LLVM API Documentation
00001 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the VirtRegMap class. 00011 // 00012 // It also contains implementations of the Spiller interface, which, given a 00013 // virtual register map and a machine function, eliminates all virtual 00014 // references by replacing them with physical register references - adding spill 00015 // code as necessary. 00016 // 00017 //===----------------------------------------------------------------------===// 00018 00019 #include "llvm/CodeGen/VirtRegMap.h" 00020 #include "LiveDebugVariables.h" 00021 #include "llvm/ADT/STLExtras.h" 00022 #include "llvm/ADT/SparseSet.h" 00023 #include "llvm/ADT/Statistic.h" 00024 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00025 #include "llvm/CodeGen/LiveStackAnalysis.h" 00026 #include "llvm/CodeGen/MachineFrameInfo.h" 00027 #include "llvm/CodeGen/MachineFunction.h" 00028 #include "llvm/CodeGen/MachineInstrBuilder.h" 00029 #include "llvm/CodeGen/MachineRegisterInfo.h" 00030 #include "llvm/CodeGen/Passes.h" 00031 #include "llvm/IR/Function.h" 00032 #include "llvm/Support/CommandLine.h" 00033 #include "llvm/Support/Compiler.h" 00034 #include "llvm/Support/Debug.h" 00035 #include "llvm/Support/raw_ostream.h" 00036 #include "llvm/Target/TargetInstrInfo.h" 00037 #include "llvm/Target/TargetMachine.h" 00038 #include "llvm/Target/TargetRegisterInfo.h" 00039 #include "llvm/Target/TargetSubtargetInfo.h" 00040 #include <algorithm> 00041 using namespace llvm; 00042 00043 #define DEBUG_TYPE "regalloc" 00044 00045 STATISTIC(NumSpillSlots, "Number of spill slots allocated"); 00046 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); 00047 00048 //===----------------------------------------------------------------------===// 00049 // VirtRegMap implementation 00050 //===----------------------------------------------------------------------===// 00051 00052 char VirtRegMap::ID = 0; 00053 00054 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) 00055 00056 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { 00057 MRI = &mf.getRegInfo(); 00058 TII = mf.getSubtarget().getInstrInfo(); 00059 TRI = mf.getSubtarget().getRegisterInfo(); 00060 MF = &mf; 00061 00062 Virt2PhysMap.clear(); 00063 Virt2StackSlotMap.clear(); 00064 Virt2SplitMap.clear(); 00065 00066 grow(); 00067 return false; 00068 } 00069 00070 void VirtRegMap::grow() { 00071 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); 00072 Virt2PhysMap.resize(NumRegs); 00073 Virt2StackSlotMap.resize(NumRegs); 00074 Virt2SplitMap.resize(NumRegs); 00075 } 00076 00077 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { 00078 int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 00079 RC->getAlignment()); 00080 ++NumSpillSlots; 00081 return SS; 00082 } 00083 00084 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) { 00085 unsigned Hint = MRI->getSimpleHint(VirtReg); 00086 if (!Hint) 00087 return 0; 00088 if (TargetRegisterInfo::isVirtualRegister(Hint)) 00089 Hint = getPhys(Hint); 00090 return getPhys(VirtReg) == Hint; 00091 } 00092 00093 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) { 00094 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg); 00095 if (TargetRegisterInfo::isPhysicalRegister(Hint.second)) 00096 return true; 00097 if (TargetRegisterInfo::isVirtualRegister(Hint.second)) 00098 return hasPhys(Hint.second); 00099 return false; 00100 } 00101 00102 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { 00103 assert(TargetRegisterInfo::isVirtualRegister(virtReg)); 00104 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 00105 "attempt to assign stack slot to already spilled register"); 00106 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); 00107 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); 00108 } 00109 00110 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { 00111 assert(TargetRegisterInfo::isVirtualRegister(virtReg)); 00112 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 00113 "attempt to assign stack slot to already spilled register"); 00114 assert((SS >= 0 || 00115 (SS >= MF->getFrameInfo()->getObjectIndexBegin())) && 00116 "illegal fixed frame index"); 00117 Virt2StackSlotMap[virtReg] = SS; 00118 } 00119 00120 void VirtRegMap::print(raw_ostream &OS, const Module*) const { 00121 OS << "********** REGISTER MAP **********\n"; 00122 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 00123 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 00124 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { 00125 OS << '[' << PrintReg(Reg, TRI) << " -> " 00126 << PrintReg(Virt2PhysMap[Reg], TRI) << "] " 00127 << MRI->getRegClass(Reg)->getName() << "\n"; 00128 } 00129 } 00130 00131 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 00132 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 00133 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { 00134 OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] 00135 << "] " << MRI->getRegClass(Reg)->getName() << "\n"; 00136 } 00137 } 00138 OS << '\n'; 00139 } 00140 00141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 00142 void VirtRegMap::dump() const { 00143 print(dbgs()); 00144 } 00145 #endif 00146 00147 //===----------------------------------------------------------------------===// 00148 // VirtRegRewriter 00149 //===----------------------------------------------------------------------===// 00150 // 00151 // The VirtRegRewriter is the last of the register allocator passes. 00152 // It rewrites virtual registers to physical registers as specified in the 00153 // VirtRegMap analysis. It also updates live-in information on basic blocks 00154 // according to LiveIntervals. 00155 // 00156 namespace { 00157 class VirtRegRewriter : public MachineFunctionPass { 00158 MachineFunction *MF; 00159 const TargetMachine *TM; 00160 const TargetRegisterInfo *TRI; 00161 const TargetInstrInfo *TII; 00162 MachineRegisterInfo *MRI; 00163 SlotIndexes *Indexes; 00164 LiveIntervals *LIS; 00165 VirtRegMap *VRM; 00166 SparseSet<unsigned> PhysRegs; 00167 00168 void rewrite(); 00169 void addMBBLiveIns(); 00170 public: 00171 static char ID; 00172 VirtRegRewriter() : MachineFunctionPass(ID) {} 00173 00174 void getAnalysisUsage(AnalysisUsage &AU) const override; 00175 00176 bool runOnMachineFunction(MachineFunction&) override; 00177 }; 00178 } // end anonymous namespace 00179 00180 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; 00181 00182 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", 00183 "Virtual Register Rewriter", false, false) 00184 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 00185 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 00186 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 00187 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 00188 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 00189 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", 00190 "Virtual Register Rewriter", false, false) 00191 00192 char VirtRegRewriter::ID = 0; 00193 00194 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { 00195 AU.setPreservesCFG(); 00196 AU.addRequired<LiveIntervals>(); 00197 AU.addRequired<SlotIndexes>(); 00198 AU.addPreserved<SlotIndexes>(); 00199 AU.addRequired<LiveDebugVariables>(); 00200 AU.addRequired<LiveStacks>(); 00201 AU.addPreserved<LiveStacks>(); 00202 AU.addRequired<VirtRegMap>(); 00203 MachineFunctionPass::getAnalysisUsage(AU); 00204 } 00205 00206 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { 00207 MF = &fn; 00208 TM = &MF->getTarget(); 00209 TRI = TM->getSubtargetImpl()->getRegisterInfo(); 00210 TII = TM->getSubtargetImpl()->getInstrInfo(); 00211 MRI = &MF->getRegInfo(); 00212 Indexes = &getAnalysis<SlotIndexes>(); 00213 LIS = &getAnalysis<LiveIntervals>(); 00214 VRM = &getAnalysis<VirtRegMap>(); 00215 DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" 00216 << "********** Function: " 00217 << MF->getName() << '\n'); 00218 DEBUG(VRM->dump()); 00219 00220 // Add kill flags while we still have virtual registers. 00221 LIS->addKillFlags(VRM); 00222 00223 // Live-in lists on basic blocks are required for physregs. 00224 addMBBLiveIns(); 00225 00226 // Rewrite virtual registers. 