypeForVT[i] = RegisterVT;
01176 
01177       MVT NVT = VT.getPow2VectorType();
01178       if (NVT == VT) {
01179         // Type is already a power of 2.  The default action is to split.
01180         TransformToType[i] = MVT::Other;
01181         if (PreferredAction == TypeScalarizeVector)
01182           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
01183         else
01184           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
01185       } else {
01186         TransformToType[i] = NVT;
01187         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
01188       }
01189       break;
01190     }
01191     default:
01192       llvm_unreachable("Unknown vector legalization action!");
01193     }
01194   }
01195 
01196   // Determine the 'representative' register class for each value type.
01197   // An representative register class is the largest (meaning one which is
01198   // not a sub-register class / subreg register class) legal register class for
01199   // a group of value types. For example, on i386, i8, i16, and i32
01200   // representative would be GR32; while on x86_64 it's GR64.
01201   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
01202     const TargetRegisterClass* RRC;
01203     uint8_t Cost;
01204     std::tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
01205     RepRegClassForVT[i] = RRC;
01206     RepRegClassCostForVT[i] = Cost;
01207   }
01208 }
01209 
01210 EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
01211   assert(!VT.isVector() && "No default SetCC type for vectors!");
01212   return getPointerTy(0).SimpleTy;
01213 }
01214 
01215 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
01216   return MVT::i32; // return the default value
01217 }
01218 
01219 /// getVectorTypeBreakdown - Vector types are broken down into some number of
01220 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
01221 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
01222 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
01223 ///
01224 /// This method returns the number of registers needed, and the VT for each
01225 /// register.  It also returns the VT and quantity of the intermediate values
01226 /// before they are promoted/expanded.
01227 ///
01228 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
01229                                                 EVT &IntermediateVT,
01230                                                 unsigned &NumIntermediates,
01231                                                 MVT &RegisterVT) const {
01232   unsigned NumElts = VT.getVectorNumElements();
01233 
01234   // If there is a wider vector type with the same element type as this one,
01235   // or a promoted vector type that has the same number of elements which
01236   // are wider, then we should convert to that legal vector type.
01237   // This handles things like <2 x float> -> <4 x float> and
01238   // <4 x i1> -> <4 x i32>.
01239   LegalizeTypeAction TA = getTypeAction(Context, VT);
01240   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
01241     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
01242     if (isTypeLegal(RegisterEVT)) {
01243       IntermediateVT = RegisterEVT;
01244       RegisterVT = RegisterEVT.getSimpleVT();
01245       NumIntermediates = 1;
01246       return 1;
01247     }
01248   }
01249 
01250   // Figure out the right, legal destination reg to copy into.
01251   EVT EltTy = VT.getVectorElementType();
01252 
01253   unsigned NumVectorRegs = 1;
01254 
01255   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
01256   // could break down into LHS/RHS like LegalizeDAG does.
01257   if (!isPowerOf2_32(NumElts)) {
01258     NumVectorRegs = NumElts;
01259     NumElts = 1;
01260   }
01261 
01262   // Divide the input until we get to a supported size.  This will always
01263   // end with a scalar if the target doesn't support vectors.
01264   while (NumElts > 1 && !isTypeLegal(
01265                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
01266     NumElts >>= 1;
01267     NumVectorRegs <<= 1;
01268   }
01269 
01270   NumIntermediates = NumVectorRegs;
01271 
01272   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
01273   if (!isTypeLegal(NewVT))
01274     NewVT = EltTy;
01275   IntermediateVT = NewVT;
01276 
01277   MVT DestVT = getRegisterType(Context, NewVT);
01278   RegisterVT = DestVT;
01279   unsigned NewVTSize = NewVT.getSizeInBits();
01280 
01281   // Convert sizes such as i33 to i64.
01282   if (!isPowerOf2_32(NewVTSize))
01283     NewVTSize = NextPowerOf2(NewVTSize);
01284 
01285   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
01286     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
01287 
01288   // Otherwise, promotion or legal types use the same number of registers as
01289   // the vector decimated to the appropriate level.
01290   return NumVectorRegs;
01291 }
01292 
01293 /// Get the EVTs and ArgFlags collections that represent the legalized return
01294 /// type of the given function.  This does not require a DAG or a return value,
01295 /// and is suitable for use before any DAGs for the function are constructed.
01296 /// TODO: Move this out of TargetLowering.cpp.
01297 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
01298                          SmallVectorImpl<ISD::OutputArg> &Outs,
01299                          const TargetLowering &TLI) {
01300   SmallVector<EVT, 4> ValueVTs;
01301   ComputeValueVTs(TLI, ReturnType, ValueVTs);
01302   unsigned NumValues = ValueVTs.size();
01303   if (NumValues == 0) return;
01304 
01305   for (unsigned j = 0, f = NumValues; j != f; ++j) {
01306     EVT VT = ValueVTs[j];
01307     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
01308 
01309     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
01310       ExtendKind = ISD::SIGN_EXTEND;
01311     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
01312       ExtendKind = ISD::ZERO_EXTEND;
01313 
01314     // FIXME: C calling convention requires the return type to be promoted to
01315     // at least 32-bit. But this is not necessary for non-C calling
01316     // conventions. The frontend should mark functions whose return values
01317     // require promoting with signext or zeroext attributes.
