LLVM API Documentation

TargetSchedule.cpp
Go to the documentation of this file.
00001 //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements a wrapper around MCSchedModel that allows the interface
00011 // to benefit from information currently only available in TargetInstrInfo.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "llvm/CodeGen/TargetSchedule.h"
00016 #include "llvm/Support/CommandLine.h"
00017 #include "llvm/Support/raw_ostream.h"
00018 #include "llvm/Target/TargetInstrInfo.h"
00019 #include "llvm/Target/TargetMachine.h"
00020 #include "llvm/Target/TargetRegisterInfo.h"
00021 #include "llvm/Target/TargetSubtargetInfo.h"
00022 
00023 using namespace llvm;
00024 
00025 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
00026   cl::desc("Use TargetSchedModel for latency lookup"));
00027 
00028 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
00029   cl::desc("Use InstrItineraryData for latency lookup"));
00030 
00031 bool TargetSchedModel::hasInstrSchedModel() const {
00032   return EnableSchedModel && SchedModel.hasInstrSchedModel();
00033 }
00034 
00035 bool TargetSchedModel::hasInstrItineraries() const {
00036   return EnableSchedItins && !InstrItins.isEmpty();
00037 }
00038 
00039 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
00040   // Dividend and Divisor will be naturally swapped as needed.
00041   while(Divisor) {
00042     unsigned Rem = Dividend % Divisor;
00043     Dividend = Divisor;
00044     Divisor = Rem;
00045   };
00046   return Dividend;
00047 }
00048 static unsigned lcm(unsigned A, unsigned B) {
00049   unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
00050   assert((LCM >= A && LCM >= B) && "LCM overflow");
00051   return LCM;
00052 }
00053 
00054 void TargetSchedModel::init(const MCSchedModel &sm,
00055                             const TargetSubtargetInfo *sti,
00056                             const TargetInstrInfo *tii) {
00057   SchedModel = sm;
00058   STI = sti;
00059   TII = tii;
00060   STI->initInstrItins(InstrItins);
00061 
00062   unsigned NumRes = SchedModel.getNumProcResourceKinds();
00063   ResourceFactors.resize(NumRes);
00064   ResourceLCM = SchedModel.IssueWidth;
00065   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
00066     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
00067     if (NumUnits > 0)
00068       ResourceLCM = lcm(ResourceLCM, NumUnits);
00069   }
00070   MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
00071   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
00072     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
00073     ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
00074   }
00075 }
00076 
00077 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
00078                                           const MCSchedClassDesc *SC) const {
00079   if (hasInstrItineraries()) {
00080     int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
00081     return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI);
00082   }
00083   if (hasInstrSchedModel()) {
00084     if (!SC)
00085       SC = resolveSchedClass(MI);
00086     if (SC->isValid())
00087       return SC->NumMicroOps;
00088   }
00089   return MI->isTransient() ? 0 : 1;
00090 }
00091 
00092 // The machine model may explicitly specify an invalid latency, which
00093 // effectively means infinite latency. Since users of the TargetSchedule API
00094 // don't know how to handle this, we convert it to a very large latency that is
00095 // easy to distinguish when debugging the DAG but won't induce overflow.
00096 static unsigned capLatency(int Cycles) {
00097   return Cycles >= 0 ? Cycles : 1000;
00098 }
00099 
00100 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
00101 /// evaluation of predicates that depend on instruction operands or flags.
00102 const MCSchedClassDesc *TargetSchedModel::
00103 resolveSchedClass(const MachineInstr *MI) const {
00104 
00105   // Get the definition's scheduling class descriptor from this machine model.
00106   unsigned SchedClass = MI->getDesc().getSchedClass();
00107   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
00108   if (!SCDesc->isValid())
00109     return SCDesc;
00110 
00111 #ifndef NDEBUG
00112   unsigned NIter = 0;
00113 #endif
00114   while (SCDesc->isVariant()) {
00115     assert(++NIter < 6 && "Variants are nested deeper than the magic number");
00116 
00117     SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
00118     SCDesc = SchedModel.getSchedClassDesc(SchedClass);
00119   }
00120   return SCDesc;
00121 }
00122 
00123 /// Find the def index of this operand. This index maps to the machine model and
00124 /// is independent of use operands. Def operands may be reordered with uses or
00125 /// merged with uses without affecting the def index (e.g. before/after
00126 /// regalloc). However, an instruction's def operands must never be reordered
00127 /// with respect to each other.
00128 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
00129   unsigned DefIdx = 0;
00130   for (unsigned i = 0; i != DefOperIdx; ++i) {
00131     const MachineOperand &MO = MI->getOperand(i);
00132     if (MO.isReg() && MO.isDef())
00133       ++DefIdx;
00134   }
00135   return DefIdx;
00136 }
00137 
00138 /// Find the use index of this operand. This is independent of the instruction's
00139 /// def operands.
00140 ///
00141 /// Note that uses are not determined by the operand's isUse property, which
00142 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
00143 /// a "use". The machine model allows an operand to be both a Def and Use.
00144 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
00145   unsigned UseIdx = 0;
00146   for (unsigned i = 0; i != UseOperIdx; ++i) {
00147     const MachineOperand &MO = MI->getOperand(i);
00148     if (MO.isReg() && MO.readsReg())
00149       ++UseIdx;
00150   }
00151   return UseIdx;
00152 }
00153 
00154 // Top-level API for clients that know the operand indices.