00227 rewrite(); 00228 00229 // Write out new DBG_VALUE instructions. 00230 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); 00231 00232 // All machine operands and other references to virtual registers have been 00233 // replaced. Remove the virtual registers and release all the transient data. 00234 VRM->clearAllVirt(); 00235 MRI->clearVirtRegs(); 00236 return true; 00237 } 00238 00239 // Compute MBB live-in lists from virtual register live ranges and their 00240 // assignments. 00241 void VirtRegRewriter::addMBBLiveIns() { 00242 SmallVector<MachineBasicBlock*, 16> LiveIn; 00243 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { 00244 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx); 00245 if (MRI->reg_nodbg_empty(VirtReg)) 00246 continue; 00247 LiveInterval &LI = LIS->getInterval(VirtReg); 00248 if (LI.empty() || LIS->intervalIsInOneMBB(LI)) 00249 continue; 00250 // This is a virtual register that is live across basic blocks. Its 00251 // assigned PhysReg must be marked as live-in to those blocks. 00252 unsigned PhysReg = VRM->getPhys(VirtReg); 00253 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); 00254 00255 // Scan the segments of LI. 00256 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E; 00257 ++I) { 00258 if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn)) 00259 continue; 00260 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) 00261 if (!LiveIn[i]->isLiveIn(PhysReg)) 00262 LiveIn[i]->addLiveIn(PhysReg); 00263 LiveIn.clear(); 00264 } 00265 } 00266 } 00267 00268 void VirtRegRewriter::rewrite() { 00269 SmallVector<unsigned, 8> SuperDeads; 00270 SmallVector<unsigned, 8> SuperDefs; 00271 SmallVector<unsigned, 8> SuperKills; 00272 SmallPtrSet<const MachineInstr *, 4> NoReturnInsts; 00273 00274 // Here we have a SparseSet to hold which PhysRegs are actually encountered 00275 // in the MF we are about to iterate over so that later when we call 00276 // setPhysRegUsed, we are only doing it for physRegs that were actually found 00277 // in the program and not for all of the possible physRegs for the given 00278 // target architecture. If the target has a lot of physRegs, then for a small 00279 // program there will be a significant compile time reduction here. 00280 PhysRegs.clear(); 00281 PhysRegs.setUniverse(TRI->getNumRegs()); 00282 00283 // The function with uwtable should guarantee that the stack unwinder 00284 // can unwind the stack to the previous frame. Thus, we can't apply the 00285 // noreturn optimization if the caller function has uwtable attribute. 00286 bool HasUWTable = MF->getFunction()->hasFnAttribute(Attribute::UWTable); 00287 00288 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 00289 MBBI != MBBE; ++MBBI) { 00290 DEBUG(MBBI->print(dbgs(), Indexes)); 00291 bool IsExitBB = MBBI->succ_empty(); 00292 for (MachineBasicBlock::instr_iterator 00293 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { 00294 MachineInstr *MI = MII; 00295 ++MII; 00296 00297 // Check if this instruction is a call to a noreturn function. If this 00298 // is a call to noreturn function and we don't need the stack unwinding 00299 // functionality (i.e. this function does not have uwtable attribute and 00300 // the callee function has the nounwind attribute), then we can ignore 00301 // the definitions set by this instruction. 00302 if (!HasUWTable && IsExitBB && MI->isCall()) { 00303 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 00304 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 00305 MachineOperand &MO = *MOI; 00306 if (!MO.isGlobal()) 00307 continue; 00308 const Function *Func = dyn_cast<Function>(MO.getGlobal()); 00309 if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) || 00310 // We need to keep correct unwind information 00311 // even if the function will not return, since the 00312 // runtime may need it. 00313 !Func->hasFnAttribute(Attribute::NoUnwind)) 00314 continue; 00315 NoReturnInsts.insert(MI); 00316 break; 00317 } 00318 } 00319 00320 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 00321 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 00322 MachineOperand &MO = *MOI; 00323 00324 // Make sure MRI knows about registers clobbered by regmasks. 