01318     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
01319       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
01320       if (VT.bitsLT(MinVT))
01321         VT = MinVT;
01322     }
01323 
01324     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
01325     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
01326 
01327     // 'inreg' on function refers to return value
01328     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
01329     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
01330       Flags.setInReg();
01331 
01332     // Propagate extension type if any
01333     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
01334       Flags.setSExt();
01335     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
01336       Flags.setZExt();
01337 
01338     for (unsigned i = 0; i < NumParts; ++i)
01339       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
01340   }
01341 }
01342 
01343 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
01344 /// function arguments in the caller parameter area.  This is the actual
01345 /// alignment, not its logarithm.
01346 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
01347   return DL->getABITypeAlignment(Ty);
01348 }
01349 
01350 //===----------------------------------------------------------------------===//
01351 //  TargetTransformInfo Helpers
01352 //===----------------------------------------------------------------------===//
01353 
01354 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
01355   enum InstructionOpcodes {
01356 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
01357 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
01358 #include "llvm/IR/Instruction.def"
01359   };
01360   switch (static_cast<InstructionOpcodes>(Opcode)) {
01361   case Ret:            return 0;
01362   case Br:             return 0;
01363   case Switch:         return 0;
01364   case IndirectBr:     return 0;
01365   case Invoke:         return 0;
01366   case Resume:         return 0;
01367   case Unreachable:    return 0;
01368   case Add:            return ISD::ADD;
01369   case FAdd:           return ISD::FADD;
01370   case Sub:            return ISD::SUB;
01371   case FSub:           return ISD::FSUB;
01372   case Mul:            return ISD::MUL;
01373   case FMul:           return ISD::FMUL;
01374   case UDiv:           return ISD::UDIV;
01375   case SDiv:           return ISD::SDIV;
01376   case FDiv:           return ISD::FDIV;
01377   case URem:           return ISD::UREM;
01378   case SRem:           return ISD::SREM;
01379   case FRem:           return ISD::FREM;
01380   case Shl:            return ISD::SHL;
01381   case LShr:           return ISD::SRL;
01382   case AShr:           return ISD::SRA;
01383   case And:            return ISD::AND;
01384   case Or:             return ISD::OR;
01385   case Xor:            return ISD::XOR;
01386   case Alloca:         return 0;
01387   case Load:           return ISD::LOAD;
01388   case Store:          return ISD::STORE;
01389   case GetElementPtr:  return 0;
01390   case Fence:          return 0;
01391   case AtomicCmpXchg:  return 0;
01392   case AtomicRMW:      return 0;
01393   case Trunc:          return ISD::TRUNCATE;
01394   case ZExt:           return ISD::ZERO_EXTEND;
01395   case SExt:           return ISD::SIGN_EXTEND;
01396   case FPToUI:         return ISD::FP_TO_UINT;
01397   case FPToSI:         return ISD::FP_TO_SINT;
01398   case UIToFP:         return ISD::UINT_TO_FP;
01399   case SIToFP:         return ISD::SINT_TO_FP;
01400   case FPTrunc:        return ISD::FP_ROUND;
01401   case FPExt:          return ISD::FP_EXTEND;
01402   case PtrToInt:       return ISD::BITCAST;
01403   case IntToPtr:       return ISD::BITCAST;
01404   case BitCast:        return ISD::BITCAST;
01405   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
01406   case ICmp:           return ISD::SETCC;
01407   case FCmp:           return ISD::SETCC;
01408   case PHI:            return 0;
01409   case Call:           return 0;
01410   case Select:         return ISD::SELECT;
01411   case UserOp1:        return 0;
01412   case UserOp2:        return 0;
01413   case VAArg:          return 0;
01414   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
01415   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
01416   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
01417   case ExtractValue:   return ISD::MERGE_VALUES;
01418   case InsertValue:    return ISD::MERGE_VALUES;
01419   case LandingPad:     return 0;
01420   }
01421 
01422   llvm_unreachable("Unknown instruction type encountered!");
01423 }
01424 
01425 std::pair<unsigned, MVT>
01426 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
01427   LLVMContext &C = Ty->getContext();
01428   EVT MTy = getValueType(Ty);
01429 
01430   unsigned Cost = 1;
01431   // We keep legalizing the type until we find a legal kind. We assume that
01432   // the only operation that costs anything is the split. After splitting
01433   // we need to handle two types.
01434   while (true) {
01435     LegalizeKind LK = getTypeConversion(C, MTy);
01436 
01437     if (LK.first == TypeLegal)
01438       return std::make_pair(Cost, MTy.getSimpleVT());
01439 
01440     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
01441       Cost *= 2;
01442 
01443     // Keep legalizing the type.
01444     MTy = LK.second;
01445   }
01446 }
01447 
01448 //===----------------------------------------------------------------------===//
01449 //  Loop Strength Reduction hooks
01450 //===----------------------------------------------------------------------===//
01451 
01452 /// isLegalAddressingMode - Return true if the addressing mode represented
01453 /// by AM is legal for this target, for a load/store of the specified type.
01454 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
01455                                            Type *Ty) const {
01456   // The default implementation of this implements a conservative RISCy, r+r and
01457   // r+i addr mode.
01458 
01459   // Allows a sign-extended 16-bit immediate field.
01460   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
01461     return false;
01462 
01463   // No global is ever allowed as a base.
01464   if (AM.BaseGV)
01465     return false;
01466 
01467   // Only support r+r,
01468   switch (AM.Scale) {
01469   case 0:  // "r+i" or just "i", depending on HasBaseReg.
01470     break;
01471   case 1:
01472     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
01473       return false;
01474     // Otherwise we have r+r or r+i.
01475     break;
01476   case 2:
01477     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
01478       return false;
01479     // Allow 2*r as r+r.
01480     break;
01481   default: // Don't allow n * r
01482     return false;
01483   }
01484 
01485   return true;
01486 }