00155 unsigned TargetSchedModel::computeOperandLatency(
00156   const MachineInstr *DefMI, unsigned DefOperIdx,
00157   const MachineInstr *UseMI, unsigned UseOperIdx) const {
00158 
00159   if (!hasInstrSchedModel() && !hasInstrItineraries())
00160     return TII->defaultDefLatency(SchedModel, DefMI);
00161 
00162   if (hasInstrItineraries()) {
00163     int OperLatency = 0;
00164     if (UseMI) {
00165       OperLatency = TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx,
00166                                            UseMI, UseOperIdx);
00167     }
00168     else {
00169       unsigned DefClass = DefMI->getDesc().getSchedClass();
00170       OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
00171     }
00172     if (OperLatency >= 0)
00173       return OperLatency;
00174 
00175     // No operand latency was found.
00176     unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI);
00177 
00178     // Expected latency is the max of the stage latency and itinerary props.
00179     // Rather than directly querying InstrItins stage latency, we call a TII
00180     // hook to allow subtargets to specialize latency. This hook is only
00181     // applicable to the InstrItins model. InstrSchedModel should model all
00182     // special cases without TII hooks.
00183     InstrLatency = std::max(InstrLatency,
00184                             TII->defaultDefLatency(SchedModel, DefMI));
00185     return InstrLatency;
00186   }
00187   // hasInstrSchedModel()
00188   const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
00189   unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
00190   if (DefIdx < SCDesc->NumWriteLatencyEntries) {
00191     // Lookup the definition's write latency in SubtargetInfo.
00192     const MCWriteLatencyEntry *WLEntry =
00193       STI->getWriteLatencyEntry(SCDesc, DefIdx);
00194     unsigned WriteID = WLEntry->WriteResourceID;
00195     unsigned Latency = capLatency(WLEntry->Cycles);
00196     if (!UseMI)
00197       return Latency;
00198 
00199     // Lookup the use's latency adjustment in SubtargetInfo.
00200     const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
00201     if (UseDesc->NumReadAdvanceEntries == 0)
00202       return Latency;
00203     unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
00204     int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
00205     if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
00206       return 0;
00207     return Latency - Advance;
00208   }
00209   // If DefIdx does not exist in the model (e.g. implicit defs), then return
00210   // unit latency (defaultDefLatency may be too conservative).
00211 #ifndef NDEBUG
00212   if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
00213       && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
00214       && SchedModel.isComplete()) {
00215     std::string Err;
00216     raw_string_ostream ss(Err);
00217     ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
00218        << *DefMI;
00219     report_fatal_error(ss.str());
00220   }
00221 #endif
00222   // FIXME: Automatically giving all implicit defs defaultDefLatency is
00223   // undesirable. We should only do it for defs that are known to the MC
00224   // desc like flags. Truly implicit defs should get 1 cycle latency.
00225   return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, DefMI);
00226 }
00227 
00228 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
00229   assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
00230 
00231   unsigned SCIdx = TII->get(Opcode).getSchedClass();
00232   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SCIdx);
00233   unsigned Latency = 0;
00234 
00235   if (SCDesc->isValid() && !SCDesc->isVariant()) {
00236     for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
00237          DefIdx != DefEnd; ++DefIdx) {
00238       // Lookup the definition's write latency in SubtargetInfo.
00239       const MCWriteLatencyEntry *WLEntry =
00240           STI->getWriteLatencyEntry(SCDesc, DefIdx);
00241       Latency = std::max(Latency, capLatency(WLEntry->Cycles));
00242     }
00243     return Latency;
00244   }
00245 
00246   assert(Latency && "No MI sched latency");
00247   return 0;
00248 }
00249 
00250 unsigned
00251 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
00252                                       bool UseDefaultDefLatency) const {
00253   // For the itinerary model, fall back to the old subtarget hook.
00254   // Allow subtargets to compute Bundle latencies outside the machine model.
00255   if (hasInstrItineraries() || MI->isBundle() ||
00256       (!hasInstrSchedModel() && !UseDefaultDefLatency))
00257     return TII->getInstrLatency(&InstrItins, MI);
00258 
00259   if (hasInstrSchedModel()) {
00260     const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
00261     if (SCDesc->isValid()) {
00262       unsigned Latency = 0;
00263       for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
00264            DefIdx != DefEnd; ++DefIdx) {
00265         // Lookup the definition's write latency in SubtargetInfo.
00266         const MCWriteLatencyEntry *WLEntry =
00267           STI->getWriteLatencyEntry(SCDesc, DefIdx);
00268         Latency = std::max(Latency, capLatency(WLEntry->Cycles));
00269       }
00270       return Latency;
00271     }
00272   }
00273   return TII->defaultDefLatency(SchedModel, MI);
00274 }
00275 
00276 unsigned TargetSchedModel::
00277 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
00278                      const MachineInstr *DepMI) const {
00279   if (SchedModel.MicroOpBufferSize <= 1)
00280     return 1;
00281 
00282   // MicroOpBufferSize > 1 indicates an out-of-order processor that can dispatch
00283   // WAW dependencies in the same cycle.
00284 
00285   // Treat predication as a data dependency for out-of-order cpus. In-order
00286   // cpus do not need to treat predicated writes specially.
00287   //
00288   // TODO: The following hack exists because predication passes do not
00289   // correctly append imp-use operands, and readsReg() strangely returns false
00290   // for predicated defs.
00291   unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
00292   const MachineFunction &MF = *DefMI->getParent()->getParent();
00293   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
00294   if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
00295     return computeInstrLatency(DefMI);
00296 
00297   // If we have a per operand scheduling model, check if this def is writing
00298   // an unbuffered resource. If so, it treated like an in-order cpu.
00299   if (hasInstrSchedModel()) {
00300     const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
00301     if (SCDesc->isValid()) {
00302       for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
00303              *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
00304         if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
00305           return 1;
00306       }
00307     }
00308   }
00309   return 0;
00310 }