00325 if (MO.isRegMask()) 00326 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 00327 00328 // If we encounter a VirtReg or PhysReg then get at the PhysReg and add 00329 // it to the physreg bitset. Later we use only the PhysRegs that were 00330 // actually encountered in the MF to populate the MRI's used physregs. 00331 if (MO.isReg() && MO.getReg()) 00332 PhysRegs.insert( 00333 TargetRegisterInfo::isVirtualRegister(MO.getReg()) ? 00334 VRM->getPhys(MO.getReg()) : 00335 MO.getReg()); 00336 00337 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 00338 continue; 00339 unsigned VirtReg = MO.getReg(); 00340 unsigned PhysReg = VRM->getPhys(VirtReg); 00341 assert(PhysReg != VirtRegMap::NO_PHYS_REG && 00342 "Instruction uses unmapped VirtReg"); 00343 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); 00344 00345 // Preserve semantics of sub-register operands. 00346 if (MO.getSubReg()) { 00347 // A virtual register kill refers to the whole register, so we may 00348 // have to add <imp-use,kill> operands for the super-register. A 00349 // partial redef always kills and redefines the super-register. 00350 if (MO.readsReg() && (MO.isDef() || MO.isKill())) 00351 SuperKills.push_back(PhysReg); 00352 00353 if (MO.isDef()) { 00354 // The <def,undef> flag only makes sense for sub-register defs, and 00355 // we are substituting a full physreg. An <imp-use,kill> operand 00356 // from the SuperKills list will represent the partial read of the 00357 // super-register. 00358 MO.setIsUndef(false); 00359 00360 // Also add implicit defs for the super-register. 00361 if (MO.isDead()) 00362 SuperDeads.push_back(PhysReg); 00363 else 00364 SuperDefs.push_back(PhysReg); 00365 } 00366 00367 // PhysReg operands cannot have subregister indexes. 00368 PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg()); 00369 assert(PhysReg && "Invalid SubReg for physical register"); 00370 MO.setSubReg(0); 00371 } 00372 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but 00373 // we need the inlining here. 00374 MO.setReg(PhysReg); 00375 } 00376 00377 // Add any missing super-register kills after rewriting the whole 00378 // instruction. 00379 while (!SuperKills.empty()) 00380 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); 00381 00382 while (!SuperDeads.empty()) 00383 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); 00384 00385 while (!SuperDefs.empty()) 00386 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); 00387 00388 DEBUG(dbgs() << "> " << *MI); 00389 00390 // Finally, remove any identity copies. 00391 if (MI->isIdentityCopy()) { 00392 ++NumIdCopies; 00393 if (MI->getNumOperands() == 2) { 00394 DEBUG(dbgs() << "Deleting identity copy.\n"); 00395 if (Indexes) 00396 Indexes->removeMachineInstrFromMaps(MI); 00397 // It's safe to erase MI because MII has already been incremented. 00398 MI->eraseFromParent(); 00399 } else { 00400 // Transform identity copy to a KILL to deal with subregisters. 00401 MI->setDesc(TII->get(TargetOpcode::KILL)); 00402 DEBUG(dbgs() << "Identity copy: " << *MI); 00403 } 00404 } 00405 } 00406 } 00407 00408 // Tell MRI about physical registers in use. 00409 if (NoReturnInsts.empty()) { 00410 for (SparseSet<unsigned>::iterator 00411 RegI = PhysRegs.begin(), E = PhysRegs.end(); RegI != E; ++RegI) 00412 if (!MRI->reg_nodbg_empty(*RegI)) 00413 MRI->setPhysRegUsed(*RegI); 00414 } else { 00415 for (SparseSet<unsigned>::iterator 00416 I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I) { 00417 unsigned Reg = *I; 00418 if (MRI->reg_nodbg_empty(Reg)) 00419 continue; 00420 // Check if this register has a use that will impact the rest of the 00421 // code. Uses in debug and noreturn instructions do not impact the 00422 // generated code. 00423 for (MachineInstr &It : MRI->reg_nodbg_instructions(Reg)) { 00424 if (!NoReturnInsts.count(&It)) { 00425 MRI->setPhysRegUsed(Reg); 00426 break; 00427 } 00428 } 00429 } 00430 } 00431 } 00432